#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 3, 2022, 821-829 ISSN 1307-5543 — ejpam.com Published by New York Business Global



# Semi-Regularization Topological Spaces

Dina Abuzaid<sup>1</sup>, Nouf Alfarsi<sup>1,\*</sup>, Lutfi Kalantan<sup>1</sup>

<sup>1</sup> King Abdulaziz University, Department of Mathematics, P.O.Box 80203, Jeddah 21589, Saudi Arabia

**Abstract.** If  $(X, \mathcal{T})$  is a topological space, then the semi-regularization topology  $\mathcal{T}_s$  on X of  $\mathcal{T}$  is the coarser topology on X generated by the family of all open domains of  $(X, \mathcal{T})$  where a subset U is called an open domain if  $U = \operatorname{int}(\overline{U})$ . In this paper, we study the semi-regularity of some generated spaces and some properties of weaker version of normality of the semi-regularization space  $(X, \mathcal{T}_s)$  of a space  $(X, \mathcal{T})$ .

2020 Mathematics Subject Classifications: 54A10, 54D10.

**Key Words and Phrases**: Semi-regular, semi-regularization, Alexandroff duplicate, closed extension, discrete extension, open extension, C-normality, epi-normality, submetrizability, scattered.

If  $(X, \tau)$  is a topological space, then the semi-regularization topology  $\tau_s$  on X of  $\tau$  is the coarser topology on X generated by the family of all open domains of  $(X, \tau)$  where a subset U is called an open domain if  $U = \operatorname{int}(\overline{U})$ . In this paper, we study some properties of weaker version of normality of the semi-regularization space  $(X, \tau_s)$  of a space  $(X, \tau)$ . Also, we study the semi-regularity of some generated spaces. This paper may considered as a continuation of the study of Mršević, Reilly and Vamanamurthy in [10].

Throughout this paper, we denote the set of positive integers by  $\mathbb{N}$ , the rationals by  $\mathbb{Q}$ , the irrationals by  $\mathbb{P}$ , and the set of real numbers by  $\mathbb{R}$ . A  $T_4$  space is a  $T_1$  normal space and a Tychonoff space  $(T_{3\frac{1}{2}})$  is a  $T_1$  completely regular space. We do not assume  $T_2$  in the definition of compactness and countable compactness. For a subset A of a space X, int A and  $\overline{A}$  denote the interior and the closure of A, respectively. If two topologies  $\tau$  and  $\tau'$  on a set X are considered, we denote the interior of A in  $(X, \tau)$  by  $\overline{A}^{\tau'}$  and, similarly,  $\overline{A}^{\tau}$  denotes the closure of A in  $(X, \tau)$ . We denote an order pair by  $\langle x, y \rangle$ .

DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4386

<sup>\*</sup>Corresponding author.

### 1. Semi-Regularity

We have to start by recalling some basic definitions.

**Definition 1.** A subset A of a space X is called closed domain [6], called also regular closed,  $\kappa$ -closed [9], if  $A = \overline{\text{int}A}$ . A subset A of a space X is called open domain [6], called also regular open,  $\kappa$ -open, if  $A = \text{int}(\overline{A})$ .

It is easy to see that a subset is an open domain if and only if it is the interior of a closed set, a subset is a closed domain if and only if it is the closure of an open set, the complement of a closed domain is an open domain and the complement of an open domain is a closed domain [6]. Now, let  $(X, \tau)$  be a topological space and let OD denotes the family of all open domains in  $(X, \tau)$ . Since X is an open domain and an intersection of two open domains is an open domain [6, 1.1.C], then we have the following definition [6].

**Definition 2.** If  $(X, \tau)$  is a topological space, then the semi-regularization topology  $\tau_s$  on X of  $\tau$  is the coarser topology on X generated by the family of all open domains of  $(X, \tau)$ .  $(X, \tau)$  is called semi-regular if  $\tau = \tau_s$ .  $(X, \tau_s)$  is called the semi-regularization topological space of  $(X, \tau)$ , see [10].

Since any open domain is an open set, then for any space  $(X, \tau)$ , we have that  $\tau_s$  is coarser than  $\tau$ , that is,  $\tau_s \subseteq \tau$ . Note that if  $\emptyset \neq U \subseteq X$ , then  $U \in \tau_s$  if and only if  $U = \bigcup_{\alpha \in \Lambda} V_\alpha$  with  $V_\alpha$  is an open domain in  $(X, \tau)$  for each  $\alpha \in \Lambda$ . Equivalently  $U \in \tau_s$  if and only if for each  $x \in U$  there exists an open domain G in  $(X, \tau)$  such that  $x \in G \subseteq U$ , [11].

