EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 774-783 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Results about *P***-Normality**

Lutfi Kalantan¹, Mai Mansouri^{1,*}

¹ King Abdulaziz University, Department of Mathematics, P.O.Box 80203, Jeddah 21589, Saudi Arabia

Abstract. A topological space X is called *P*-normal if there exist a normal space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f_{|A}: A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq X$. In this paper we present some new results on *P*-normality. We study the invariance and inverse invariance of *P*-normality as a topological property. We also investigate the Alexandroff Duplicate of a *P*-normal space, the closed extension of a *P*-normal space, the discrete extension of a *P*-normal space and the Dowker topological space. Furthermore, we introduce a new property related to *P*-normality which we call strong *P*-normality.

2020 Mathematics Subject Classifications: 54D15, 54C10

Key Words and Phrases: Normal, *P*-normal, *L*-normal, *C*-normal, Strong *P*-noramlity, Alexandroff Duplicate, Invariance, Closed extension, Discrete extension, Paracompact, Product

1. Introduction

We introduced *P*-normality in our previous paper [10]. The purpose of this paper is to study some new results about *P*-normality. We investigate some types of invariance. We also discuss the Alexandroff Duplicate, the closed extension space and the discrete extension space of a *P*-normal space. We examine whether *P*-normality is preserved in these spaces or not. Finally, we define a new topological property called strong *P*normality. Throughout this paper, we denote an ordered pair by $\langle x, y \rangle$, the set of positive integers by N and the set of real numbers by \mathbb{R} . A T_4 space is a T_1 normal space and a Tychonoff space is a T_1 completely regular space. We do not assume T_2 in the definition of compactness, paracompactness and countable compactness. We do not assume regularity in the definition of Lindelöfness. For a subset *A* of a space *X*, int*A* and \overline{A} denote the interior and the closure of *A*, respectively. An ordinal γ is the set of all ordinal α such that $\alpha < \gamma$. The first infinite ordinal is ω_0 , the first uncountable ordinal is ω_1 , and the successor cardinal of ω_1 is ω_2 . We begin by recalling the following definitions:

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4387

Email addresses: LNKalantan@hotmail.com (L. Kalantan), mfmansouri1@kau.edu.sa (M. Mansouri)

© 2022 EJPAM All rights reserved.

^{*}Corresponding author.

L. Kalantan, M. Mansouri / Eur. J. Pure Appl. Math, 15 (2) (2022), 774-783

Recall that a topological space (X, τ) is paracompact if any open cover has a locally finite open refinement. For a subspace A of X, A is paracompact if (A, τ_A) is paracompact, i.e., any open (open in the subspace) cover of A has a locally finite open (open in the subspace) refinement. We do not assume T_2 in the definition.

Definition 1. A topological space X is called P-normal if there exist a normal space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f_{|_A} : A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq X$ [10].

2. New Results on *P*-normality

In [10], we proved P-normality is a topological property, studied its independence of other topological properties, and investigated whether or not P-normality was an additive property, a multiplicative property and a hereditary property. Until now, we still don't know if P-normality is hereditary with respect to closed subspaces. But under some conditions it is hereditary with respect to compact subspaces. Before we state such conditions we introduce some results:

Proposition 1. If X is a T_1 space, $f : X \longrightarrow Y$ is a one to one and onto map, and the restriction of f on any finite subset of X is a homeomorphism. Then Y is also T_1 .

Proof. Since X is T_1 and f is a bijection then Y has more than one element. Let $a, b \in Y$ be arbitrary such that $a \neq b$. Then there exist unique $c, d \in X$ such that f(c) = a and f(d) = b and $c \neq d$. Now, $\{c, d\} \subseteq X$ is a finite subset of X. So $f|_{\{c,d\}} : \{c, d\} \longrightarrow \{a, b\}$ is a homeomorphism. Now, a = f(c) and c is isolated in $\{c, d\}$ because $\{c, d\} \subseteq X$ is discrete. Also, b = f(d) and d is isolated in $\{c, d\}$. So there exist Y-open subset U containing a such that $U \cap \{a, b\} = \{a\}$, and there exists Y-open subset V containing b such that $V \cap \{a, b\} = \{b\}$. Then $b \notin U \ni a$ and $a \notin V \ni b$. Which implies that Y is T_1 .

