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If (X , τ ) is a topological space, then the semi-regularization topology τ s on X of
τ is the coarser topology on X generated by the family of all open domains of (X , τ )
where a subset U is called an open domain if U = int(U). In this paper, we study some
properties of weaker version of normality of the semi-regularization space (X , τ s ) of a
space (X , τ ). Also, we study the semi-regularity of some generated spaces. This paper
may considered as a continuation of the study of Mrs̆ević, Reilly and Vamanamurthy in
[10].

Throughout this paper, we denote the set of positive integers by N, the rationals by
Q, the irrationals by P, and the set of real numbers by R. A T4 space is a T1 normal space
and a Tychonoff space (T3 1

2
) is a T1 completely regular space. We do not assume T2 in

the definition of compactness and countable compactness. For a subset A of a space X,
intA and A denote the interior and the closure of A, respectively. If two topologies τ and
τ ′ on a set X are considered, we denote the interior of A in (X , τ ) by int τA and int τ ′A

for the interior of A in (X , τ ′ ). We denote the closure of A in (X , τ ′ ) by A
τ ′

and,
similarly, A

τ
denotes the closure of A in (X , τ ). We denote an order pair by ⟨x, y⟩.
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1. Semi-Regularity

We have to start by recalling some basic definitions.

Definition 1. A subset A of a space X is called closed domain [6], called also regular
closed, κ-closed [9], if A = intA. A subset A of a space X is called open domain [6], called
also regular open, κ-open, if A = int(A ).

It is easy to see that a subset is an open domain if and only if it is the interior of a
closed set, a subset is a closed domain if and only if it is the closure of an open set, the
complement of a closed domain is an open domain and the complement of an open domain
is a closed domain [6]. Now, let (X , τ ) be a topological space and let OD denotes the
family of all open domains in (X , τ ). Since X is an open domain and an intersection of
two open domains is an open domain [6, 1.1.C], then we have the following definition [6].

Definition 2. If (X , τ ) is a topological space, then the semi-regularization topology τ s

on X of τ is the coarser topology on X generated by the family of all open domains of (X ,
τ ). (X , τ ) is called semi-regular if τ= τ s. (X , τ s ) is called the semi-regularization
topological space of (X , τ ), see [10].

Since any open domain is an open set, then for any space (X , τ ), we have that τ s

is coarser than τ , that is, τ s ⊆ τ . Note that if ∅ ̸= U ⊆ X, then U ∈ τ s if and only if
U =

⋃
α∈Λ Vα with Vα is an open domain in (X , τ ) for each α ∈ Λ. Equivalently U ∈

τ s if and only if for each x ∈ U there exists an open domain G in (X , τ ) such that
x ∈ G ⊆ U , [11].

If CF is the finite complement topology on an infinite set, then CFs = I, where I is
the indiscrete topology. If CC is the countable complement topology on an uncountable
set, then CCs = I. If X = { ⟨x, y⟩ : y ≥ 0 }, the closed upper half plan, then the semi-
regularization topology of the Half-Disc topology on X [12, Example 78], is the usual
metric topology U on X. If X is regular, then it is semi-regular [6, 1.1.8]. The converse is
not always true. As an example the simplified Arens square [12, Example 81].

2. Semi-regularity of generated spaces

There are many ways of generating new spaces from old ones. In this section, we
study the semi-regularity of the Alexandroff duplicate, the closed extension, the discrete
extension, and the open extension of a given space X.

Recall that the Alexandroff Duplicate space A(X) of a space X is defined as follows:
Let X be any topological space. Let X ′ = X × {1}, so X ′ is just a copy of X. Note that
X ∩X ′ = ∅. Let A(X) = X ∪X ′. For simplicity, for an element x ∈ X, we will denote the
element ⟨x, 1⟩ in X ′ by x′ and for a subset B ⊆ X, let B′ = {x′ : x ∈ B} = B×{1} ⊆ X ′.
For each x′ ∈ X ′, let B(x′) = {{x′}}. For each x ∈ X, let B(x) = {U∪(U ′\E) : U is open in
X with x ∈ U and E is a finite subset ofX ′ }. Then B = {B(x) : x ∈ X}∪{B(x′) : x′ ∈ X ′}
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will generate a unique topology on A(X) such that B is its neighborhood system. A(X)
with this topology is called the Alexandroff Duplicate of X [2, 5].