If  $\mathcal{CF}$  is the finite complement topology on an infinite set, then  $\mathcal{CF}_s = \mathcal{I}$ , where  $\mathcal{I}$  is the indiscrete topology. If  $\mathcal{CC}$  is the countable complement topology on an uncountable set, then  $\mathcal{CC}_s = \mathcal{I}$ . If  $X = \{\langle x,y \rangle : y \geq 0 \}$ , the closed upper half plan, then the semi-regularization topology of the Half-Disc topology on X [12, Example 78], is the usual metric topology  $\mathcal{U}$  on X. If X is regular, then it is semi-regular [6, 1.1.8]. The converse is not always true. As an example the simplified Arens square [12, Example 81].

#### 2. Semi-regularity of generated spaces

There are many ways of generating new spaces from old ones. In this section, we study the semi-regularity of the Alexandroff duplicate, the closed extension, the discrete extension, and the open extension of a given space X.

Recall that the Alexandroff Duplicate space A(X) of a space X is defined as follows: Let X be any topological space. Let  $X' = X \times \{1\}$ , so X' is just a copy of X. Note that  $X \cap X' = \emptyset$ . Let  $A(X) = X \cup X'$ . For simplicity, for an element  $x \in X$ , we will denote the element (x, 1) in X' by x' and for a subset  $B \subseteq X$ , let  $B' = \{x' : x \in B\} = B \times \{1\} \subseteq X'$ . For each  $x' \in X'$ , let  $\mathcal{B}(x') = \{\{x'\}\}$ . For each  $x \in X$ , let  $\mathcal{B}(x) = \{U \cup (U' \setminus E) : U \text{ is open in } X \text{ with } x \in U \text{ and } E \text{ is a finite subset of } X'\}$ . Then  $\mathcal{B} = \{\mathcal{B}(x) : x \in X\} \cup \{\mathcal{B}(x') : x' \in X'\}$  will generate a unique topology on A(X) such that  $\mathcal{B}$  is its neighborhood system. A(X) with this topology is called the *Alexandroff Duplicate of X* [2, 5].

Our goal is to show that "if X is semi-regular, then so is its Alexandroff duplicate A(X)". In order to show this we will follow five steps expressed in the following Lemmas and Theorem 1. As a notation we will call a subset which is closed and open by clopen.

**Lemma 1.** For each  $x' \in X'$ ,  $\{x'\}$  is clopen in A(X).

*Proof.* Let  $x' \in X'$  be arbitrary. We need only to show that  $\{x'\}$  is closed. So, let  $a \in A(X) \setminus \{x'\}$  be arbitrary. If  $a \in X'$ , then  $\{a\}$  is an open neighborhood of a in A(X) with  $\{a\} \subset A(X) \setminus \{x'\}$ . If  $a \in X$ , pick any open neighborhood  $U \subseteq X$  of a. Then  $U \cup (U' \setminus \{x'\})$  is an open neighborhood of a in A(X) with  $U \cup (U' \setminus \{x'\}) \subseteq A(X) \setminus \{x'\}$ . Thus  $A(X) \setminus \{x'\}$  is open in A(X). Therefore,  $\{x'\}$  is closed.

**Lemma 2.** Let  $(X, \mathcal{T})$  be any topological space. If C is clopen in X and B is an open domain in X, then  $B \setminus C$  is an open domain in X.

Proof. we want to show that,  $\operatorname{int}(\overline{B\setminus C})=B\setminus C$ . We always have  $B\setminus C\subseteq \overline{B\setminus C}$ , by taking the interior in both sides we get  $\operatorname{int}(B\setminus C)\subseteq\operatorname{int}(\overline{B\setminus C})$ . But  $\operatorname{int}(B\setminus C)=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\cap (X\setminus C))=\operatorname{int}(B\setminus C)$ . Now, we always have  $\operatorname{int}(\overline{B\setminus C})\subseteq B\setminus C$ . Thus  $\operatorname{int}(\overline{B\setminus C})\subseteq \overline{B\setminus C}=\overline{B\cap (X\setminus C)}\subseteq \overline{B\cap (X\setminus C)}=\overline{B\cap (X\setminus C)}$ , because C is clopen in C. Thus  $\operatorname{int}(\overline{B\setminus C})\subseteq \overline{B\cap (X\setminus C)}$  then,  $\operatorname{int}(\operatorname{int}(\overline{B\setminus C}))\subseteq \operatorname{int}(\overline{B\cap (X\setminus C)})$  thus,  $\operatorname{int}(\overline{B\setminus C})\subseteq \operatorname{int}(\overline{B})\cap\operatorname{int}(X\setminus C)$  hence,  $\operatorname{int}(\overline{B\setminus C})\subseteq B\cap (X\setminus C)=B\setminus C$ , because C is an open domain and C is clopen in C. Thus,  $\operatorname{int}(\overline{B\setminus C})\subseteq B\setminus C$ . Therefore,  $\operatorname{int}(\overline{B\setminus C})=B\setminus C$ . Thus, C is an open domain .