Corollary 1. If X is a T_1 , P-normal space then the witness Y is T_4 .

Using the previous proposition we can state the following theorems:

Corollary 2. If X is T_1 and the only paracompact subspaces of X are the finite subspaces, then X is P-normal.

Theorem 1. Let X be a T_1 , Fréchet P-normal space. Then, any compact subspace of X is P-normal.

Proof. Let Y and f be a witness space and function respectively of the P-normality of X. Since X is T_1 , then Y is T_4 by the above corollary. Now, f is continuous since X is Fréchet by [10, Theorem 5]. Let $A \subseteq X$ be any compact subset of X. The continuous image of a compact subset is compact so $f(A) \subseteq Y$ is compact in Y. Moreover, since Y is T_2 that means f(A) is closed in Y. Y is normal and normality is hereditary with respect to closed sets so f(A) is normal and hence will be a witness for the *P*-normality of *A*. Let $g = f|_A : A \longrightarrow f(A)$. Let $C \subseteq A$ be any paracompact subspace of *A*. Since a subspace of a subspace is a subspace, then *C* is paracompact in *X*. Therefore, $g|_C = f|_{A|_C} = f|_C$ is a homeomorphism. Which means *A*, the arbitrary compact subset of *X*, is *P*-normal and we are done.

In the same way we proved the previous theorem, we can deduce the following corollary about *P*-normality being hereditary with respect to countably compact subspaces with additional conditions. recall that a *C*-closed space *Y* is a T_2 space where every countably compact subset $A \subseteq Y$ is closed [9].

Corollary 3. Let X be a T_1 , Fréchet P-normal space. Let Y a witness of the P-normality of X be a C-closed space. Then, any countably compact subspace of X is P-normal.

Recall that a topological space (X, τ) is called *epinormal* if there is a coarser topology τ' on X such that (X, τ') is T_4 [3].

Theorem 2. Let X be a T_1 , Fréchet P-normal space, then X is epinormal.

By the above discussion we have seen that if X is T_1 and P-normal then Y, the witness of P-normality, is T_4 . Now, since X is Fréchet that means the witness function f is continuous by [10, Theorem 5]. This allows us to consider Y as a coarser space of X [7, 2.4].

Note that since in this case Y is coarser than X and Y is T_4 hence T_2 then X has to be T_2 . Which means, if a space X is not T_2 , but T_1 and Fréchet then it cannot be P-normal.

3. Invariance

We begin by studying the invariant properties of *P*-normality. *P*-normality is not invariant in general.

Example 1. In [10] we showed that the Dieudonné plank (X,τ) is not P-normal. Now, consider (X,τ') , where τ' is generated by making any element on the right side of the plank A isolated. Consider $id_X : (X,\tau') \longrightarrow (X,\tau)$. Since τ is coarser than τ' then $id_X : (X,\tau') \longrightarrow (X,\tau)$ is continious, one to one and onto. (X,τ') is P-normal being T_2 -paracompact i.e normal but the Dieudonné plank (X,τ) is not.

By a theorem of Ponomarev [7, 4.2.D] which says: " a T_0 space X is first countable if and only if X is a continuous image of a metrizable space under an open mapping". Consider $(\mathbb{R}, \mathcal{RS})$, which we have shown is not P-normal in [10], but it is Tychonoff and first countable. So there exists a metrizable space X and an open function $g: X \longrightarrow (\mathbb{R}, \mathcal{RS})$. Since any metrizable space is P-normal, then this example shows that P-normality is not open invariant and hence cannot be quotient invariant either.

Example 2.

The function $f : (\mathbb{R}, \mathcal{RS}) \longrightarrow (\{0, 1\}, \mathfrak{D})$ defined by

$$f(x) = \begin{cases} 0 & ; if \ x < 0 \\ 1 & ; if \ x \ge 0 \end{cases}$$

is both closed and open. Where \mathcal{D} is the discrete topology. Now, as we previously mentioned $(\mathbb{R}, \mathcal{RS})$ is not P-normal but $(\{0, 1\}, \mathfrak{D})$ is P-normal since it is normal. This example shows that P-normality is not inverse invariant in general. Moreover, it is not inverse open invariant nor inverse closed invariant.

