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Abstract. In this work, we demonstrate that (i) if T is a class p-wA(s,t) operator and T'(s,t)
is quasinormal (resp., normal), then T is also quasinormal (resp., normal) (ii) If 7" and T are
class p-wA(s,t) operators, then T is normal; (iii) the normal portions of quasisimilar class p-
wA(s,t) operators are unitarily equivalent; and (iv) Fuglede-Putnam type theorem holds for a
class p-wA(s,t) operator T for 0 < s,t,s +¢t =1and 0 < p < 1if T satisfies a kernel condition
ker(T') C ker(T™).
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1. Introduction

On a complex Hilbert space H, let B(#H) be the algebra of all bounded linear opera-
tors. Aluthge [2] investigated the p-hyponormal operator 7', which is defined as (T*7T")P >
(TT*)P with 0 < p < 1 using the Furuta inequality [14]. When p = 1, T is said to be
hyponormal. As a result, p-hyponormality is a broadening of hyponormality. Following
[2], several authors are looking towards novel hyponormal operator generalizations.

It is known that p-hyponormal operators have many interesting properties as hyponor-
mal operators, for example, Putnam’s inequality, Fuglede-Putnam type theorem, Bishop’s
property (), Weyl’s theorem and polaroid. Let T' € B(H) and |T'| = (T*T)%. By taking
UlT|z = Tx for x € H and Uz = 0 for x € ker|T|, T has a unique polar decomposition
T = U|T| with condition ker U = ker |T'|. We say that T' = U|T| is the polar decompo-
sition of 7. In [2], Aluthge extended the class of hyponormal operators by introducing
p-hyponormal operators and obtained some properties with the help of the transformation
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T4 = |T]%U]T|%, which now known as the Aluthge transform. The introduction of
these operators by Aluthge has inspired many researchers not only to expose some impor-
tant properties of p-hyponormal operators but also to introduce the number of extensions
([1, 7,8, 13]).

The Aluthge transform, and more broadly, the generalized Aluthge transform defined
as T(s,t) = |T|°U|T|" with s,t > 0, have proven to be useful tools in this attempt. The

generalized Aluthge transform is used to analyze class p-wA(s,t) operators in this article.

Definition 1. Let T = U|T| be the polar decomposition of an operator T € B(H). Then
the generalized Aluthge transform T (s,t) of T is defined as follows:

T(s,t) = |T|*UIT|".

Moreover, for each nonnegative integer n, the n-th generalized Aluthge transform A™(T'(s,t))
of T(s,t) is defined as follows:

AM(T(s,t)) = A(A" (T (s,1))), A%(T(s,t)) = T(s, ).
Definition 2. Let 0 < s,t, and 0 < p < 1. An operator T is said to be a class

t
(|7 [T T*|") 5+ > [T

and "
[ T|*P > (|T|°|T*[*|T|*) 5+

(ii) p-A(s,t) if (|T*[{|T|?|T*[t)*F > | TP,
(iii) p-A if |T2P > |T|%.
(iv) (s,p)-w-hyponormal if |T(s, s)|P > [T > |(T(s, s)*|P.

It is known that p-hyponormal operators and log-hyponormal operators are class 1-
wA(s,t) for any 0 < s,t. Class p-wA(s,s) is called class (s,p)-w-hyponormal, class 1-
wA(1,1) is called class A and class 1—wA(%, %) is called w-hyponormal [13, 15, 18, 19, 33].
Hence class p-wA(s, t) operator is a generalization of class (s, p)-w-hyponormal, class A and
w-hyponormal operators. C. Yang and J. Yuan [34-36] studied class wF'(p, r,q) operator

T, ie.,

2(p+r)

1
(|T*"| TP\ T*[") o > |T*]
and

_1
‘TIQ(erT’)(l—%) > (’T‘p’T*’%‘T’p)l 4

where 0 < p,0 < 7,1 < ¢q. If we take small p; such that 0 < p; < pq—tr and p; < w,
then T is class p1-wA(p,r). Hence class p1-wA(p,r) is a generalization of class wF(p,r, q).
We will use this property frequently.
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It is known that 7' = U|T| is class p-wA(s, t) if and only if
2t 2s
T (s, 6)|+ > TP, |T[*P > |T(s,t)*|+

by [26]. Hence
2rp 27 |2
[T(s,t)[s+ > |T|77 > [T(s, )| =+

and T'(s,t) is rp-hyponormal for all » € (0, min{s, t}].