Notice that, if U is any non-empty open set in X, then  $U \cup (U' \setminus \emptyset) = U \cup U'$  is a basic open neighborhood in A(X) of any  $x \in U$ . So, we establish that the following lemma.

**Lemma 3.** If U is an open set in X, then  $U \cup U'$  is an open set in A(X)

**Theorem 1.** If U is an open domain in X, then  $U \cup U'$  is an open domain in A(X).

*Proof.* Let U be an open domain in X. We show that  $U \cup U' = \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$  first, we show that  $\operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)}) \subseteq U \cup U'$ . Let  $x \in \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$  be arbitrary, then  $x \in \overline{U \cup U'}^{A(X)}$ . There are only two cases.

Case 1:  $x \in X'$ . So,  $\{x\}$  is an open set in A(X) with  $x \in \{x\}$  and  $\{x\} \cap (U \cup U') \neq \emptyset$ , then  $x \in U' \subseteq U \cup U'$ . Thus,  $x \in U \cup U'$ .

Case 2:  $x \in X$ . Since  $x \in \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$ , then there exist an open set V in X with  $x \in V$  such that  $x \in V \cup (V' \setminus E) \subseteq \overline{U \cup U'}^{A(X)} = \overline{U}^{A(X)} \cup \overline{U'}^{A(X)}$  where E is a finite subset of X'. Thus,  $x \in V \subseteq \overline{U}^{A(X)}$ , but  $\overline{U}^{A(X)} = \overline{U}^X$ . So,  $x \in V \subseteq \overline{U}^X$ , by taking the interior of both sides with respect to X we get,  $\operatorname{int}_X(V) \subseteq \operatorname{int}_X(\overline{U}^X)$ , then  $V \subseteq U$  as V is an open set in X and U is an open domain in X. Thus,  $x \in U \subseteq U \cup U'$ . Hence

 $\operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)}) \subseteq U \cup U'.$ 

Now, we show that  $U \cup U' \subseteq \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$ . Note that we always have  $U \cup U' \subseteq \overline{U \cup U'}^{A(X)}$ . Since U is an open domain in X, then U is an open set in X, so by Lemma 3,  $U \cup U'$  is an open set in A(X). Then by taking the interior of both sides with respect to A(X) we get,  $U \cup U' = \operatorname{int}_{A(X)}(U \cup U') \subseteq \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$ .

Hence,  $U \cup U' = \operatorname{int}_{A(X)}(\overline{U \cup U'}^{A(X)})$ . Therefore,  $U \cup U'$  is an open domain in A(X).

As an immediate consequence of the Theorem 1 is the following Corollary 1.

**Corollary 1.** If U is an open domain in X, then  $U \cup (U' \setminus E)$  is an open domain in A(X) where E is a finite subset of X'.

*Proof.* Let U be any open domain in X. By Lemma 1, we have any singleton in X' is clopen in A(X), then E is clopen in A(X) because finite union of closed sets is closed and arbitrary union of open sets is open. Also, by Theorem 1, we have  $U \cup U'$  is an open domain in A(X). But,  $U \cup (U' \setminus E) = (U \cup U') \setminus E$  is an open domain in A(X) by Lemma 2.

**Theorem 2.** If  $(X, \tau)$  is semi-regular, then so is its Alexandroff duplicate A(X).

*Proof.* Let  $(X, \mathcal{T})$  be any semi-regular topological space. Let  $\emptyset \neq W$  be any open set in A(X) and let  $x \in W$  be arbitrary. To show that A(X) is semi-regular, it is enough to exhibit an open domain subset G in A(X) such that  $x \in G \subseteq W$ . For such an x, we have only two cases.

Case 1:  $x \in X'$ . Since any clopen subset is an open domain, then by Lemma 1, there exist an open domain  $G = \{x\}$  in A(X) such that  $x \in G \subseteq W$ .