Our goal is to show that “if X is semi-regular, then so is its Alexandroff duplicate
A(X)”. In order to show this we will follow five steps expressed in the following Lemmas
and Theorem 1. As a notation we will call a subset which is closed and open by clopen.

Lemma 1. For each x′ ∈ X ′, {x′} is clopen in A(X).

Proof. Let x′ ∈ X ′ be arbitrary. We need only to show that {x′} is closed. So, let
a ∈ A(X) \ {x′} be arbitrary. If a ∈ X ′, then {a} is an open neighborhood of a in A(X)
with {a} ⊂ A(X) \ {x′}. If a ∈ X, pick any open neighborhood U ⊆ X of a. Then
U ∪ (U ′ \ {x′}) is an open neighborhood of a in A(X) with U ∪ (U ′ \ {x′}) ⊆ A(X) \ {x′}.
Thus A(X) \ {x′} is open in A(X). Therefore, {x′} is closed.

Lemma 2. Let (X , τ ) be any topological space. If C is clopen in X and B is an open
domain in X , then B \ C is an open domain in X.

Proof. we want to show that, int(B \ C) = B \C. We always have B \C ⊆ B \ C , by
taking the interior in both sides we get int(B \ C) ⊆ int(B \ C). But int(B \ C) = int(B ∩
(X \C)) = int(B)∩ int(X \C) = B∩ (X \C) = B \C, because C is clopen and B is an open
domain so B is an open set, thus B \C is an open set. Thus, B \C ⊆ int(B \ C). Now, we
always have int(B \ C ) ⊆ B \ C. Thus int(B \ C) ⊆ B \ C = B ∩ (X \ C) ⊆ B∩ (X \ C) =
B ∩ (X \ C), because C is clopen in X. int(B \ C)⊆ B ∩ (X \ C) then, int(int(B \ C))
⊆ int(B∩ (X \C)) thus, int(B \ C) ⊆ int(B)∩ int(X \C) hence, int(B \ C) ⊆ B∩ (X \C) =
B \ C, because B is an open domain and C is clopen in X. Thus, int(B \ C) ⊆ B \ C.
Therefore, int(B \ C) = B \ C. Thus, B \ C is an open domain .

Notice that, if U is any non-empty open set in X, then U ∪ (U ′ \ ∅) = U ∪U ′ is a basic
open neighborhood in A(X) of any x ∈ U . So, we establish that the following lemma.

Lemma 3. If U is an open set in X, then U ∪U ′ is an open set in A(X)

Theorem 1. If U is an open domain in X, then U ∪U ′ is an open domain in A(X).

Proof. Let U be an open domain in X. We show that U ∪ U ′ = intA(X)(U ∪ U ′ A(X)
)

first, we show that intA(X)(U ∪ U ′ A(X)
) ⊆ U ∪ U ′. Let x ∈ intA(X)(U ∪ U ′ A(X)

) be arbi-

trary, then x ∈ U ∪ U ′ A(X)
. There are only two cases.

Case 1: x ∈ X ′. So, {x} is an open set in A(X) with x ∈ {x} and {x} ∩ (U ∪ U ′) ̸= ∅,
then x ∈ U ′ ⊆ U ∪ U ′. Thus, x ∈ U ∪ U ′.

Case 2: x ∈ X. Since x ∈ intA(X)(U ∪ U ′ A(X)
), then there exist an open set V in X with

x ∈ V such that x ∈ V ∪ (V ′ \ E) ⊆ U ∪ U ′ A(X)
= U

A(X) ∪ U ′ A(X)
where E is a finite

subset of X ′. Thus, x ∈ V ⊆ U
A(X)

, but U
A(X)

= U
X
. So, x ∈ V ⊆ U

X
, by taking the

interior of both sides with respect to X we get, intX(V ) ⊆ intX(U
X
) , then V ⊆ U as

V is an open set in X and U is an open domain in X. Thus, x ∈ U ⊆ U ∪ U ′. Hence
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intA(X)(U ∪ U ′ A(X)
) ⊆ U ∪ U ′.

Now, we show that U ∪ U ′ ⊆ intA(X)(U ∪ U ′ A(X)
). Note that we always have U ∪ U ′ ⊆

U ∪ U ′ A(X)
. Since U is an open domain in X, then U is an open set in X , so by Lemma

3, U ∪ U ′ is an open set in A(X). Then by taking the interior of both sides with respect

to A(X) we get, U ∪ U ′ = intA(X)(U ∪ U ′) ⊆ intA(X)(U ∪ U ′ A(X)
).