4. Generating Spaces and *P*-normality

In this section, we start with the study of the Alexandroff Duplicate space of a P-normal space. Let us first recall the definition of the Alexandroff Duplicate topological space. Let X be an infinite topological space. We denote the family of all finite subsets of X by $[X]^{<\omega_0}$, i.e.,

$$[X]^{<\omega_0} = \{ E \subset X : E \text{ is finite } \}.$$

Put $X' = X \times \{1\}$. So, X' is just a copy of X and we have $X \cap X' = \emptyset$. The ground set of the Alexandroff duplicate space A(X) of X is $A(X) = X \cup X'$. To simplify the symbols, we do the following: For an element $x \in X$, we denote the element $\langle x, 1 \rangle$ in X'by x' and for any subset $B \subseteq X$, put $B' = \{x' : x \in B\} = B \times \{1\} \subseteq X'$. For each $x' \in X'$, put $\mathcal{B}(x') = \{\{x'\}\}$, so any element in X' will be isolated in A(X). For each $x \in X$, put $\mathcal{B}(x) = \{U \cup (U' \setminus E') : U$ is open in X with $x \in U$ and $E \in [X]^{<\omega_0}$. Then $\mathcal{B} = \{\mathcal{B}(y) : y \in A(X)\}$ generates a unique topology on A(X) such that \mathcal{B} is its neighborhood system. A(X) with this topology is called the *Alexandroff Duplicate of* X, see [2] and [6]. Observe that for any open set U in X, we have that $U \cup U'$ is open in A(X) and for any $x \in U$, we have $U \cup (U' \setminus \{x'\})$ is a basic open neighborhood of x.

Theorem 3. If X is P-normal, then so is its Alexandroff Duplicate A(X).

Proof. Let X be any P-normal space. Pick a normal space Y and a bijective function $f : X \longrightarrow Y$ such that $f_{|_C} : C \longrightarrow f(C)$ is a homeomorphism for each paracompact subspace $C \subseteq X$. Consider the Alexandroff Duplicate spaces A(X) and A(Y) of X and Y respectively. Y is normal then so is A(Y) [2].

Let us define $g: A(X) \longrightarrow A(Y)$ by g(a) = f(a) if $a \in X$. If $a \in X'$, let b be the unique element in X such that b' = a, then define g(a) = (f(b))'. Then g is a bijective function. Now, a subspace $C \subseteq A(X)$ is paracompact in A(X) if and only if $C \cap X$ is paracompact in X. To prove this, assume that C is paracompact in A(X). Let $\mathcal{U} = \{U_{\alpha} \subseteq C \cap X : U_{\alpha} \text{ is}$ open in $C \cap X$ for each $\alpha \in \lambda\}$ be any open cover (open in $C \cap X$) for $C \cap X$. That means for each $\alpha \in \lambda$ there exists $V_{\alpha} \subseteq X$ open in X such that $U_{\alpha} = V_{\alpha} \cap (C \cap X)$. Now, for every $\alpha \in \lambda$, V_{α} is open in X and therefore $V_{\alpha} \cup V'_{\alpha}$ is open in A(X). So $(V_{\alpha} \cup V'_{\alpha}) \cap C$ is open in C. This implies $(V_{\alpha} \cup V'_{\alpha}) \cap C = (V_{\alpha} \cap C) \bigcup (V'_{\alpha} \cap C)$ is open in C. Take the unions of these sets

