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Abstract. In this study, Data Envelopment Analysis (DEA) models are improved by employing
spherical fuzzy sets (SFSs), which is an extension of generalized fuzzy sets. SFSs were recently in-
troduced as a novel type of fuzzy set that allows decision-makers to express their level of uncertainty
directly. As a result, SFSs provide a more preferred domain for decision-makers. Fundamental
Charnes-Cooper-Rhodes (CCR) model is discussed on the context of spherical trapezoidal fuzzy
numbers (STrFNs), which consider each data value’s truth, indeterminacy, and falsehood degrees,
and a unique solution technique is implemented. This method converts a spherical fuzzy DEA
(SF-DEA) model into three pair of crisp DEA model, which may then be solved using one of
many existing approaches. The largest optimal interval is determined for each DMU such that the
efficiency score lies inside that interval. Furthermore, an example demonstrates this novel method
and clearly explains the DMUs’ ranking technique.
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1. Introduction

The idea of fuzzy set was established by Zadeh [41] in 1965, and fuzzy set theory has
been widely employed in practical applications of uncertainty modeling. Many academics
have been interested in fuzzy set theory as a result of its expansion and application.
The membership degree of set elements of a fuzzy set was defined by the characteristic

*Corresponding author.
DOLI: https://doi.org/10.29020/nybg.ejpam.v15i3.4391

Email addresses: kshitishkumar.math@gmail.com (K. K. Mohanta),
deena.sunil@igntu.ac.in (D. S. Sharanappa), devikash131@gmail.com (D. Dabke),
vishnunarayanmishra@gmail.com (V. N. Mishra), lakshminarayanmishra04@gmail.com (L. N. Mishra)

https://www.ejpam.com 1158 © 2022 EJPAM All rights reserved.



V. N. Mishra et al. / Eur. J. Pure Appl. Math, 15 (3) (2022), 1158-1179 1159

function on the unit interval [0, 1] in the study of fuzzy set (FS) theory. The fuzzy
set’s non-membership degree is calculated by subtracting the membership degree from 1.
Atanassov [7] in 1986 expanded Zadeh’s fuzzy set notion to intuitionistic fuzzy set (IFS),
and its membership and non-membership degrees are defined separately. However, the
sum of IFSs’ membership and non-membership degrees must fall within the range [0, 1].
Smarandache [38] in 1999 proposed neutrosophic logic and neutrosophic sets (NSs) as an
extension of intuitionistic fuzzy sets. A neutrosophic set is one in which each element of the
universe contains different degrees of truthiness, indeterminacy, and falsechood. They can
be calculated individually, and their sum can range between 0 and 3. NSs used in solving
many optimization technique and MCDM problem [26, 33]. Yager [39] in 2013 developed
Pythagorean fuzzy sets which have a membership degree and a non-membership degree
that satisfy the condition that the square sum of membership and non-membership degrees
is at most equal to one, and are a generalisation of Intuitionistic Fuzzy Sets (IFS). Cuong
and Kreinovich [10] in 2014 invented picture fuzzy sets Picture fuzzy sets-based models may
be appropriate in circumstances requiring additional varieties of human opinions, such as
yes, abstain, no, and rejection. Kahraman and Gundogdu [24] in 2018 proposed spherical
fuzzy sets (SFS) as an extension of Pythagorean, neutrosophic, and picture fuzzy sets. SF'S
allows decision makers to generalise additional extensions of fuzzy sets by constructing a
membership function on a spherical surface and separately assigning the parameters of that
membership function to a broader domain. SF'S have been applied to many multicriteria
decision-making methods [4, 6, 25, 32, 36]. The difference between Intuitionistic fuzzy set,
Pythagorean fuzzy set, Neutrosophic fuzzy set, and spherical fuzzy set are shown in Figure
(1) where T4, F4 and I4 represents the truth, falsity and indeterminate membership grade
for the fuzzy set A.