Hence, U ∪ U ′ = intA(X)(U ∪ U ′ A(X)
). Therefore, U ∪ U ′ is an open domain in A(X).

As an immediate consequence of the Theorem 1 is the following Corollary 1.

Corollary 1. If U is an open domain in X, then U ∪(U ′ \E) is an open domain in A(X)
where E is a finite subset of X ′ .

Proof. Let U be any open domain in X. By Lemma 1, we have any singleton in X ′

is clopen in A(X), then E is clopen in A(X) because finite union of closed sets is closed
and arbitrary union of open sets is open. Also, by Theorem 1, we have U ∪ U ′ is an open
domain in A(X). But, U ∪(U ′ \E) = (U ∪U ′) \E is an open domain in A(X) by Lemma
2.

Theorem 2. If (X , τ ) is semi-regular, then so is its Alexandroff duplicate A(X).

Proof. Let (X , τ ) be any semi-regular topological space. Let ∅ ≠ W be any open set
in A(X) and let x ∈ W be arbitrary. To show that A(X) is semi-regular, it is enough to
exhibit an open domain subset G in A(X) such that x ∈ G ⊆ W . For such an x, we have
only two cases.
Case 1: x ∈ X ′. Since any clopen subset is an open domain, then by Lemma 1, there exist
an open domain G = {x} in A(X) such that x ∈ G ⊆ W .
Case 2: x ∈ X. Since W is an open set in A(X) with x ∈ W , then there exists an open set
U in X with x ∈ U and U ∪ (U ′ \ E) ⊆ W , where E is a finite subset of X ′. Now, since
(X , τ ) is semi-regular, then there exists an open domain V in X such that x ∈ V ⊆ U .
Thus, x ∈ (V ∪ (V \E ) ) ⊆ (U ∪ (U \E ) ) ⊆ W By Corollary 1, we get V ∪ (V ′ \E ) = G
is an open domain in A(X) such that x ∈ G ⊆ W .

Therefore, A(X) is semi-regular.

Definition 3. Let (X , τ ) be a topological space and let p be an object not in X, that is,
p ̸∈ X. Put Xp = X ∪ { p }. Define a topology τ ⋆ on Xp by τ ⋆ = { ∅ } ∪ {U ∪ { p } : U ∈
τ }. The space (Xp , τ ⋆ ) is called the closed extension space of (X , τ ), see [12, Example
12].

Consider the particular point topology τ p = {W ⊆ Xp : p ∈ W } on Xp, [12, Example
10]. It is easy to see that τ ⋆ is coarser than τ p, that is, τ ⋆ ⊆ τ p. Notice that the closed
extension (Xp , τ ⋆ ) of a space (X , τ ) is not semi-regular regardless wither (X , τ ) is
semi-regular or not.
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Example 1. Let (X , τ ) be the Simplified Arens Square topological space, [12, Example
81]. So, X = { ⟨0, 0⟩, ⟨1, 0⟩ } ∪ { ⟨x, y⟩ : 0 < x, y < 1 }. The topology τ on X is generated
by the following neighborhood system: For each ⟨x, y⟩ ∈ { ⟨x, y⟩ : 0 < x, y < 1 }, let
B(⟨x, y⟩) = {Bd(⟨x, y⟩; ϵ) ⊂ S : ϵ > 0 } where d is the usual metric on R2 and Bd(⟨x, y⟩; ϵ)
is the open ball centered at ⟨x, y⟩ of radius ϵ > 0 so that ϵ is small enough to make the
open ball Bd(⟨x, y⟩; ϵ) is contained in { ⟨x, y⟩ : 0 < x, y < 1 }. Let B(⟨0, 0⟩) = {Un(⟨0, 0⟩) :
n ∈ N }, where for each n ∈ N, we have
Un(⟨0, 0⟩) = { { ⟨0, 0⟩ }