: $(\bigcup_{\alpha \in \lambda} (V_{\alpha} \cap C)) \bigcup (\bigcup_{\alpha \in \lambda} (V_{\alpha}' \cap C))$. For each $x' \in C \setminus (\bigcup_{\alpha \in \lambda} (V_{\alpha}' \cap C))$ consider the singleton $\{x'\}$. Consider $\mathcal{W} = \{(V_{\alpha} \cap C) \bigcup (V'_{\alpha} \cap C), \{x'\} : \alpha \in \lambda, \text{ and } x' \in C \setminus (\bigcup_{\alpha \in \lambda} (V'_{\alpha} \cap C))\}.$ This is an open cover of C in A(X) (open in C). Since C is assumed to be paracompact in A(X) then this cover \mathcal{W} has a locally finite open refinement (in C). That is, there exists $\{G_s : s \in \mathcal{S}\}$ such that for each $s \in \mathcal{S}$, G_s is open in C and for each $s \in \mathcal{S}$ there exists $\alpha \in \lambda$ such that either $G_s \subseteq (V_\alpha \cap C) \bigcup (V'_\alpha \cap C)$ or $G_s = \{x'\}$ for some $x' \in C \setminus (\bigcup_{\alpha \in \lambda} (V'_\alpha \cap C))\}.$ Let $\mathcal{S}' = \{s \in \mathcal{S} : G_s \subseteq V_\alpha \cap C\}$. Then $\{G_s : s \in \mathcal{S}'\}$ is a sub-family of $\{G_s : s \in \mathcal{S}\}$ which is locally finite, hence $\{G_s : s \in S'\}$ is locally finite as well. So $\{G_s : s \in S'\}$ is a locally finite open (open in $C \cap X$) refinement of \mathcal{U} . On the other hand, assume $C \cap X$ is a paracompact subset in X. Let $\mathcal{G} = \{G_{\alpha} \cap C : \alpha \in \lambda; G_{\alpha} \subseteq A(X) \text{ open in } A(X) \text{ for } \}$ each $\alpha \in \lambda$ } be an arbitrary open (open in C) cover of C in A(X). So $C \subseteq \bigcup \mathcal{G}$. Consider $\mathcal{G}_X = \{ (G_\alpha \cap C) \cap X : \alpha \in \lambda \} = \{ G_\alpha \cap (C \cap X) : \alpha \in \lambda \}.$ Then $C \cap X \subseteq \bigcup \mathcal{G}_X$, i.e, this is an open (open in $C \cap X$) cover for $C \cap X$. By assumption there exists $\{H_s : s \in S\}$ locally finite open (open in $C \cap X$) refinement of \mathcal{G}_X . That is, for each $s \in \mathcal{S}$ there exists $\alpha_s \in \lambda$ such that $H_s \subseteq G_{\alpha_s}$. For every $s \in \mathcal{S}$ there exists $K_s \subseteq X$ open in X such that $K_s \cap (X \cap C) = H_s. \text{ Consider } \{(K_s \cup K'_s) \cup C : s \in \mathcal{S}\} = \{(K_s \cap C) \bigcup (K'_s \cap C) : s \in \mathcal{S}\}.$ Since $\{K_s \cap C : s \in S\}$ is locally finite then so is $\{(K_s \cap C) \cup (K'_s \cap C) : s \in S\}$. For every $x' \in (C \cap X') \setminus (\bigcap_{s \in S} (K'_s \cap C))$ there exists $\alpha_{x'} \in \lambda$ such that $x' \in G_{\alpha'_x}$. Consider $\mathcal{K} = \{ (K_s \cap C) \cup (K'_s \cap C), \{x'\} : s \in \mathcal{S}; x' \in (C \cap X') \setminus (\bigcap_{s \in \mathcal{S}} (K'_s \cap C)) \}. \ \tilde{\mathcal{K}} \text{ is a locally } \mathcal{K} \in \mathcal{S} \}$ finite open refinement (open in C) of \mathcal{G} .

Now, let $C \subseteq A(X)$ be any paracompact subspace. We show $g|_C : C \longrightarrow g(C)$ is a homeomorphism. Let $a \in C$ be arbitrary. If $a \in C \cap X'$, let $b \in X$ be the unique element such that b' = a. For the smallest basic open neighborhood $\{(f(b))'\}$ of the point g(a) we have that $\{a\}$ is open in $C \cap X'$ and $g(\{a\}) \subseteq \{(f(b))'\}$. If $a \in C \cap X$. Let W be any open set in Y such that $g(a) = f(a) \in W$. Consider $H = (W \cup (W' \setminus \{f(a)'\})) \cap g(C)$ which is a basic open neighborhood of f(a) in g(C). Since $f_{|C \cap X} : C \cap X \longrightarrow f(C \cap X)$ is a homeomorphism, then there exists an open set U in X with $a \in U$ and $f_{|C \cap X}(U \cap C) \subseteq W$. Now, $(U \cup (U' \setminus \{a'\})) \cap C = G$ is open in $C \cap X$ such that $a \in G$ and $g|_C(G) \subseteq H$. Therefore, $g|_C$ is continuous. Now, we show that $g|_C$ is open. Let $K \cup (K' \setminus \{k'\})$, where $k \in K$ and K is open in X, be any basic open set in A(X), then $(K \cap C) \cup ((K' \cap C) \setminus \{k'\})$ is a basic open set in C. Since $X \cap C$ is compact in X, then $g|_C(K \cap (X \cap C)) = f|_{X \cap C}(K \cap (X \cap C))$ is open in $Y \cap f(C \cap X)$ as $f|_{X \cap C}$ is a homeomorphism. Thus $K \cap C$ is open in $Y \cap f(X \cap C)$. Also, $g((K' \cap C) \setminus \{k'\})$ is open in $Y' \cap g(C)$ being a set of isolated points. Thus $g|_C$ is an open function. Therefore, $g|_C$ is a homeomorphism.