Figure 1: Representation of the fuzzy set and it's extension in geometrically
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For development, growth, and sustainability, all public or commercial organizations re-
quire an accurate performance evaluation. In today’s competitive market, these businesses
are under pressure to turn inputs into outputs at the lowest possible cost. This pressure
motivates them to be more efficient. To be more specific, one of the major functions of
government in the public sector, when the traditional disciplines of a competitive market
are missing, is to offer public goods and services. As a result, identifying efficient providers
can improve efficiency by acknowledging and disseminating best practices. Farrell [17] in
1957 developed the mathematical model for evaluating the efficiency of the DMUs, which
was extended by Charnes et al. [9] in 1978 and developed a linear mathematical pro-
gramming (LP) model to measure the comparative efficiency of the DMUs is called the
Charnes-Cooper-Rhodes (CCR) model under the assumption of constant returns to scale
(CRS). Banker et al. [8] in 1984 extended the pioneering work [9] and proposed a model
conventionally called the Banker-Chames-Cooper (BCC) model to measure the relative
efficiency under the assumption of variable returns to scale (VRS). The data envelop-
ment analysis (DEA) is a non-parametric linear programming technique that considers
the weighted sum of outputs to the weighted sum of inputs when evaluating the relative
efficiency of a set of homogeneous DMUs. In the usual efficiency evaluation, it converts
a single input/output ratio to a multiple input/output ratio. This approach is regarded
as an effective multicriteria decision procedure and has been widely applied in various
disciplines. In recent years, there has been a widespread use of DEA in a variety of in-
dustries, including banking institutions [29], the insurance business [23], financial services
[30], education [35], supply chain management [20], crisis management [34], sustainability
[3], energy [18] and health-care services [28].

Sengupta [37] in 1992 used fuzzy sets in DEA for the first time. The DEA techniques
employing fuzzy theory may be grouped into four basic groups, according to Hatami-
Marbini et al. [22]: parametric approaches, possibility approaches, ranking approaches,
defuzzification approaches, and many additional approaches have been brought to fuzzy
DEA advancement. Emrouznejad et al. [16] in 2014 categorized the fuzzy DEA approaches
in six types: the tolerance technique, the a-level based approach, the fuzzy ranking ap-
proach, the possible approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy
set and reviewed the literature during the last 30 years. Zhou and Xu [42] in 2020 provides
a summary of the fuzzy data envelopment analysis research and its successful implemen-
tations. Several ways to dealing with inaccurate, ambiguous, partial, and/or missing data
in DEA have been proposed. To detect inaccurate input and output data, stochastic
approaches [12] and interval DEA models are widely utilised. There have also been var-
ious research articles published in DEA that make use of intuitionistic fuzzy sets [5, 21].
First time, Edalatpanah [13] in 2018 extended the DEA model in the context of single
value Neutrosophic number. For offering a solution to the efficiency of private institu-
tions. Kahraman et al. [27] in 2019 presented a hybrid algorithm based on a neutrosophic
analytic hierarchy process (AHP) and DEA. Abdelfattah [1] in 2019 proposed a suitable
approach for solving the DEA model in which all inputs and outputs are neutrosophic
number. Following that, several approaches to solving DEA models utilising neutrosophic
fuzzy sets are utilised [14, 15]. Mao et al. [31] in 2020 used single- valued neutrosophic sets
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(SVNSs) in DEA with undesirable output. Yang et al. [40] in 2020 used triangular single
valued neutrosophic number for measuring the hospital efficiency base on data envelop-
ment analysis. Abdelfattah [2] in 2021 developed the parametric approach in neutrosophic
data envelopment analysis and measured the efficiency of the regional hospitals in Tunisia
using parametric neutrosophic data envelopment analysis.

We noticed a few research gaps in this exciting field. SFSs are a generalisation and ex-
tension of Picture Fuzzy Sets that define a membership function on a spherical surface and
assign the parameters of that membership function independently over a larger domain,
which has not been utilised in DEA with trapezoidal inputs and outputs. Trapezoidal
fuzzy numbers are the most acceptable form of a fuzzy number because it covers more
ambiguity than other fuzzy numbers. The acceptability area of SF'TrNs provides better
information assessment flexibility as a consequence of combining the benefits of SF'Ss with
trapezoidal fuzzy numbers. Also, for SFSs, the situation of uncertain decision-making
evaluations has not been considered. In this research, a novel efficient solution strategy
is provided for solving Spherical Fuzzy DEA models in which all inputs and outputs are
spherical trapezoidal fuzzy numbers (STrFNs) and the reference set or peer group for in-
efficient DMUs is defined. We offered an example to show the method’s applicability and
validity.

Section (2) discusses some advanced knowledge, concepts, and arithmetic operations
on SFs and STrFNs. In section (3), we create the previously proposed DEA model in
spherical fuzzy environment. In section (4), offer a strategy for solving it. Section (5)
presented a numerical illustration for the proposed model. Section (6) concludes with
findings and future directions.

2. Preliminary

Definition 1 ([19]). Let U be a universe. A spherical fuzzy set X over U is defined by
)?:{<x;¢wa‘70x7wm> 31’€U}, (1)

where ¢g, pr and Y, are called membership function, non-membership function and hesi-
tancy function, respectively. They are respectively defined by

Gy Py Yz U = [07 1]7
such that 0 < ¢2 + @2 + 2 < 1.