Case 2:  $x \in X$ . Since W is an open set in A(X) with  $x \in W$ , then there exists an open set U in X with  $x \in U$  and  $U \cup (U' \setminus E) \subseteq W$ , where E is a finite subset of X'. Now, since  $(X, \mathcal{T})$  is semi-regular, then there exists an open domain V in X such that  $x \in V \subseteq U$ . Thus,  $x \in (V \cup (V \setminus E)) \subseteq (U \cup (U \setminus E)) \subseteq W$  By Corollary 1, we get  $V \cup (V' \setminus E) = G$  is an open domain in A(X) such that  $x \in G \subseteq W$ .

Therefore, A(X) is semi-regular.

**Definition 3.** Let  $(X, \tau)$  be a topological space and let p be an object not in X, that is,  $p \notin X$ . Put  $X^p = X \cup \{p\}$ . Define a topology  $\tau^*$  on  $X^p$  by  $\tau^* = \{\emptyset\} \cup \{U \cup \{p\} : U \in \tau\}$ . The space  $(X^p, \tau^*)$  is called the closed extension space of  $(X, \tau)$ , see [12, Example 12].

Consider the particular point topology  $\mathcal{T}_p = \{ W \subseteq X^p : p \in W \}$  on  $X^p$ , [12, Example 10]. It is easy to see that  $\mathcal{T}^*$  is coarser than  $\mathcal{T}_p$ , that is,  $\mathcal{T}^* \subseteq \mathcal{T}_p$ . Notice that the closed extension  $(X^p, \mathcal{T}^*)$  of a space  $(X, \mathcal{T})$  is not semi-regular regardless wither  $(X, \mathcal{T})$  is semi-regular or not.

**Example 1.** Let  $(X, \mathcal{T})$  be the Simplified Arens Square topological space, [12, Example 81]. So,  $X = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle\} \cup \{\langle x, y \rangle : 0 < x, y < 1\}$ . The topology  $\mathcal{T}$  on X is generated by the following neighborhood system: For each  $\langle x, y \rangle \in \{\langle x, y \rangle : 0 < x, y < 1\}$ , let  $\mathfrak{B}(\langle x, y \rangle) = \{B_d(\langle x, y \rangle; \epsilon) \subset S : \epsilon > 0\}$  where d is the usual metric on  $\mathbb{R}^2$  and  $B_d(\langle x, y \rangle; \epsilon)$  is the open ball centered at  $\langle x, y \rangle$  of radius  $\epsilon > 0$  so that  $\epsilon$  is small enough to make the open ball  $B_d(\langle x, y \rangle; \epsilon)$  is contained in  $\{\langle x, y \rangle : 0 < x, y < 1\}$ . Let  $\mathfrak{B}(\langle 0, 0 \rangle) = \{U_n(\langle 0, 0 \rangle) : n \in \mathbb{N}\}$ , where for each  $n \in \mathbb{N}$ , we have

 $U_n(\langle 0,0\rangle) = \{\{\langle 0,0\rangle\} \bigcup \{\langle x,y\rangle \in S: 0 < x < \frac{1}{2} \text{ and } 0 < y < \frac{1}{n}\}.$  Let  $\mathfrak{B}(\langle 1,0\rangle) = \{U_n(\langle 1,0\rangle): n \in \mathbb{N}\},$  where for each  $n \in \mathbb{N}$ , we have

 $U_n(\langle 1,0\rangle) = \{\{\langle 1,0\rangle\}\bigcup\{\langle x,y\rangle\in S: \frac{1}{2} < x < 1 \text{ and } 0 < y < \frac{1}{n}\}.$  In [12, Example 81], it was shown that the Simplified Arens Square space  $(X,\tau)$  is semi-regular.

Let U be any non-empty proper open subset of X, then  $U \cup \{p\}$  is an open set in  $X^p$  such that  $U \neq X^p$ . Now,  $\overline{U \cup \{p\}}^{\tau^*} = \overline{U}^{\tau^*} \cup \overline{\{p\}}^{\tau^*} = \overline{U}^{\tau^*} \cup X^p = X^p$  because  $\{p\}$  is dense in  $(X^p, \tau^*)$ . Hence,  $\operatorname{int}_{\tau^*}(\overline{U \cup \{p\}}^{\tau^*}) = \operatorname{int}_{\tau^*}(X^p) = X^p \neq U \cup \{p\}$ . Thus the only open domains in  $(X^p, \tau^*)$  are  $X^p$  and  $\emptyset$ , then  $\tau^*_s = \mathcal{I}$  on  $X^p$ , where  $\mathcal{I}$  is the indiscrete topology. Therefore, the closed extension topological space  $(X^p, \tau^*)$  of the Simplified Arens Square space  $(X, \tau)$  is not semi-regular.