Next, we present a result about *Dowker* topological spaces. This result may seem repeated as it was mentioned about *L*-normality in [11] but it is so interesting that we mention it again with regards to *P*-normality. Recall that a *Dowker space* is a T_4 space whose product with I, I = [0, 1] with its usual metric, is not normal. M. E. Rudin used the existence of a Suslin line to obtain a Dowker space which is hereditarily separable and first countable [12]. Using CH, I. Juhász, K. Kunen, and M. E. Rudin constructed a first countable hereditarily separable real compact Dowker space [8]. Weiss constructed a first countable separable locally compact Dowker space whose existence is consistent with MA $+ \neg \text{CH}$ [14]. We already know that such spaces are consistent examples of Dowker spaces whose product with *I* are not *L*-normal [11]. This means that they cannot be *P*-normal either; since any regular *P*-normal space is *L*-normal [10].

We move on to studying the *P*-normality of the closed extension. Let (X, τ) be a topological space and let p be an object not in X, i.e., $p \notin X$. Put $X^p = X \cup \{p\}$. Define a topology τ^* on X^p by $\tau^* = \{\emptyset\} \cup \{U \cup \{p\} : U \in \tau\}$. The space (X^p, τ^*) is called the *closed extension space* of (X, τ) , [13, Example 12].

Since characterizing all paracompact subspaces [10] is a core subject in the notion of P-normality, we will start with characterizing all paracompact subspaces of the closed extension space (X^p , τ^*) of a given space (X, τ).

Proposition 2. Let (X, τ) be a topological space. Consider the closed extension space (X^p, τ^*) of (X, τ) . Let $A \subseteq X^p$.

If $p \notin A$, then A is a paracompact subset in (X^p, τ^*) if and only if A is a paracompact subset in (X, τ) .

If $p \in A$, then A is a paracompact subset in (X^p, τ^*) if and only if $A \setminus \{p\}$ is a compact subset in (X, τ) .

The proof of this proposition can be found in [5]. A space is called *ultra-connected* if any two non-empty closed sets intersect [13]. Since any normal space is *P*-normal (just by taking in Definition 1, Y = X and f to be the identity function) then by [5, Theorem 1.4] , we get the following theorem: If (X, τ) is ultra-connected, then its closed extension (X^p, τ^*) is *P*-normal [5]. Recall that a topological space X is called *C*-normal if there exist a normal space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f_{|_C} : C \longrightarrow f(C)$ is a homeomorphism for each compact subspace $C \subseteq X$ [4]. Now, in [5] it was proved that the closed extension space (X^p, τ^*) is not *C*-normal if (X, τ) is not ultra-connected. In [10], we showed that *P*-normality implies *C*-normality. Combining all the information above together we get:

Theorem 4. If (X, τ) is not ultra-connected, then the closed extension space (X^p, τ^*) is not *P*-normal.

Now, we discuss a new result about *P*-normality and whether it's preserved or not in the discrete extension space. To do this let us recall the definition of the discrete extension space: Let *M* be a non-empty proper subset of a topological space (X, τ) . Define a new topology $\tau_{(M)}$ on *X* as follows: $\tau_{(M)} = \{U \cup K : U \in \tau \text{ and } K \subseteq X \setminus M\}$. $(X, \tau_{(M)})$ is called a *discrete extension* of (X, τ) and we denote it by X_M [13], see also [7, 5.1.22]. We will now show that *P*-normality is not preserved by a discrete extension. That is, the discrete extension of a *P*-normal space need not be *P*-normal.