Definition 2 ([11]). A Spherical Trapezoidal Fuzzy Numbers (STrFNs) is denoted by
X = <xL,a:M1,xM2,mU;¢x,g0x,wx>, where the three membership functions for the truth,
falsity, and indeterminacy of x can be defined as follows:

¢ .I'—QS‘L '
i gp e i @ e et e,

. M, Mo
r(z) = x(?x_,x if xe[z™, ™ ©)
m@w if  xe a2l

0, otherwise,
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M L
(2" — x4 (x — %)y if oe el aM)

M — gL ’
@=L s )
L) = U M.
¥ —x+ (z—x")p,
"IIU*"L'MQ za f $€[‘TM27:UU]’

\ 1, otherwise,

e — x4 (z — 2P )y,

if x €[zt 2M,

M1 — gL ’
(1 if x € [xM Mz
v(r) = 2V o4 (z — mM2>'¢a: . (4)
pem—T ,if  w e [2M2 Y],
1, otherwise,

where 0 < 7(z)2 + u(z)> +v(z)2 <1, Ve X.

Definition 3 ([11]). Suppose X; = (xk M xMZ,:v?;qui,cpxi,%i), fori=1,2,--- n are

R Rt A et )

n STrFNs. Then the arithmetic relations are defined as
ST AT My | My My M 1
(1) X1®Xz = (aytay, @ oy ' @y hay o] 4235 (9, 6, =67, 05,) 7, o Pas (1=
gg)wgl + (1 - ¢§‘1)1/}:)232 - ¢31¢§2]§>
A s My My Ms M 1
(i1) X1—X1 = (a7 —xf 2" =372, 1) j_afz ta —ad; ( ?;1-1-(25?;2—(25?;1(2532)27%51%52, [(1-
gbg‘z)d}gl + (1 - 21) 2‘2 - ¢§1¢3’2]§>

AN v My M Moy M- 1
(Z/I’Z) Xl ® Xl = <$%.’E%,ﬂf1 1$2 1’$1 23:2 27$g]x2U;¢11¢x27(80§1 + 9032 - 90319032)27 [(]‘ -

1
w2 0%, + (1= 92 03, — ¥3,93,]7).

M M: 1 1
. T 19 1 > 1 19 - - @y IR IR - Y - — VY T Yy ) .
g AR, < {PaE A et A (- (1= 2 h e 0= 200 = (1= 62, =02 1. 2> 0
1= )\U)\M2)\M1)\L.1_ 1 — &2 AE A 12 ) — (1 — 2 — 2 AT A< 0
< ‘Tl ’ xl ? xl ? xl ? ( < ¢x1) )2 ? SO:E17 [( (ba:l) ( ¢11 wwl) ]2>7 < °

n e n n n n n ) 1/2
(v) Y NiXi = Qi )‘i%’L’ Diet Aiszla die1 Aiazf‘@, di1 Aﬂg; (1_Hi:1(1—¢§i)/\’> )

n . n v n N\ 1/2
[Ty ‘P:/c\ﬁv <Hi:1(1 - (Zbé%?i))\l —[le, (1= ¢32ci - w%»&) ), YA >0.

Definition 4. The a—cut, 5—cut and yv—cut for a STrFN X = <;cL, aMi Mo pU. g Oy Va),
can be defined as R
X(Oéﬁﬁ) — {g; : ¢x > o, P < 671/} < 7}7 (5)

where 0 < a <@g, 0, < B <1 and 9, < v < 1.

Using definition (3) and equation (5) , the lower limits L(«), L(3) and L(v), and upper
limits U(«), U(B) and U(y) of «, 5 and 7-level cut for STrFN are defined as
M — g

P

L
), oV 2V —z
Y

—ol—,

Mo

Ko = [Lg(),Ug(a)] = [o" +af )],
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(6 B gom).%'L + (1 — B)le (6 B (Pm)xU + (1 B 5)'@M2}

X = L5(8),Uz(8) = |

11—, ’ 11—,
~ — Yy L 1-— My — Yy v 1— Mz
R, = [Lo(r), Us ()] = [(7 0 )xl jw(x v)w 7 (v =1 )xl _er}(x v)x }
then N o N~
X(a”B”Y) = (XaaXﬂvXW)' (6)

Definition 5. Let X and Y are two STrFNs. The arithmatic relation for (o, B,7)-cut of
the STrFNs can be defined as

(i) Rp+ T = [Lx ), Ug®)] + [Le @), Up )] = [Lx) + L (), Ug () + Up ()]

where p =« or B or .