**Definition 4.** Let M be a non-empty proper subset of a topological space  $(X, \tau)$ . Define a new topology  $\tau_{(M)}$  on X as follows:  $\tau_{(M)} = \{U \cup K : U \in \tau \text{ and } K \subseteq X \setminus M\}$ .  $(X, \tau_{(M)})$  is called a discrete extension of  $(X, \tau)$  and we denote  $(X, \tau_{(M)})$ , simply, by  $X_M$  [1], see also [6, Example 5.1.22].

Observe that if U is an open set in X, then U is also open in  $X_M$  because we can write  $U = U \cup \emptyset$ . The space  $X_M$  has the following neighborhood system: For each  $x \in X \setminus M$ , let  $\mathcal{B}(x) = \{\{x\}\}$  and for each  $x \in M$ , let  $\mathcal{B}(x) = \{U \in \mathcal{T} : x \in U\}$ . If X is a semi-regular topological space and  $\emptyset \neq M \subset X$ , then the discrete extension  $X_M$  may not be semi-regular as can be shown in the following example.

**Example 2.** Consider,  $(\mathbb{R}, \mathcal{I})$  where  $\mathcal{I}$  is the indiscrete topology. It is clear that  $(\mathbb{R}, \mathcal{I})$  is semi-regular. Put  $M = \mathbb{R} \setminus \{0\}$ . Then, the discrete extension  $X_M$  can be describe as follows:  $\mathcal{B}(0) = \{\{0\}\}$  and for each  $x \neq 0$ ,  $\mathcal{B}(x) = \{\mathbb{R}\}$ .  $X_M$  is not semi-regular because  $\{0\}$  is an open set in  $X_M$ , but int  $X_M$  ( $\{0\}^{X_M}$ ) = int  $X_M$  ( $\{0\}^{X_M}$ ) =  $\{0\}^{X_M}$  ( $\{0\}^{X_M}$ ) = int  $\{0\}^{X_M}$  is not semi-regular.  $\{0\}^{X_M}$  open set and there is no open domain  $\{0\}^{X_M}$  satisfies  $\{0\}^{X_M}$  is not semi-regular.  $\{0\}^{X_M}$ 

**Lemma 4.** Let  $(X, \tau)$  be a topological space. Let M be any non-empty proper subset of X. Then, for any open domain U in X, U is an open domain in  $X_M$ .

*Proof.* Let U be any open domain in X, we always have  $U\subseteq \overline{U}^{X_M}$ . By taking the interior of both sides with respect to  $X_M$  we get,  $\operatorname{int}_{X_M}(U)\subseteq\operatorname{int}_{X_M}(\overline{U}^{X_M})$ . But since U is an open domain in X, then U is an open set in X. Thus, U is an open set in  $X_M$ . Hence,  $\operatorname{int}_{X_M}(U)=U$ , therefore  $U\subseteq\operatorname{int}_{X_M}(\overline{U}^{X_M})\dots\star$ .

Now, let  $x \in \operatorname{int}_{X_M}(\overline{U}^{X_M})$  be arbitrary, then  $x \in (\overline{U}^{X_M})$ . There are only two cases. Case 1:  $x \in X \setminus M$ . Since  $\{x\}$  is an open neighborhood of x in  $X_M$  satisfies  $\{x\} \cap U \neq \emptyset$ , then  $x \in U$ .

Case 2:  $x \in M$ . Since  $x \in \operatorname{int}_{X_M}(\overline{U}^{X_M})$ , then there exist an open set V in X such that  $x \in V \subseteq \overline{U}^{X_M} \subseteq \overline{U}^X$  and the last inclusion is true because the topology on X is coarser than the topology on  $X_M$ . Therefore, we have  $x \in V \subseteq \overline{U}^X$ , then by taking the interior of both sides with respect to X we have,  $x \in \operatorname{int}_X V = V \subseteq \operatorname{int}_X(\overline{U}^X) = U$  because U is an open domain in X and V is an open set in X. Hence,  $x \in U$ , thus  $\operatorname{int}_{X_M}(\overline{U}^{X_M}) \subseteq U \dots \star \star$ . By  $\star$  and  $\star \star$  we get  $U = \operatorname{int}_{X_M}(\overline{U}^{X_M})$ . Therefore, U is an open domain in  $X_M$ .