Example 3. We know that $(\mathbb{R}, \mathcal{R}S)$ where $\mathcal{R}S$ is the rational sequence topology on \mathbb{R} , is a Tychonoff locally compact non compact space [13, Example 65]. Thus \mathbb{R} with the

rational sequence topology has a one-point compactification. Let $X = \mathbb{R} \cup \{p\}$, where $p \notin \mathbb{R}$, be a one-point compactification of \mathbb{R} . Since X is T_2 -compact, then it is T_4 , hence P-normal [10]. Now, take the discrete extension of X denoted by $X_{\mathbb{R}}$. Observe that in $X_{\mathbb{R}}$, the singleton $\{p\}$ is closed-and-open. $X_{\mathbb{R}}$ is first countable and Tychonoff because \mathbb{R} with the rational sequence topology is, thus $X_{\mathbb{R}}$ is of countable tightness. $X_{\mathbb{R}}$ is also separable because $(\mathbb{R}, \mathcal{R}S)$ is separable and $\mathbb{Q} \cup \{p\}$ is a countable dense subset of $X_{\mathbb{R}}$ [1]. Now, \mathbb{R} with the rational sequence topology is not normal. Since \mathbb{R} is closed in $X_{\mathbb{R}}$, we conclude that $X_{\mathbb{R}}$ is not normal. Using the theorem: "If Y is T_3 , separable, P-normal and of countable tightness, then Y is normal." [10], we conclude that $X_{\mathbb{R}}$ cannot be P-normal.

This example shows that [1, Theorem 12] is not true for *P*-normality. That is if *Y* is a Tychonoff space, then a discrete extension X_M of any compactification *X* of *Y* need not be *P*-normal.

5. Strong *P*-Normality

Definition 2. A topological space X is called strongly P-normal if there exists a bijective function $f: X \longrightarrow I$, where I = [0, 1] the closed unit interval considered with its usual metric topology, such that the restriction $f_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq X$.

It is clear from the definition that any strongly P-normal space is P-normal. The converse is not always true.

Example 4. $\omega_2 + 1$ with its usual ordered topology is *P*-normal because it is normal being T_2 compact. But $\omega_2 + 1$ cannot be strongly *P*-normal because $|[0, 1]| = |\mathbb{R}| = \mathfrak{c} < \omega_2 = |\omega_2 + 1|$.

Example 5. $(\mathbb{R}, \mathcal{U})$ is not strongly *P*-normal. $(\mathbb{R}, \mathcal{U})$ is homeomorphic to the open interval (0, 1) with the usual topology. So, if $(\mathbb{R}, \mathcal{U})$ is strongly *P*-normal, then there will be a bijection $f : (0, 1) \longrightarrow [0, 1]$ such that $f|_A$ is a homeomorphism for every paracompact subset $A \subseteq (0, 1)$. Since (0, 1) is Fréchet, f is continuous by [10, Theorem 5]. Since f is bijection, there is unique $a, b \in (0, 1)$ such that f(a) = 0 and f(b) = 1. Assume without loss of generality that a < b. Then, $(0, 1) \setminus [a, b] \neq \emptyset$ and clearly f is continuous on [a, b]. Now using the Intermediate Value, for every $y \in (f(a), f(b)) = (0, 1)$, there exists $x \in (a, b)$ such that f(x) = y. Hence, $f^{-1}([0, 1]) \subseteq [a, b] \subset (0, 1)$. This implies that for every $x \in (0, 1) \setminus [a, b]$ (which is non-empty), x has no image in [0, 1] which contradicts that f is a function. Hence there is no continuous bijection between \mathbb{R} and I. Therefore, $(\mathbb{R}, \mathcal{U})$ is not strongly *P*-normal.

Theorem 5. Strong *P*-normality is a topological property.

L. Kalantan, M. Mansouri / Eur. J. Pure Appl. Math, 15 (2) (2022), 774-783

Proof. Let X be any strongly P-normal space. Assume that $X \cong Z$, so there exists a homeomorphism $k: Z \longrightarrow X$. Since X is strongly P-normal then there exists a witness function $h: X \longrightarrow I$ which is a bijection with the restriction $h|_C: C \longrightarrow f(C)$ is a homeomorphism for any paracompact subspace C of X. Then $h \circ k: Z \longrightarrow I$ satisfies the requirements.