The following is a breakdown of the paper’s structure: In section 2, we prove that
if T is a class of p-wA(s,t) operators and its Aluthge transform 7'(s,t) is quasinormal
(respectively, normal), then T is also quasinormal (resp., normal). The normal parts of
quasisimilar class p-wA(s,t) operators are unitarily equivalent in section 3. The major
goal of Section 4 is to demonstrate that the Fuglede-Putnam theorem holds for a class
p-wA(s,t) operator T with 0 < s,¢,s+t =1and 0 < p < 1if T fulfills the kernel condition
ker(T") C ker(T™).

2. Quasinormality

Let T'= U|T| be the polar decomposition of T' € B(#) . T is said to be quasinormal
if |T\U = U|T|, or equivalently, TT*T = T*TT. S. M. Patel, K. Tanahashi, A. Uchiyama
and M. Yanagida [27] proved that if T" is class A(s,t) and T'(s,t) is quasinormal, then T is
quasinormal and T' = T'(s,t) if s + ¢t = 1. The following is a generalization of this result.

Theorem 1. Let T be a class p-wA(s,t) operator with the polar decomposition T = U|T|.
If T(s,t) = |T|SU|T|! is quasinormal, then T is also quasinormal. Hence T coincides with
its generalized Aluthge transform T(s,t).

Proof. Since T is a class p-A(s,t) operator,
2rp 2r | 22
[T (s, t) |57 = [T|77 = |(T(s,1))*|++ (1)

for all » € (0, min{s, t}) by [19, Theorem 3] and Lowner-Heinz inequality. Then Douglas’s
theorem [11] implies

ran(T'(s,t)) = ran((|T'(s, t))*|) C ran(|T|) = ran(|T(s,t)])

where M denotes the norm closure of M . Let T(s,t) = W|T(s,t)| be the polar decom-
position of T'(s,t) . Then E := W*W =U*U > WW* =: F. Put

\@@m%h:(ﬁgywz(fl%>

on H =ran(T(s,t)) ® ker((T'(s,t))*).
Then X is injective and has a dense range. Since T'(s,t) is quasinormal, W commutes
with |T'(s,t)| and

2rp 2rp 2rp
|T(s,t)]sFt = W*W|T'(s,t)|s+¢ = W*|T(s,t)|s+W
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2r 2r
> WHTIPPW > W*|(T(s,)) |55 W = |T(s, )|+

Hence - -
T (s,t)|7 = W*|T (s, t)| 57 W = W*T|*W,

and

(T (s, 0))[55 = WIT(s,6)| FiW* = WW*|T(s, )| 5 WW* (2)

C ) 3)

= WW TP = ( Xy

1 0
0 0

2rp X2rp , X2rp
.0 = (7 Qo 2= (7 ). @

where ran(Y) = ran(Z) = ran(|T|) © ran(T(s,t)) = ker((T'(s, t))*) © ker(T).
Since W commutes with |T'(s,t)] ,

Wi Wa /(X 0\ [ X 0 Wy W

0 0 0 Y ) \0 Y 0 0 '
So W1 X = XW; and WaY = XW, , and hence ran(WW;) and ran(Ws) are reducing
subspaces of X . Since W*W|T'(s,t)| = |T(s,t)| , we have W;W; =1 and

Since WW* = ( >, (1), (2) and (3) imply that \T(s,t)ﬁ% and |T|*P are of the

forms

XF =wyw xk =wrxtwy,
YF = WiWoYh = Wi XPWy,

for k=1,2,---.
Put U — ( U Unz ) . Then T(s,t) = |T|*U|T|* = W|T(s, )| implies
Us1 Uz
X5 0 Uyr Uis Xt 0 (W W, Xstt 0
0 VA Usr Uso 0 YA o 0 0 0 ystt )¢
Hence
XU X =W X5 = XS, XY,
XSU12Zt — W2Y8+t — XS+tW2
and

X5(Up — W)X =0,
X5(UeZ" — X'Ws) = 0.
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Since X is injective and has a dense range, U;; = Wi is isometry and UpZ! = XtWs.
Then
Ul — ( U UL + U5Ua1 U Upe + U Uz )
UUn +UsUa UfUra 4 UsyUag

onH =ran(T(s,t))dker((T(s,t))*) is the orthogonal projection onto ran(|T'|) D ran(T(s,t)),
we have Us; = 0 and