Remark 1. Any real number a € R may be written as a spherical triangular fuzzy number
a=(a,a,a,a;1,0,0).

3. Spherical Fuzzy Data Envelopment Analysis (SF-DEA)

Suppose that there are n decision making units (DMUs) each having m inputs and
r outputs as represented by the vectors x € R™ and y € R’, respectively. We define
the input matrix X as X = [z1, - ,2zp] € R™ ", and the output matrix ¥ as ¥ =
[y, -,y € R, x; € R™, Vi=12---m, y € R, Vk=123--,rand
assume that X > 0 and Y > 0. Charnes et al. [9] developed this model for measuring the
efficiency of DMU,, (0 =1,2,3,---,n), that is,

T
_1Uu
max 0 — Zk;;l kyko’
U, V5 Zz‘:l ViZio
T
—1 UkYkj .
%§17j21727"‘n7 (7)
D=1 Viij
Ug 207 k:1727 T
Vi 207 Z:1727 , M,

subject to
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which is equivalent to the linear programming(LP,) problem, i.e,

max 0 = Z UL Ykos

UL, Vg —1

m
subject to Zvixio =1, (8)
i=1

T m
Zukykjgzleljv j:1)27"'n)
k=1 i=1

uk‘zov k‘:1,2,"',7",
v >0, i=1,2,---,m,

which is called CCR model.

If any of the observed data for inputs and/or outputs in this model are inaccurate, unclear,
or ambiguous, then the efficiency score of the DM Uo will be inaccurate. Let us assume
that inputs and outputs are STrFNs while the variables uj and v; are real numbers; thus,
(a, B,7v)—cut approach of the CCR model will be written as follows:

max §@87) — Zukyk (a,ﬂ’y

Uk, Vi
m

subject to Zvi@(o‘ﬁﬁ) = 1(@B7) 9)
i=1

Zukyk ’57<va BN j=1,2-n

ukZO, k::1,2,---,1",
v 20, 1=1,2,---,m,
— M M- M-
where Tij = <x167 l’l] ! ) xlj 27 1]7 (z)xm ) 909[:” ) ¢I,J> and yk] <yk]7 ykjl ) yk] ) y]gjv ¢yk]'7 Spykj ) wyk]‘>
fori=1,2,3---,n j=123,-,m k=123, ,rand 1= (1,1,1,1;1,0,0) are
the STrFNs and the efficiency score is lies between 0 and 1.
That implies

max (7)) = Zw([ e ng;(a)},[Lg,;(BLUm(ﬁ)} (10)

Uk, Vi

[Lgk:(’v), Ug,;(v)]) ,
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- ([bl(a» Ur(a)], [ L3(8), Uz(8)], [L4(), Um)]) ,

S ([ (@) U )] [ 24 (9. Uy 8], [Eas (00 U ()]
k=1

i=1
j=1,2,--n,
and ugp >0, k=1,2,--- 1,
v; >0, i=1,2,---,m

Using definition (5), we have

0177 = ([Z“k% i%Um(aﬂ oy L (8),
k=1 k=1
ZukUﬁ(ﬁ)]vZuk [LZ,T,;(V)’ZWU@;(’Y)]>7
k=1 k=1 k=1
s.t ([ZUzL:po(O‘)7zviUz (a)}7 ZUZLf\(ﬁ)azviUxm(/B)] (11)
=1 =1 =1 =1
(YL m»iw%(v)}) (11, 11,1, 1, 1))
=1 =1
<[Zr:ukLyk (a),iukUy@(a)],[ y Zuk yk] }
k=1 k=1 k=1
| L (), 3wl (3)]) - ([ viLa (@), Y vl (@),
k=1 k=1 i=1 =1
| il (B Y vl (B)|. [ Y vili; (1), Y vl <w>}> <0,
i=1 i=1 i=1 =1
1=12,---n,
and up >0, k=1,2, STy
v; >0, i=1,2,---,m,

which is the spherical fuzzy DEA model with (a, 8,7) — cut approach. The SF-DEA model
converted into three pair of DEA models to evaluate the lower and upper bounds of the
efficiency score in (o, 3,7) — cut approach. The mathematical model for a«— cut approach
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is defined as

a*
07" =

Qo

U

where t; = inf(d)mij, ¢yk]~)7

inf
a€l0,t1]

= sup
a€l0,t1]

9% = IaXy,, v, ZZ:l ukLm(a),
st Y viUs (o) =1,
> k1 kL (@) = 352 il (@)
> k1 WU (@) = 25325 viLig; (@)
j=1,2,n
up, >0, k=1,2,--- .1,

Uizov 7::1,2,"'7771,

0?] = IaXy, v, Zk 1 Uk yko( )
st Yt vilay (@) = 1,
> k=1 kL (@) = 352 il (@)
> k=1 wkUg; (@) = 3235 viLiz; (@)
j=12---n
up, >0, k=1,2,---,n

<
<

UiZO, i:1a27"'7m’

\

Vi, j k.