Theorem 6. If X is Fréchet and strongly P-normal, then any function witnessing the strong P-normality of X is continuous.

Proof. Assume that X is strongly P-normal and Fréchet. Let $f: X \longrightarrow I$ be a witness of the strong P-normality of X. Let $A \subseteq X$ and pick $y \in f(\overline{A})$. Pick the unique $x \in X$ such that f(x) = y. Thus $x \in \overline{A}$. Since X is Fréchet, there exist a sequence $(a_n) \subseteq A$ such that $a_n \longrightarrow x$. The subspace $B = \{x, a_n : n \in \mathbb{N}\}$ of X is paracompact being compact, thus $f_{|_B}: B \longrightarrow f(B)$ is a homeomorphism. Now, let $W \subseteq I$ be any open neighborhood of y, then $W \cap f(B)$ is open in the subspace f(B) containing y. By continuity of the homeomorphism $f_{|_B}, f^{-1}(W \cap f(B)) = f^{-1}(W) \cap B$ is an open neighborhood of x in B. Then, $(f^{-1}(W) \cap B) \cap \{a_n : n \in \mathbb{N}\} \neq \emptyset$. So $(f^{-1}(W) \cap B) \cap A \neq \emptyset$. Therefore we have, $\emptyset \neq \underline{f((f^{-1}(W) \cap B) \cap A)} \subseteq f(f^{-1}(W) \cap A) = W \cap f(A)$ then $W \cap f(A) \neq \emptyset$. Hence $y \in \overline{f(A)}$, thus $f(\overline{A}) \subseteq \overline{f(A)}$. Therefore, f is continuous.

Example 6. It is clear that I with its usual metric topology is strongly P-normal. We show that the product $I \times I$ is not strongly P-normal.

Proof. Suppose to the contrary that $I \times I$ is strongly P-normal. Pick a bijection $f: I \times I \longrightarrow I$ such that $f|_A: A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq I \times I$. Now $I \times I$ is first countable and hence Fréchet. This implies that f is continuous, see Theorem 6, which contradicts the fact that there exists no continuous bijection $f: I \times I \longrightarrow I$. Because if there were, then f would be a homeomorphism since $I \times I$ is compact and I is T_2 . This is a contradiction since $I \times I$ is connected with no cut points $(I \times I) \setminus \{\langle x, y \rangle\}$ is connected for every point $\langle x, y \rangle \in I \times I$, while I is connected with cut points (Take any $x \in (0, 1) \subset I$, then $I \setminus \{x\} = [0, x) \cup (x, 1]$ where both [0, x) and (x, 1] are non-empty disjoint open subsets of I).

Therefore, $I \times I$ is not strongly *P*-normal.

So, a product of two strongly P-normal spaces may not be strongly P-normal. But, a product of two strongly P-normal spaces is P-normal. To show this, we start with a lemma.

Lemma 1. If A is a paracompact subset of the product $X \times Z$, then $p_1(A)$ and $p_2(A)$ are both paracompact in X and Z respectively. Where p_1 and p_2 are the natural projection functions.

Proof. Let A be a paracompact subset of the product $X \times Z$. Suppose that $p_1(A)$ is not paracompact subset in X, i.e., $p_1(A)$ as a subspace of X is not paracompact. Then there

REFERENCES

exist an open cover $\mathcal{U} = \{ U_{\alpha} \subseteq p_1(A) : U_{\alpha} \text{ is open in } p_1(A) \text{ for each } \alpha \in \Lambda \}$ for $p_1(A)$ such that any open (open in $p_1(A)$) refinement of \mathcal{U} is not locally finite. Now, let $x \in p_1(A)$ and fix an $\alpha_x \in \Lambda$ such that $x \in U_{\alpha_x}$. For each $z \in Z$ such that there exists $x \in p_1(A)$ with $\langle x, z \rangle \in A$, let W_z be an open neighborhood of z in Z. Note that $A \subseteq p_1(A) \times p_2(A)$. Consider the family $\mathcal{K} = \{ (U)\alpha_x \times W_z) \cap A : \langle x, z \rangle \in A \}$ which is an open (open in A) cover for A.

Claim: \mathcal{K} has no locally finite open refinement.