⋃
{ ⟨x, y⟩ ∈ S : 0 < x < 1

2 and 0 < y < 1
n }. Let B(⟨1, 0⟩) =

{Un(⟨1, 0⟩) : n ∈ N }, where for each n ∈ N, we have
Un(⟨1, 0⟩) = { { ⟨1, 0⟩ }

⋃
{ ⟨x, y⟩ ∈ S : 1

2 < x < 1 and 0 < y < 1
n }. In [12, Example 81], it

was shown that the Simplified Arens Square space (X , τ ) is semi-regular.
Let U be any non-empty proper open subset of X, then U ∪ {p} is an open set in Xp

such that U ̸= Xp. Now, U ∪ {p} τ⋆

= U
τ⋆ ∪{p} τ⋆

= U
τ⋆ ∪Xp = Xp because {p} is dense

in (Xp , τ ⋆ ). Hence, int τ⋆(U ∪ {p} τ⋆

) = int τ⋆ (Xp) = Xp ̸= U ∪ {p}. Thus the only
open domains in (Xp , τ ⋆ ) are Xp and ∅, then τ ⋆

s = I on Xp, where I is the indiscrete
topology. Therefore, the closed extension topological space (Xp , τ ⋆ ) of the Simplified
Arens Square space (X , τ ) is not semi-regular.

Definition 4. Let M be a non-empty proper subset of a topological space (X , τ ). Define
a new topology τ (M) on X as follows: τ (M) = {U ∪K : U ∈ τ and K ⊆ X \M }. (X ,
τ (M) ) is called a discrete extension of (X , τ ) and we denote (X , τ (M) ), simply, by XM

[1], see also [6, Example 5.1.22].

Observe that if U is an open set in X, then U is also open in XM because we can write
U = U ∪ ∅. The space XM has the following neighborhood system: For each x ∈ X \M ,
let B(x) = {{x}} and for each x ∈ M , let B(x) = {U ∈ τ : x ∈ U }. If X is a semi-
regular topological space and ∅ ̸= M ⊂ X, then the discrete extension XM may not be
semi-regular as can be shown in the following example.

Example 2. Consider, (R , I ) where I is the indiscrete topology. It is clear that (R ,
I ) is semi-regular. Put M = R\{0}. Then, the discrete extension XM can be describe as
follows: B(0) = { {0} } and for each x ̸= 0, B(x) = {R }. XM is not semi-regular because

{0} is an open set in XM , but intXM
({0}XM

) = intXM
(R)= R ̸= {0}. Thus, {0} is not

an open domain in XM . Hence, 0 ∈ {0} with {0} is an open set and there is no open
domain G in XM satisfies 0 ∈ G ⊆ {0}. Therefore, XM is not semi-regular.

Lemma 4. Let (X , τ ) be a topological space. Let M be any non-empty proper subset of
X. Then, for any open domain U in X, U is an open domain in XM .

Proof. Let U be any open domain in X, we always have U ⊆ U
XM . By taking the

interior of both sides with respect to XM we get, intXM
(U) ⊆ intXM

(U
XM ). But since

U is an open domain in X, then U is an open set in X. Thus, U is an open set in XM .

Hence, intXM
(U) = U , therefore U ⊆ intXM

(U
XM ) ... ⋆.

Now, let x ∈ intXM
(U

XM ) be arbitrary, then x ∈ (U
XM ). There are only two cases.

Case 1: x ∈ X \M . Since {x} is an open neighborhood of x in XM satisfies {x} ∩U ̸= ∅,
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then x ∈ U .
Case 2: x ∈ M . Since x ∈ intXM

(U
XM ), then there exist an open set V in X such that

x ∈ V ⊆ U
XM ⊆ U

X
and the last inclusion is true because the topology on X is coarser

than the topology on XM . Therefore, we have x ∈ V ⊆ U
X

, then by taking the interior

of both sides with respect to X we have, x ∈ intXV = V ⊆ intX(U
X
) = U because U is an

open domain in X and V is an open set in X. Hence, x ∈ U , thus intXM
(U

XM ) ⊆ U ... ⋆⋆.

By ⋆ and ⋆⋆ we get U = intXM
(U

XM ). Therefore, U is an open domain in XM .

In the next theorem, we will use the following fact which was proved in [1]: “If X is
T1, then so is XM for any non-empty proper subset M of X”.

Theorem 3. If X is T1 and semi-regular, then for any non-empty proper subset M of X,
we have that the discrete extension XM of X is semi-regular.