1 0
U'U = § . .
Since U122t = XtW, , we have
7% > Z'UH U 2" = Wi X2 Wy = Y,

and
Z¥P > (ZUHULZY) T = (WiXtWa)T = Y2P > 727

by Lowner-Heinz inequality and (4). Hence
(Z'U3y U1 2" = 277 = Y27,
so Z=Y and |T(s,t)| = |T|**" . Since

7% = Z2'UU1 2"
< ZU U2t + ZtUS Uy 2t < 7%

ZW3, U9 Zt = 0 and UxpeZ' = 0 . This implies ran(U3,) C ker(Z). Since ran(UyUya +
Us,Uzz) C ran(Z) and UsyUso < UfyUia + UsyUas , we have ran(Us,) C ran(Z) . Hence
- [ W1 U
= (11 0
and

ran(U) C ran(T'(s,t)) C R(|T|) = ran(E).

Since W commutes with |[T'(s,t)| = |T|**!, W commutes with |T'| and

T)*(W = U)|T|" = WI|T]*|T|" = |T|*U|T|*
= W|T(s,t)| — T(s,t) = 0.

Hence E(W — U)E =0 and
U=UEFE=FUE=FEWE=WE=W.

Thus U = W commutes with |T'| and T' is quasinormal.

Corollary 1. Let T = U|T| be a class p-wA(s,t) operator. If T(s,t) = |T|*U|T|* is
normal, then T is also normal.
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Proof. Since T'(s,t) is normal, T is quasinormal by Theorem 1. Hence T'(s,t) =
IT|*U|T|* = U|T|**t and (T'(s,t))* = |T|*T*U*. Hence

TP = |T(s,1)|* = [(T(s, 1)) = [T* .
This implies |T'| = |T*| and T is normal.
Theorem 2. [25] Let s1 >0, s >0, t1 > 0,t5 >0 and 0 < p < 1. If T belongs to class

p1-wA(s1,t1) for 0 < p1 < p and T* belongs to class pa-wA(sa,t2) for 0 < pas < p , then
T is normal.

To prove Theorem 2, we need the following results.

Lemma 1. (/21]) If T is class p-wA(s,t) and 0 < s < s1, 0 <t <t;,0<p; <p<1,
then T is class p1-wA(s1,t1).

Theorem 3 (Furuta theorem [14]). If A > B > 0, then for each r > 0,
T T l TJFJ
(i) (B2APB2)a > B¢ and
r4p . ro1
(ii) A« > (A2BPA?)a
hold for p >0 and ¢ > 1 with (1 +1r)qg>p+r.
Proposition 1. (/19]) Let A >0 and B > 0. If
B2AB? > B>  and A2BA? > A% (5)
then A = B.

Proof. [Proof of Theorem 2| Let r = max{si, s2,t1,t2} and let ¢ = min{p1, p2}.
Firstly, if " belongs to class p1-wA(s1, t1), then T belongs to class g-wA(r, r) by Lemma
1. Hence we have

(’T*|T’T|2T‘T*’T)% > ’T*|2rq and ’T‘2rq > (’T|T’T*|2T‘T’T)% (6)

Secondly, if 7™ belongs to class pe-wA(se,t2), then T belongs to class g-wA(r,r) by
Lemma 1. Hence we have

(T |T*P|T))2 = [T and [T**9 = (IT*V'| T |T7")* (7)

Therefore
’T*|T‘T|2r|T*‘r _ ’T*|4T and ’T|4r _ |T‘T|T*|2T’T|T
hold by (6) and (7), and then |T'| = |T*| by Proposition 1.

The following result is very important in the sequal
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Theorem 4. [17, Jensen’s Operator Inequality (JOI)] Suppose that f is a continuous
function defined on an interval I. Then f is operator convexr on an interval I containing
0 with f(0) <0 if and only if f(a*za) < a* f(x)a for every self-adjoint x with spectrum in
I and every contraction a.

Theorem 5. ([11]) Let A and B be bounded linear operators on a Hilbert space H. Then
the following are equivalent:

(i) ran(A) C ran(B);
(ii) AA* < N2BB* for some A > 0; and
(i) there exists a bounded linear operator C' on H so that A = BC.