Proof of Claim: Suppose that \mathcal{K} has a locally finite open refinement, say $\{G_s \times H_s : s \in S\}$ (we can assume that this refinement is of the basic open set form in the product $X \times Z$), then the family $\{G_s \cap p_a(A) : s \in S\}$ would be a locally finite open refinement of \mathcal{U} which is a contradiction and Claim is proved.

So, \mathcal{K} is an open (open in A) cover for A which has no locally finite open refinement and this contradicts that A is a paracompact subset in $X \times Z$. Therefore, $p_1(A)$ is a paracompact subset in X.

Similarly, $p_2(A)$ is a paracompact subset of Z.

Theorem 7. If X and Z are both strongly P-normal, then $X \times Z$ is P-normal.

Proof. Assume that X and Z are both strongly P-normal. Pick two bijection functions $f: X \longrightarrow I$ and $g: Z \longrightarrow I$ such $f_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq X$ and $g_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each paracompact subspace $A \subseteq Z$. $I \times I$ is normal being T_2 compact. Put $h = f \times g$, i.e., $h: X \times Z \longrightarrow I \times I$ is defined by $h(\langle x, z \rangle) = \langle f(x), g(z) \rangle$ for each $\langle x, z \rangle \in X \times Z$. It is clear that h is a bijection function. Let A be any paracompact subset of $X \times Z$. By Lemma 1, we have that $p_1(A)$ is a paracompact subset of X and $p_2(A)$ is a paracompact subset of Z. Thus $f_{|_{p_1(A)}}: p_1(A) \longrightarrow f(p_1(A))$ is a homeomorphism and $g_{|_{p_2(A)}}: p_2(A) \longrightarrow g(p_2(A))$ is a homeomorphism. Since a product of two homeomorphisms is a homeomorphism [7], we get that $h_{p_1(A) \times p_2(A)} = (f_{|_{p_1(A)}}) \times (g_{|_{p_2(A)}}): p_1(A) \times p_2(A) \longrightarrow (f(p_1(A))) \times (g(p_2(A))) =$ $h(p_1(A) \times p_2(A))$ is a homeomorphism. Since $A \subseteq p_1(A) \times p_2(A)$ and a restriction of a homeomorphism is a homeomorphism, we conclude that $h_A: A \longrightarrow h(A)$ is a homeomorphism. Therefore, $X \times Z$ is P-normal.

The following problems are still open:

- 1. Is *P*-normality hereditary with respect to closed sets?
- 2. Is there a Tychonoff *P*-normal space which is not normal?

References

 L Kalantan A Alawadi and M Saeed. On the discrete extension spaces. Journal of Mathematical Analysis, 9(2):150–157., 2018.

- [2] P S Alexandroff and P S Urysohn. Mémoire sur les espaces topologiques compacts. Verh. Konink. Acad. Wetensch. Amsterdam, 14:1–96., 1929.
- [3] S AlZahrani and L Kalantan. Epinormality. Journal of Nonlinear Sciences & Applications, 9(9):5398–5402., 2016.
- [4] S AlZahrani and L Kalantan. C-normal topological property. Filomat, 31(2):407–411., 2017.
- [5] S Al-Qarhi D Abuzaid and L Kalantani. On the closed extension spaces. To Appear.
- [6] R Engelking. On the double circumference of alexandroff. Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys., 16(8):629–634., 1968.
- [7] R Engelking. General Topology. PWN, Warszawa, 1977.
- [8] K Kunen I Juhász and M E Rudin. Two more hereditarily separable non-Lindelöf spaces. Canadian Journal of Mathematics, 28(5):998–1005., 1976.
- [9] M Ismail and P Nyikos. On spaces in which countably compact sets are closed and hereditary properties. *Topology and its Applications*, 11(3):281–292., 1980.
- [10] L Kalantan and M Mansouri. P-normality. Journal of Mathematical Analysis, 12(6):1–8., 2021.
- [11] L Kalantan and M Saeed. L-normality. Topology Proceedings, 50:141–149., 2017.
- [12] M E Rudin. A separable dowker space. Symposia Mathematica, 16:125–132., 1973.
- [13] L Steen and J A Seebach. Counterexamples in Topology. Dover Publications INC, USA, 1995.
- [14] W Weiss. Small dowker spaces. Pacific Journal of Mathematics, 24(2):485–492., 1981.