<0
<0,

0,
0,

1166

(12)

Similarly, The mathematical model for f—cut and ~-cut approach are defined as fol-

lows.

0"

02"

= inf
5€[t271]

= sup
ﬁe[t%l]

'95 = Maxy, o, Z;zl UkLm(B)a
s.t Zz 1 U’LUJ%O (ﬁ) = 1’

]—1,2,"'7’&,
Uk207 k:1,2,"',’l“,

Uz’ZO, i:1727"'7m

> ke 1 Uk L (B) — Z;nﬂfom”(ﬁ) <0
2 k=1 wkUg; (B) = 225 vilg;(B) < 0
J=12-
up >0, k=1,2,---,r,
v; >0, 1=1,2,---,m,
(0 = maxy, o, g wlps(B),
st > iy vilgr, (B) =1,
>kt WL (B) = 220 vill(B) < 0
Zk 1 urU, i (B) - Zm 1 UzLx” (B) <0,

(14)



V. N. Mishra et al. / Eur. J. Pure Appl. Math, 15 (3) (2022), 1158-1179

and

VE
0, =

TE
0 =

inf
v€Elts,1]

sup
ye [t3,1}

0] = maxy, o, Yp_q ULy (7).
st Yo vilUs(v) =1,
>kt wr L (7) = 307 il ()
> k=1 kUg (7) = 220 vilg; ()
j — 17 27 --en,
up >0, k=1,2,---,r,
v; >0, 1=1,2,--- ,m.

<0,
<0,

0 = maxy, o, >op_q kU (),
st Yoy viLg () = 1,
> k=1 Wk Lg (7) = 3232 il (7)
2 k=1 wkUgi; (7) — 2232 vl (7)
j=1,2,---n,
up >0, k=1,2,--- .7,
v; >0, i=1,2---.m,

<0,
<0,

where ty = sup(cpxij7 gpykj), Vi, j, k and t3 = sup(wxij,zﬁykj), Vi, g,k
The efficiency score in *a—cut, B—cut and y—cut approach must be lies in the optimal
interval [09*,02*],1057,00 ] and [07*,67,"] respectively.

1167

(17)

Theorem 1. The lower bound of the optimal interval in (o, B,7)- cut are equal, that is

_ nB* _ gy
¢r=0, =6]".

(18)

Proof. Since the («, 3, 7)- cut for a SFTrN X = (xl oM M2 2U: ¢ 0p, 1) is defined
in equation (6), we have

(a,8,7)—(

It follows that

fm K5 ([L;;(owg(o)}, Le().Ug(D)], |L£(1),

= (I, 2", o, 2", [2%, 211

a—0

lim, 07 = Jim 07 = lim 6] .
*>

y—1

03+ = 00" = 07",
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4. Method for Solving SF-DEA model

Let us consider the inputs and outputs of the DMUs are the STrFNs . The following
steps can be used to calculate the efficiency score of the DMUs.

Step 2: Transform the DEA model into the SF-DEA model using the («, /3, )-cut technique,
as shown in equation (9) & (10).

Step 2: Convert three pairs of crisp DEA models as shown in the equation (12) & (13),
equation (14) & (15), and equation (16) & (17).

Step 3: Solve this crisp DEA model and find the optimal interval [03*, 65"], [9€*, 95*] and
07", 92?] for a-cut, S—cut and y-cut respectively.

Step 4: The largest optimal interval [67,0;;] for each DMU was computed by taking the
union of the optimal intervals and ranking all DMUs based on the mean efficiency
score of each DMUs. That is

[03,65] = [037, 05 U 0], 071U 07,677, (19)
07 + 0*U

. (20)

Mean efficiency(0) =

The solution method for the SF-DEA model is depicted in the flow chart shown in Figure
(2).