Proof. Assume the hypotheses. Let W be an arbitrary non-empty open set in XM . Let
x ∈ W be arbitrary. There are only two cases.
Case 1: x ∈ X \M . Then we have {x} is an open neighborhood of x in XM . Since X is
T1, then XM is also T1. Thus {x} is also closed in XM . Hence {x} is clopen in XM , thus
{x} is an open domain in XM such that x ∈ {x} ⊆ W .
Case 2: x ∈ M . Since X is semi-regular, then there is a base for X consisting of open
domains. Thus, there exists an open domain V in X such that x ∈ V ⊆ W . By Lemma
4, we get V is an open domain in XM . Therefore, XM is semi-regular.

Definition 5. Let (X , τ ) be a topological space and let p be an object not in X, that
is, p ̸∈ X. Put Xp = X ∪ { p }. Define a topology τ ′ on Xp by τ ′ = {Xp } ∪ {U : U ∈
τ } = {Xp }∪ τ . The space (Xp , τ ′ ) is called the open extension space of (X , τ ), see
[12, Example 16].

Observe that (X , τ ) and (Xp , τ ′ ) have the same open sets except for Xp. Also,
if U is an open domain in (X , τ ), then U is an open domain in (Xp , τ ′ ) because

U
Xp

= U
X ∪ {p} as the only open neighborhood of p in (Xp , τ ′ ) is Xp itself. Thus,

intXp( U
Xp

) = intXp(U
X ∪ {p}) = intX(U

X
) = U . It is easy to see that if U is an open

domain in (Xp , τ ′ ) such that p ̸∈ U , then U is an open domain in (X , τ ).

Theorem 4. (X , τ ) is semi-regular if and only if (Xp , τ ′ ) is semi-regular.

Proof. Assume that (X , τ ) is semi-regular. To show that (Xp , τ ′ ) is semi-regular,
we only need to prove that τ ′ ⊆ τ ′

s. Let W ∈ τ ′ be an arbitrary such that ∅ ≠ W ̸= Xp,
then W ∈ τ . Since (X , τ ) is semi-regular, then τ = τ s. So, the family of all open
domains in (X , τ ) is a base for (X , τ ). Thus W can be written as a union of open
domains in (X , τ ). So, W can be written as a union of open domains in (Xp , τ ′ ). Thus
W ∈ τ ′

s. Thus τ ′ ⊆ τ ′
s. Therefore (Xp , τ ′ ) is semi-regular.

Conversely, Assume that (Xp , τ ′ ) is semi-regular, that is, τ ′ = τ ′
s. To show that

(X , τ ) is semi-regular, we only need to show that τ ⊆ τ s. Let W ∈ τ be arbitrary,
then p /∈ W . But W ∈ τ ′ implies that W can be written as a union of open domains in
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(Xp , τ ′ ). Since any open domain in (Xp , τ ′ ) which does not contain the element p is
also an open domain in (X , τ ), then W ∈ τ s, implies that τ ⊆ τ s and hence (X , τ ) is
semi-regular.

3. New results about semi-regularization spaces

In this section, we study the relationship between a topological space (X , τ ) and its
semi-regularization space (X , τ s ) regarding a topological property. We start with the
property of scattered. Recall that a space X is scattered if any non-empty subset of X
has an isolated point, that is, if ∅ ≠ A ⊆ X, then there exists an element a ∈ A and there
exists an open set U such that a ∈ U and U ∩ A = { a }. It is easy to see that if (X ,
τ s ) is scattered, then so is (X , τ ). This follows from the containment τ s ⊆ τ . But the
converse is not always true as can be shown in the following example.

Example 3. Consider R with the particular point topology τ 0 which is scattered, see [12,
Example 10]. But the semi-regularization of (R ,τ 0 ) is (R , I ) where I is the indiscrete
topology which is not scattered.

Definition 6. A topological space (X , τ ) is called epi-normal if there exists a coarser
topology τ ′ on X such that (X , τ ′ ) is T4, see [3].

Lemma 5. Let (Y , ν ) be a regular space. If f : (X , τ ) −→ (Y , ν ) is continuous, then
f : (X , τ s ) −→ (Y , ν ) is continuous, [8].

Theorem 5. (X , τ ) is epi-normal if and only if (X , τ s ) is epi-normal.