Lemma 2. Let A, B and C be positive operators. Then the following assertions hold for
eachp >0, r €[0,1] and 0 < ¢ < 1:

rq

(i) If (B"/2APB"/2)537 > B and B > C, then (C"/2APCT/2)37 > O™,

(i) If A> B, B" > (BT/2CPBT/2)# and the condition

if lim Bl/an = 0 and lim A1/2xn exists,
n—00 n—00
then lim AY2z, = 0 for any sequence of vectors{x,} (8)
n—oo

hold, then AT® > (AT/2CPAT/2)p7r
Lemma 2 can be obtained as an application of the following results.

Theorem 6. ([11]) Let A and B be bounded linear operators on a Hilbert space H. Then
the following are equivalent:

(i) ran(A) C ran(B);
(ii) AA* < N2BB* for some A > 0; and
(iii) there exists a bounded linear operator C on H so that A = BC.
Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator C so that
(a) C|]? = inf{ : AA* < uBB};
(b) ker(A) = ker(C); and
(¢) ran(C) C ran(B*).

Theorem 7. ([16]) Let X and A be bounded linear operator on a Hilbert space H. We

suppose that A > 0 and || X|| < 1. If f is an operator monotone function defined on [0, c0),
then

X*f(A)X < f(X*AX).
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We remark that the condition (c) of Theorem 6 is equivalent to (¢): ran(C) C ran(B*).
Here we consider when the equality of (¢/) holds.

Lemma 3. (/33]) Let A and B be operators which satisfy (i), (ii) and (iii) of Theorem 6
and C be the operator which is given in (iii) and determined uniquely by (a), (b) and (c)
of Theorem 6. Then the following assertions are mutually equivalent:

(i) ran(C) = ran(B*).

(i) If lim A*z, = 0 and lim B*z, ezists, then lim B*z, = 0 for any sequence of
n—0o00 n—00 n—00

vectors {x,}.
We also prepare the following lemma in order to give a proof of Lemma 2.

Lemma 4. (/33]) Let S be a positive operator and 0 < q < 1. If li_>m Sz, = 0 and
n—oo

lim S9z, exists, then lim S%z, =0 for any sequence of vectors {x,}.
n—00 n—00

Proof. [Proof of Lemma 2] (i) The hypothesis B > C ensures then B* > C* for each
t € (0,1] by Lowner-Heinz theorem. By Theorem 6, there exists an operator X with
|| X <1 such that

SIS
Il

SIS
N+

B:iX = X*B1 = C*, (9)

Then we have

(CT/QApcr/Q)pTT _ (X*Br/QApBr/QX)ﬁ
X*(B"/2APB"/2)% X (by Theorem 7)
X*B"X (by the hypothesis)
= X*(B")’X > (X*B2B%X)? (by Theorem 4)
= (C2C2)7=C"" (by Equation (9)).

AV

(ii) The hypothesis A > B ensures A®* > B® for s € (0, 1] by Léwner-Heinz theorem. By
Theorem 6, there exists an operator X with || X || < 1 such that

ASPX = X*A%/? = B3/2, (10)
Then we have
X*(AT/QCPAT/Z)ﬁX < (X*AT/QCPAT/QX)ﬁ (by Theorem 7)
(Br/2CpBr/2)p%
< B" (by the hypothesis)

= (B")7=(X*A2A2X)? < X*A™X (by Theorem 4)

so that A™ > (A”/ZCPA”Q)ﬁ holds on ran(X). On the other hand, the hypothesis (8)
implies the following (11)

If lim B"%z, = 0and lim A"z, exists,
n—o0 n—oo
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then lim A™2z, = 0 for any sequence of vectors {z,}. (11)
n—oo

since lim B"/?z, =0 and lim A"/%z, exists, then

n—oo n—oo
lim B2z, = BU/2(lim B/?z,) = 0 and lim AY?z, = AY"/2(1lim A"%z,) ex-
n—o0 n—oo n—oo n—oo

ists, so that li_)m A2z, = 0 by (8), hence ILm A%z, = 0 by Lemma 4. (11) ensures
ran(X) = ran(A"/?) by Lemma 3, hence we have

ker((A™/2CPAT/2)5i7) = ker(AT/2CPAT/?)
D ker(A™/?) =ker(A") = ker(A7) = ker(X*),

so that A" = (A7/2CP A"/ Q)ﬁ = 0 holds on ker(X*). Consequently the proof is complete
since H = ran(X) @ ker(X™).