In the next theorem, we will use the following fact which was proved in [1]: "If X is  $T_1$ , then so is  $X_M$  for any non-empty proper subset M of X".

**Theorem 3.** If X is  $T_1$  and semi-regular, then for any non-empty proper subset M of X, we have that the discrete extension  $X_M$  of X is semi-regular.

Proof. Assume the hypotheses. Let W be an arbitrary non-empty open set in  $X_M$ . Let  $x \in W$  be arbitrary. There are only two cases.

Case 1:  $x \in X \setminus M$ . Then we have  $\{x\}$  is an open neighborhood of x in  $X_M$ . Since X is  $T_1$ , then  $X_M$  is also  $T_1$ . Thus  $\{x\}$  is also closed in  $X_M$ . Hence  $\{x\}$  is clopen in  $X_M$ , thus  $\{x\}$  is an open domain in  $X_M$  such that  $x \in \{x\} \subseteq W$ .

Case 2:  $x \in M$ . Since X is semi-regular, then there is a base for X consisting of open domains. Thus, there exists an open domain V in X such that  $x \in V \subseteq W$ . By Lemma 4, we get V is an open domain in  $X_M$ . Therefore,  $X_M$  is semi-regular.

**Definition 5.** Let  $(X, \tau)$  be a topological space and let p be an object not in X, that is,  $p \notin X$ . Put  $X^p = X \cup \{p\}$ . Define a topology  $\tau'$  on  $X^p$  by  $\tau' = \{X^p\} \cup \{U : U \in \tau\} = \{X^p\} \cup \tau$ . The space  $(X^p, \tau')$  is called the open extension space of  $(X, \tau)$ , see [12, Example 16].

Observe that  $(X, \mathcal{T})$  and  $(X^p, \mathcal{T}')$  have the same open sets except for  $X^p$ . Also, if U is an open domain in  $(X, \mathcal{T})$ , then U is an open domain in  $(X^p, \mathcal{T}')$  because  $\overline{U}^{X^p} = \overline{U}^X \cup \{p\}$  as the only open neighborhood of p in  $(X^p, \mathcal{T}')$  is  $X^p$  itself. Thus,  $\operatorname{int}_{X^p}(\overline{U}^{X^p}) = \operatorname{int}_{X^p}(\overline{U}^X \cup \{p\}) = \operatorname{int}_X(\overline{U}^X) = U$ . It is easy to see that if U is an open domain in  $(X, \mathcal{T})$ .

**Theorem 4.**  $(X, \tau)$  is semi-regular if and only if  $(X^p, \tau')$  is semi-regular.

Proof. Assume that  $(X, \tau)$  is semi-regular. To show that  $(X^p, \tau')$  is semi-regular, we only need to prove that  $\tau' \subseteq \tau'_s$ . Let  $W \in \tau'$  be an arbitrary such that  $\emptyset \neq W \neq X^p$ , then  $W \in \tau$ . Since  $(X, \tau)$  is semi-regular, then  $\tau = \tau_s$ . So, the family of all open domains in  $(X, \tau)$  is a base for  $(X, \tau)$ . Thus W can be written as a union of open domains in  $(X, \tau)$ . So, W can be written as a union of open domains in  $(X, \tau)$ . Thus  $T' \subseteq T'_s$ . Therefore  $T'_s$ . Therefore  $T'_s$  is semi-regular.

Conversely, Assume that  $(X^p, \mathcal{T}')$  is semi-regular, that is,  $\mathcal{T}' = \mathcal{T}'_s$ . To show that  $(X, \mathcal{T})$  is semi-regular, we only need to show that  $\mathcal{T} \subseteq \mathcal{T}_s$ . Let  $W \in \mathcal{T}$  be arbitrary, then  $p \notin W$ . But  $W \in \mathcal{T}'$  implies that W can be written as a union of open domains in

 $(X^p, \mathcal{T}')$ . Since any open domain in  $(X^p, \mathcal{T}')$  which does not contain the element p is also an open domain in  $(X, \mathcal{T})$ , then  $W \in \mathcal{T}_s$ , implies that  $\mathcal{T} \subseteq \mathcal{T}_s$  and hence  $(X, \mathcal{T})$  is semi-regular.