Proof. Assume that (X , τ ) is epi-normal. Pick a coarser topology τ ′ on X such
that (X , τ ′ ) is T4. Consider the identity function idX : (X , τ ) −→ (X , τ ′ ) which is
continuous since τ ′ ⊆ τ . Then, by Lemma 5, we have idX : (X , τ s ) −→ (X , τ ′ ) is
continuous, hence τ ′ ⊆ τ s . Thus, (X , τ s ) is epi-normal.

Conversely, assume that (X , τ s ) is epi-normal. Then there exist a coarser topology
τ ′ on X such that (X , τ ′ ) is T4. Since τ s ⊆ τ , then result follows.

Definition 7. A topological space X is called submetrizable if there exists a metric d on
X such that τ d ⊆ τ , [7].

Similar argument of the proof of Theorem 5 gives the following theorem.

Theorem 6. (X , τ ) is submetrizable if and only if (X , τ s ) is submetrizable.

Definition 8. A topological space X is called C-normal if there exist a normal space Y
and a bijective function f : X −→ Y such that the restriction f |A : A −→ f(A) is a
homeomorphism for each compact subspace A ⊆ X, [4].

The following example shows that, if (X , τ s ) is C-normal, then (X , τ ) may not be
C-normal.
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Example 4. Consider R with the particular point topology τ 0 which is not C-normal
see [4, Example 1.5]. But the semi-regularization topological space of (R , τ 0 ) is (R , I ),
where I is the indiscrete topology, which is a normal space, thus C-normal.

Lemma 6. If X is T1 and C-normal, then any witness Y of its C-normality is T4.

Proof. Assume that X is T1 and C-normal. Pick a normal space Y and a bijective
function f : X −→ Y such that f|A : A −→ f(A) is a homeomorphism for each compact
subspace A ⊆ X. Let x, y be any two distinct elements in Y . Since f is bijective, there are
unique elements a, b ∈ X such that f(a) = x and f(b) = y such that a ̸= b. Consider {a, b}
which is a compact subset ofX. This implies f|{a,b} : {a, b} −→ {x, y} is a homeomorphism.

But X is T1, thus {a, b} is a discrete subspace of X, hence {x, y} is a discrete subspace
of Y , then there are two open neighborhoods U and V of x and y respectively in Y such
that U ∩ {x, y} = {x} and V ∩ {x, y} = {y} where y /∈ U and x /∈ V . Thus Y is T1 and
given that Y is normal, thus Y is T4.

Recall that a topological space X is called a Fréchet space if for every A ⊆ X and
every x ∈ A there exists a sequence (an)n∈N of points of A such that an −→ x, [6].

Lemma 7. If X is Fréchet and C-normal, then any witness function of its C-normality
is continuous.

Proof. Assume that X is Fréchet and C-normal. Let f : X −→ Y be a witness
function of the C-normality of X. Let A ⊂ X and let y ∈ f(A) be arbitrary. Pick
the unique element x ∈ X such that f(x) = y. Thus x ∈ A. Since X is a Fréchet
space, then there exist a sequence (an) ⊆ A such that (an) converges to x. The subspace
B = {x, an : n ∈ N} of X is compact and thus f|B : B −→ f(B) is a homeomorphism.
Now, let W ⊆ Y be any open neighborhood of y, then W ∩ f(B) is open in the subspace
f(B) containing y. Since f({an : n ∈ N}) ⊆ f(B) ∩ f(A) and W ∩ f(B) ̸= ∅, then
W ∩ f(A) ̸= ∅. Hence y ∈ f(A) and thus f(A) ⊆ f(A). Therefore, f is Continuous.

Theorem 7. If (X , τ ) is Fréchet, T1 and C-normal, then its semi-regularization topo-
logical space (X , τ s ) is C-normal

Proof. Assume the hypothesis. Pick a normal topological space (Y , τ ′ ) and a bijective
function f : (X , τ ) −→ (Y , τ ′ ) such that f|A : A −→ f(A) is a homeomorphism for
any compact subspace A of X. As X is Fréchet, then by Lemma 7, f is continuous
and by Lemma 6, we get (Y , τ ′ ) is T4. Pick the same bijection function f : (X ,
τ s ) −→ (Y , τ ′ ) which is continuous by Lemma 5. Let B be any compact subset of (X ,
τ s ), then f|B : B −→ f(B) is bijective and continuous, thus by [6, Theorem 3.1.13] f|B is
a homeomorphism. Therefore, (X , τ s ) is C-normal.
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