Lemma 5. (/26]) Let T = U|T| € B(H) be the polar decomposition of T. Then T is class
2t 2s
p-wA(s,t) if and only if |T(s,t)|ﬁ > |T|?" and |T|?*P > \(T(s,t))*\ﬁ,

Lemma 6. Let 0 < s,t,s+t<1and0<p<1. Let T € B(H) be class p-wA(s,t) and
let M an invariant subspace of T'. Then the restriction T'|s is also class p-wA(s,t).

S

Proof. Let T = (0 e

) on H = M @ M* and P the orthogonal projection onto

M. Let Ty :=TP = PTP = (ﬂl 8). Then

|To|** = (P|T)?P)" > P|T|*P for each 0 < t < 1
by Hansen’s inequality, and
|T*|? = TT* > TPT* = |T;
Hence
T is class p-A(s,t) < |T**" < (|T*|t]T|23|T*|t)s%
— |T 7 < (T3 [T T51) 7% (by Lemma 2)
— [ TE2 < (|TE ) To |2 | T D)+ (since |T3|t = |TETP = P|Ty|! for every 0 < t < 1).
Now B B
[To| = P|T|P = P|T|P = P|(T)*|P = |Tg]|.
Then by Theorem 3 it follows that
Tof**? = (|To|*|T5 || To|* )+
Therefore, T'| ¢ is class p-A(s,t) operator.

The following example shows that there exists a class p-wA(s,t) operator T" such that
T|am is quasinormal but M does not reduce T'.
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Example 1. Let T be a bilateral shift on (2(Z) defined by Te, = eny1 and M = \/ Cep,.
n>0
Then T is unitary and T|p is isometry. However, M does not reduce T.

Lemma 7. Let0 < s,t,s+t =1 and0 < p < 1. LetT € B(H) be class p-wA(s,t) operator,
let M be an invariant subspace for T and a reducing subspace for T(s,t) such that T (s,t)|m
the restriction of T'(s,t) to M is an injective normal operator, then Ty = T'(s,t)|m and

M reduces T.

Proof. Let

(T O (S B B n
T(s,t)(o A)’ T(O D) on H=MoM-—.

Since T is class p-wA(s,t) we have |T(s,t)[*? > |T|*"? > |(T(s,t))*|*"? for r € min{s, t}.
Let P be the orthogonal projection onto M. Then

[Tol = P|T(s,t)|P = P|T|P = P|(T(s,t))"|P = [Tg].
By Lowner-Heinz theorem we get
[To|*'? = P|T(s, t)|""P > P|T|*PP > P|(T(s, 1))"[*""P = | T [*'*.
Since |T|*T = T'(s,t)|T|®* and P|T|*P = |Ty|*, we deduce that
|To|*S = To|To|°.

We have T is an injective normal operator, then S = T'|y = To = T'(s, )| m, consequently

(1o B - 1
T-(O D) onH=MoM—.

Hence

% s TgTO T(SkB o 1
TT_(B*TO B*B+D*D) onH=Me&M™

So we can write

To|™ X
|T|"™? = <‘ ;;L Y) onH=MoM™*.

Since
PITP"|T|P" P = |Ty[*™,

then |Tp|?? = |Tp|*P + X X*, and thus X = 0.
It follows that |T'|"? = |To|™ @ Y2 implying |T'|?"? = |Tp|*"? © Y*. Consequently we get
B*B =0 it follows that B = 0 and hence M reduces 7.

The next lemma, is a simple consequence of the preceding one.
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Lemma 8. Let 0 < s,t,s+t=1and 0 <p < 1. Let T € B(H) be a class p-wA(s,t)
operator with ker(T') C ker(T*). Then T =T & Ty on H = H1 & Ha where 11 is normal,
ker(T) = {0} and T5 is pure class p-wA(s,t) i.e., T has no non-zero invariant subspace
M such that T pm is normal.

Lemma 9. Let 0 < s,t,s+t=1and0<p <1. Let T = U|T| € B(H) be class p-wA(s,t)
and ker(T) C ker(T*). Suppose T(s,t) = |T|°U|T|* be of the form N&T' on H = MOM*,
where N is a normal operator on M. Then T = N ® Ty and U = U1 @ Usy where 11 is
class p-wA(s,t) with ker(T1) C ker(T}) and N = Uy1|N| is the polar decomposition of N.