### 3. New results about semi-regularization spaces

In this section, we study the relationship between a topological space  $(X, \mathcal{T})$  and its semi-regularization space  $(X, \mathcal{T}_s)$  regarding a topological property. We start with the property of scattered. Recall that a space X is scattered if any non-empty subset of X has an isolated point, that is, if  $\emptyset \neq A \subseteq X$ , then there exists an element  $a \in A$  and there exists an open set U such that  $a \in U$  and  $U \cap A = \{a\}$ . It is easy to see that if  $(X, \mathcal{T}_s)$  is scattered, then so is  $(X, \mathcal{T})$ . This follows from the containment  $\mathcal{T}_s \subseteq \mathcal{T}$ . But the converse is not always true as can be shown in the following example.

**Example 3.** Consider  $\mathbb{R}$  with the particular point topology  $\mathcal{T}_0$  which is scattered, see [12, Example 10]. But the semi-regularization of  $(\mathbb{R}, \mathcal{T}_0)$  is  $(\mathbb{R}, \mathcal{I})$  where  $\mathcal{I}$  is the indiscrete topology which is not scattered.

**Definition 6.** A topological space  $(X, \tau)$  is called *epi-normal* if there exists a coarser topology  $\tau'$  on X such that  $(X, \tau')$  is  $T_4$ , see [3].

**Lemma 5.** Let  $(Y, \nu)$  be a regular space. If  $f : (X, \tau) \longrightarrow (Y, \nu)$  is continuous, then  $f : (X, \tau_s) \longrightarrow (Y, \nu)$  is continuous, [8].

**Theorem 5.**  $(X, \tau)$  is epi-normal if and only if  $(X, \tau_s)$  is epi-normal.

*Proof.* Assume that  $(X, \tau)$  is epi-normal. Pick a coarser topology  $\tau'$  on X such that  $(X, \tau')$  is  $T_4$ . Consider the identity function  $id_X : (X, \tau) \longrightarrow (X, \tau')$  which is continuous since  $\tau' \subseteq \tau$ . Then, by Lemma 5, we have  $id_X : (X, \tau_s) \longrightarrow (X, \tau')$  is continuous, hence  $\tau' \subseteq \tau_s$ . Thus,  $(X, \tau_s)$  is epi-normal.

Conversely, assume that  $(X, \mathcal{T}_s)$  is epi-normal. Then there exist a coarser topology  $\mathcal{T}'$  on X such that  $(X, \mathcal{T}')$  is  $T_4$ . Since  $\mathcal{T}_s \subseteq \mathcal{T}$ , then result follows.

**Definition 7.** A topological space X is called submetrizable if there exists a metric d on X such that  $\tau_d \subseteq \tau$ , [7].

Similar argument of the proof of Theorem 5 gives the following theorem.

**Theorem 6.**  $(X, \tau)$  is submetrizable if and only if  $(X, \tau_s)$  is submetrizable.

**Definition 8.** A topological space X is called C-normal if there exist a normal space Y and a bijective function  $f: X \longrightarrow Y$  such that the restriction  $f|_A: A \longrightarrow f(A)$  is a homeomorphism for each compact subspace  $A \subseteq X$ , [4].

The following example shows that, if  $(X, \mathcal{T}_s)$  is C-normal, then  $(X, \mathcal{T})$  may not be C-normal.

REFERENCES 828

**Example 4.** Consider  $\mathbb{R}$  with the particular point topology  $\tau_0$  which is not C-normal see [4, Example 1.5]. But the semi-regularization topological space of  $(\mathbb{R}, \tau_0)$  is  $(\mathbb{R}, \mathcal{I})$ , where  $\mathcal{I}$  is the indiscrete topology, which is a normal space, thus C-normal.

**Lemma 6.** If X is  $T_1$  and C-normal, then any witness Y of its C-normality is  $T_4$ .

Proof. Assume that X is  $T_1$  and C-normal. Pick a normal space Y and a bijective function  $f: X \longrightarrow Y$  such that  $f_{|_A}: A \longrightarrow f(A)$  is a homeomorphism for each compact subspace  $A \subseteq X$ . Let x, y be any two distinct elements in Y. Since f is bijective, there are unique elements  $a, b \in X$  such that f(a) = x and f(b) = y such that  $a \neq b$ . Consider  $\{a, b\}$  which is a compact subset of X. This implies  $f_{|_{\{a,b\}}}: \{a,b\} \longrightarrow \{x,y\}$  is a homeomorphism. But X is  $T_1$ , thus  $\{a,b\}$  is a discrete subspace of X, hence  $\{x,y\}$  is a discrete subspace of Y, then there are two open neighborhoods U and V of x and y respectively in Y such that  $U \cap \{x,y\} = \{x\}$  and  $V \cap \{x,y\} = \{y\}$  where  $y \notin U$  and  $x \notin V$ . Thus Y is  $T_1$  and given that Y is normal, thus Y is  $T_4$ .