Figure 2: Method of Solution for SF-DEA model

STrFNs Inputs
and Outputs

Collect inputs and outputs ——| Fuzzifier

Convert crisp (a; B, 7)—approach

DEA model

SF-DEA model

Solving

Optimal interval Union largest opti-

———— Mean Efficienc
for (a, 8,7)— cut mal interval i/
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5. Numerical Example

1169

Let us consider 12 DMUs with inputs and outputs are STrFNs, shown in Table (1)
and Table (2). The efficiency score for each DMU was evaluated by proceeding with the

above technique given in Section (4).

Table 1: Spherical fuzzy Inputs data

DMU Input 1 Input 2 Input 2
D1 (11,15,18,25;0.8,0.3,0.4) (31, 35,40,50;0.5,0.4,0.6) (12,14,19,21;0.7,0.1,0.3)
D2 <6,7, 11, 13;0.7,0.5,0.5) <12, 18,25,30;0.5,0.2,0.4> (10, 14,16,19;0.4,0.3,0.6)
D3 (17,21,24, 28;0.9,0.2,0.3) <48,50,55,60;0.8,0.5,0.3> (30,35,38,42;0.5,0.2,0.4>
D4 (11,15,17,24;0.5,0.2,0.5) <22,25,27, 35;0.8,0.2,0.4> (8,14, 18,23;0.7,0.5,0.3>
D5 (22,25,27,31;0.8,0.4,0.1) (34,38,41,46;0.6,0.1,0.5) (24,30, 32,38;0.4,0.5,0.2)
D6 (13,19,24,28;0.6,0.2,0.5) (36,41,47,51;0.4,0.5,0.5) (12,13,17,22;0.9,0.1,0.2)
D7 (20,24,27,32;0.4,0.3,0.4) (41,44,50,52;0.6,0.4,0.3) (3,7,11,15;0.8,0.2,0.4)
D8 (11,12,15,18;0.7,0.4,0.6)  (32,34,37,40;0.7,0.4,0.4) (16,19,21,24;0.7,0.4,0.1)
D9 (21,24,31,35;0.9,0.3,0.3) (41,45,47,55;0.5,0.4,0.4) (4,7,11,17;0.4,0.5,0.3)
D10 (17,18,21,24;0.9,0.3,0.1) <51,58,61,65;0.9,0.3,0.2> (21,24, 26, 30;0.8,0.2,0.4)
D11 <9, 12, 18,22;0.6,0.3,0.5> <13, 18,23, 27;0.770.3,0.3> (31,34,37,45;0.7,0.3,0.3>
D12 (18,24,27,32;0.4,0.4,0.2) <51,54, 58, 63,0.6,0.2,0.5> (32,36,39,41;0.5,0.1,0.4>
Table 2: Spherical fuzzy Outputs data
DMU Output 1 Output 2

D1 <118, 123,125,135;0.7,0.1, 0.4> (134, 137,141, 148;0.9,0.2, 0.3>

D2 <134, 138, 140, 144; 0.4, 0.3, 0.3> (182,186,189, 192;0.5,0.3,0.2)

D3 (205,209, 215,220;0.6,0.1,0.3)  (141,145,147,150;0.7,0.5,0.4)

D4 (123,127,132,134;0.8,0.1,0.2)  (128,131,134,138;0.4,0.7,0.3)

D5 (194,196, 200, 215;0.6,0.2,0.5) (184,186,190, 203;0.8,0.5,0.2)

D6 (140,145,147,152;0.5,0.2,0.5) (94,106,111, 115;0.6,0.4,0.1)

D7 (112,118,126,131;0.7,0.4,0.5) (170,176,181, 185;0.4,0.7,0.2)

DS <14l, 146,153, 155; 0.8, 0.5, 0.3> (129,136,141,144;0.7,0.2,0.4)

D9 (67,78,82,88;0.6,0.5,0.2) (2117218,222,225;0.5,0.3,0.6>

D10 <161, 167,178,181;0.4,0.6, 0.5> (1417 148,152,155;0.7,0.5,0.1)

D11 (117,126,129,137;0.8,0.5,0.3)  (125,128,134,138;0.6,0.1,0.3)

D12 (136,139,143,147;0.7,0.6,0.2)  (185,188,194,198;0.4, 0.6, 0.6)