Recall that a topological space X is called a Fréchet space if for every  $A \subseteq X$  and every  $x \in \overline{A}$  there exists a sequence  $(a_n)_{n \in \mathbb{N}}$  of points of A such that  $a_n \longrightarrow x$ , [6].

**Lemma 7.** If X is Fréchet and C-normal, then any witness function of its C-normality is continuous.

Proof. Assume that X is Fréchet and C-normal. Let  $f: X \longrightarrow Y$  be a witness function of the C-normality of X. Let  $A \subset X$  and let  $y \in f(\overline{A})$  be arbitrary. Pick the unique element  $x \in X$  such that f(x) = y. Thus  $x \in \overline{A}$ . Since X is a Fréchet space, then there exist a sequence  $(a_n) \subseteq A$  such that  $(a_n)$  converges to x. The subspace  $B = \{x, a_n : n \in \mathbb{N}\}$  of X is compact and thus  $f_{|B}: B \longrightarrow f(B)$  is a homeomorphism. Now, let  $W \subseteq Y$  be any open neighborhood of y, then  $W \cap f(B)$  is open in the subspace f(B) containing y. Since  $f(\{a_n : n \in \mathbb{N}\}) \subseteq f(B) \cap f(A)$  and  $W \cap f(B) \neq \emptyset$ , then  $W \cap f(A) \neq \emptyset$ . Hence  $y \in f(A)$  and thus  $f(\overline{A}) \subseteq f(A)$ . Therefore, f is Continuous.

**Theorem 7.** If  $(X, \tau)$  is Fréchet,  $T_1$  and C-normal, then its semi-regularization topological space  $(X, \tau_s)$  is C-normal

*Proof.* Assume the hypothesis. Pick a normal topological space  $(Y, \mathcal{T}')$  and a bijective function  $f:(X,\mathcal{T}) \longrightarrow (Y,\mathcal{T}')$  such that  $f_{|_A}:A \longrightarrow f(A)$  is a homeomorphism for any compact subspace A of X. As X is Fréchet, then by Lemma 7, f is continuous and by Lemma 6, we get  $(Y,\mathcal{T}')$  is  $T_4$ . Pick the same bijection function  $f:(X,\mathcal{T}_s) \longrightarrow (Y,\mathcal{T}')$  which is continuous by Lemma 5. Let B be any compact subset of  $(X,\mathcal{T}_s)$ , then  $f_{|_B}:B \longrightarrow f(B)$  is bijective and continuous, thus by [6, Theorem 3.1.13]  $f_{|_B}$  is a homeomorphism. Therefore,  $(X,\mathcal{T}_s)$  is C-normal.

## References

[1] A Alawadi, L Kalantan, and M M Saeed. On the discrete extension spaces. *Journal of Mathematical Analysis*, 9(2):150–157., 2018.

REFERENCES 829

[2] P S Alexandroff and P S Urysohn. Mémoire sur les espaces topologiques compacts. Verh. Konink. Acad. Wetensch. Amsterdam, 14:1–96., 1929.

- [3] S AlZahrani and L Kalantan. Epinormality. Journal of Nonlinear Sciences & Applications, 9(9):5398–5402., 2016.
- [4] S AlZahrani and L Kalantan. C-normal topological property. Filomat, 31(2):407–411., 2017.
- [5] R Engelking. On the double circumference of alexandroff. Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys., 16(8):629–634., 1968.
- [6] R Engelking. General Topology. PWN, Warszawa, 1977.
- [7] G Gruenhage. Generalized metric spaces. *Handbook of set-theoretic topology*, pages 423–501., 1984.
- [8] L L Herrington. Characterizations of urysohn-closed spaces. *Proceedings of the American Mathematical Society*, pages 435–439., 1976.
- [9] L Kalantan. Results about  $\kappa$ -normality. Topology and its Applications, 125(1):47–62., 2002.
- [10] M Mršević, I L Reilly, and M K Vamanamurthy. On semi-regularization topologies. Journal of the Australian Mathematical Society, 38(1):40–54., 1985.
- [11] T. Noiri and V. Popa. On almost b-continuous functions. *Acta Math Hungar*, 79(4):329–339., 1998.
- [12] L Steen and J A Seebach. Counterexamples in Topology. Dover Publications INC, USA, 1995.