The SF-DEA model for DMU D1 can be written as

max 6 = (118,123,125,135;0.7,0.1,0.4)u; + (134,137,141, 148;0.9, 0.2, 0.3)uy,
u,v

s.t (11,15, 18,25;0.8,0.3,0.4)v; + (31, 35, 40, 50; 0.5, 0.4, 0.6)vs

+(12,14,19,21;0.7,0.1,0.3)vs = 1,
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(118,123,125,135;0.7,0.1,0.4)uy + (134,137,141, 148;0.29, 0.2, 0.3)us
< (11,15, 18,25;0.8,0.3,0.4)v; + (31,35, 40, 50; 0.5, 0.4, 0.6)vo
+(12,14,19,21;0.7,0.1,0.3)vs,
(134,138,140, 144; 0.4, 0.3,0.3)u; + (182,186,189, 192;0.5,0.3, 0.2)uy
< (6,7,11,13;0.7,0.5,0.5)v1 + (12,18,25,30;0.5,0.2,0.4)vs
+ (10,14, 16, 19; 0.4, 0.3, 0.6)vs,

(136,139, 143,147;0.7,0.6, 0.2)uy + (185,188,194, 198;0.4, 0.6, 0.6)us
< (18,24,27,32;0.4,0.4,0.2)v; + (51,54, 58,63;0.6,0.2,0.5)v;
+(32,36,39,41;0.5,0.1,0.4)vs,

and w1, u2,v1,v2,v3 > 0.

Step 1 Using equation (11), the («a, 3, v)—cut approach of the SF-DEA model for the DMU
D1 can be written as follows:

20 R1s" 10«
B — [(118 —) (134 —) , ( 35— —)
g < tor)i Tt to9/)™ 0.7

(148_La> } {(5—0.1)118+(1—6)123u1

0.9 0.9
L (B02)1344 (19187 (8- 01185+ (1= §)125
0.8 ’ 0.9
L (B-02)148+ (1 ,8)141u2] [(7 0418+ (1-7)123
0.8 ’ 0.6
(y—0.3)134 4+ (1 —9)137 (v — 0.4)135+ (1 — 7)125
* 0.7 2 0.6 “
L (0384 (19141 }
0.7
st( 11+—U1+<31+—)02+( >v3,<25—g%)
(50_%) (21_7> } [ﬂ 0.3) 114—(1—5)151)1
L (B04BLE (13 (501124 (1 — )14
0.6 2+ 0.9 s
(5 —0.3)25+ (1= @)18 (8= 04)50+ (1= #)40
0.7 i 0.6 2
(B 0.1)2;; 1- ﬂ)1903}7 [(/B - 0.4)1ég a-ps
LBo06BLE B3 (B-03)12+ (-

0.4 0.7
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0.6 Ul 04
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[(7 —0.2)136+ (1-9)139 (7= 0.6)185+ (1 —7)188

0.8 ! 0.4 Y2,
(7 — 0.2)147 + (1 — 7)143 (7 — 0.6)198 + (1 — ~)194
03 U1+ 04 “2]

6 3o 4o Sa
< [ [(a8+ 57 )u+ (155 v+ (24 55 (32— )
= (K o)t Bl gt (324 g )ve (32 -5 J»n
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and w1, u9,v1,v9,v3 > 0,

where o € [Oatl]a 6 € [tQa 1] and7 € [t3a 1}7 t1 = inf(qsxija qbykj)v ty = Sup(@xija Spykj)7 t3 =
SUP(Qﬁxi.ijykj)v v i?j? k
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Step 2 The above model was transformed into three pair of crisp DEA models.
(0% = maxuk’ . (118 + %)ul + (134 + 3—°‘)u
st (25— I8 )or+ (50 - 12 Jup + (21— 22 )uy = 1,
(118+ %)ul + (1344 25 Jus — (25— 52 )or — (50
— 42 oy — (21 - 2 Jus <0,

(136 + 38 Yur + (1854 39 Jus — (32— 39 )ur — (63
o] B (0 s
(135 - 02 s + (14 fa)us — (114 88 o — (31

+2)ee - (12+ W)Ug <0,

(147 — 2 )ur + (198 - 45 )uz — (18+ 85 )or - (51
+35)vs — (324 3% Jus <0,

L and w1, u9,v1,vs,v3 > 0,

(

05 =maxy. (135 38w+ (148 - 19w,
st (11+8)o+ (314 8)o+ (124 2o =1,
118+ 2% Ju + (134 + 35 Juz — (25— 52 )vr — (50
1()0;)1}2_ (2 20‘)vg<0

(136 + 3% Jus + (185 + 34 Juz — (32— 3 ) w1 — (63
0% = sup 5o 41 — <0,
v a€[0,0.4] o 6) ( )US

(135 - 02 s + (148 — 35 )ur - (114 83 )u - (31

+%)’l}2 — <12 + %)’03 <0,

(147 19 Yur + (198 = 39 Jus — (18 + 83 )or — (51
+%)w (324 88w <0,

and w1, us2,v1,v2,v3 > 0,

Similarly, other two pair of DEA models for g-cut and ~-cut determined using equa-
tion (14) & (15) and equation (16) & (17).
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Step 3 Solving the above three pair of DEA model using the value of a € [0,0.4], 5 € [0.7, 1]
and v € [0.6,1] and obtain the optimal interval for efficiency score of the DMU D1.
Similarly, the optimal interval for all DMUs were calculated as shown in Table (3).

Table 3: Efficiency Score in «, 8,y—cut

DMU 0%, 05" 07, 07 [07*,67,"]
D1 [0.327213951, 0.544156783] 0.327213951, 0.458144777 0.327213951, 0.487868248
D2 0.482615392, 0.802766814 0.482615392, 0.636611817 0.482615392, 0.682741675
D3 0.331550137, 0.526182357 0.331550137, 0.430341206 0.331550137, 0.458495452
D4 0.352868079, 0.606499314 0.352868079, 0.516346142 0.352868079, 0.568938001
D5 [0.353924801, 0.622102844] 0.353924801, 0.495217527 0.353924801, 0.533268136
D6 [0.373781071, 0.59695553] 0.373781071, 0.509640297 0.373781071, 0.547609621
D7 [0.410372628, 0.636753029 ] [ 0.410372628, 0.561771929 | 0.410372628, 0.600530298
D8 [0.388465032, 0.63146065 ] [ 0.388465032, 0.532694159 ] 0.388465032, 0.571762135
D9 [ 0.450806804, 0.808444737 | [ 0.450806804, 0.652290118] 0.450806804, 0.721735487
D10 [0‘349282411, 0.566211624] [ 0.349282411, 0.479628115 ] 0.349282411, 0.510998311
D11 [0.36111111, 0.643058285] [0.36111111, 0.523612246] [0.36111111, 0.559335959]
D12 [0.220904311, 0.344251309] [ 0.220904311, 0.281483055] [ 0.220904311, 0.29655302]

Step 4 The largest optimal interval for DMU D1 is obtained by using equation (19), that is,
union of the optimal interval for («, 3,)—cut. Similarly, the largest optimal interval
for other DMUs are obtained as shown in Table (4). The DMUs were compared by
taking mean of the largest optimal interval as show in Table (4) and Figure (3). The
DMUs have been ranked in the following order D2 > D9 > D7 > D8 > D11 >
D5 > D6 > D4 > D10 > D1 > D3 > D12. The DMU D2 is highly efficient then
other DMUs and D12 is the least efficient.

Table 4: Optimal Interval, Mean efficiency score and Ranking

DMU 07,057 Mean Ranking
D1 [0.327213951, 0.544156783]  0.435685367020560 10
D2 [ 0.482615392, 0.802766814] 0.642691102824787 1
D3 [ 0.331550137, 0.526182357]  0.428866246964638 11
D4 [ 0.352868079, 0.606499314]  0.479683696432378 8
D5 [0.353924801, 0.622102844]  0.488013822795279 6
D6 [0.373781071, 0.59695553]  0.485368300723181 7
D7 [0.410372628, 0.636753029 ]  0.523562828586664 3
D8 [0.388465032, 0.63146065 |  0.509962840919284 4
D9 [ 0.450806804, 0.808444737 ] 0.629625770540691 2
D10 [0.349282411, 0.566211624]  0.457747017566756 9
D11 [0.36111111, 0.643058285] 0.502084697510003 5
D12 [0.220904311, 0.344251309]  0.282577809805037 12

6. Conclusion

Spherical fuzzy sets (SFSs) are a relatively new academic topic rapidly growing in pop-
ularity and being used to a wide range of decision-making concerns, particularly mathe-
matical programming problems. This study focuses on DEA models with spherical fuzzy
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Figure 3: Mean Efficiency score in SF-DEA
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inputs and outputs. We introduce the Spherical fuzzy DEA (SF-DEA) models and offer a
unique approach to solve them.The SF-DEA model transformed three pairs of crisp DEA
models to determine the optimal interval in which the («, 3, 7)-cut efficiency lies. The
DMUs were ranked based on the mean efficiency score, with the largest optimal interval
determined by combining the (a, 3, 7)-cut optimal intervals. Finally, we offer an example
to demonstrate the method’s applicability and validity.

Future research should use this innovative technique to solve additional DEA mod-
els, including the BCC and SBM models, and provides encouraging results. In addition,
This technique also helps to solve the spherical fuzzy linear programming problem, multi-
objective LP problem, and so on. The model may be considered efficient and practical
based on the given findings. The use of our technique in a real-world application should
be the focus of future research.
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