Proof. Since
[T (s, )['® > | TP > (T (s, 1))"[*

for r € min{s, t}, we have
|N|2’r’p D |T"2Tp > |T’27"p > |N|2rp D |T/*|27"p

by assumption. This implies that |T'| is of the form |N| @ L for some positive operator L.

Ui Ur2
Let U =
© <U21 Uso

H = M @ M-+, Then the definition T'(s,t) means
N 0\ (IN]® 0\ [Un U\ /(IN]' 0
0 7') \ 0 L) \Uy U 0 Lt

N = ‘N‘SU11|N|t; ’N|SU12Lt =0 and LsUgllN’t = 0.

> be 2 x 2 matrix representation of U with respect to the decomposition

Hence, we have

Since ker(T) C ker(T™),

ran(U) = ran(T) = ker(T*)* C ker(T)* = ran(|T]).

Let Nx =0 for z € M. Then z € ker(|T|) = ker(U), and
Un U2 (= Upix
v <U21 U22> <0> (U21$>

ker(N) C ker(Un) N ker(Ugl).

Hence

Let x € M. Then

U (3) _ <U”“””> € ran(|T]) = ran(|N| & L.

U21$

Hence
ran(Uy1) C ran(|N|), ran(Usz;) C ran(L).
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Similarly
ran(Uj2) C ran(|N|), ran(Usz) C ran(L).

Let Lz = 0 for x € M*. Then z € ker(|T|) = ker(U) and
0 o U125L' o
7 (2) = (o) =0

ker(L) C ker(Ulg) N ker(Ugg).
Let N = V|N| be the polar decomposition of N. Then

Hence

(VINI® = [N[*Up)|N[" = 0.
Hence V|N|* — |[N|*Uy; = 0 on W. Since ker(N) C ker(Upp), this implies 0 =
V|N|* —|N|*Uy; = |N|*(V — U11). Hence

ran(V — Uyy) C ker(|N|) Nran(|N|) = {0}.

Hence V = Uy and N = Uy1|N]| is the polar decomposition of N. Since |[N|*Uj2L! = 0,

ran(Up1L') C ker(|N|) Nran(|N|) = {0}.

Hence UjpL! and Ujo = 0. Similarly we have Uy = 0 by LUy |N|* = 0. Hence U =
Ui1 @ Uszy. So we obtain

T =UlT|=Un|N|& UL =N ®T,

where T = Uy L.

3. Quasisimilarity

An operator X € B(KC,H) is called quasiaffinity if X is both injective and has a
dense range. For T' € B(H) and S € B(K), if there exist quasiaffinities X € B(IC,H)
and Y € B(H,K) such that TX = XS and YT = SY, then we say that 7" and S
are quasisimilar. The operator T' € B(H) is said to be pure if there exists no non-
trivial reducing subspace M of H such that the restriction of 7' to M is normal and is
completely hyponormal if it is pure. Recall that every operator T' € B(H) has a direct
sum decomposition T' = T1 ® 15, where T and 75 are normal and pure parts, respectively.
Of course in the sum decomposition, either 77 or T5 may be absent. The following lemma
is due to Williams [32, Lemma 1.1].

Lemma 10. Let T € B(H) and S € B(K) be normal operators. It there exist injective
operators X € B(K,H) andY € B(H,K) such that TX = XS and YT = SY, then T and
S are unitarily equivalent.
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Corollary 2. Let T € B(H) be class p-wA(s,t)operator for 0 < s,t,s +t = 1 and
0<p<1. ThenT =Ty ®15 on the space H = H1 @ Ho, where T is normal and Ty is
pure and class p-wA(s,t), i.e., Ty has no invariant subspace M such that Ta|p is normal.

The next result was proved for dominant operators in [28, Theorem 1], for p-hyponormal
operators in [20] and for w-hyponormal operators in [22, Lemma 2.12].

Proposition 2. Let T € B(H) be class p-wA(s,t)operator for 0 < s, t,s+t =1 and
0 < p <1 such that ker(T') C ker(T™*) and let S € B(K) be a normal operator. If there
exists a quasiaffinity X € B(KC,H) with dense range such that TX = XS, then T is
normal.

To prove Proposition 2, we need the following lemmas.

Lemma 11. [9] If N is a normal operator on H, then we have

(V= H = {o}.

AeC
Lemma 12. (/10]) Let T € B(H), D € B(H) with 0 < D < M(T — X\)(T — \)* for all
A € C, where M is a positive real number. Then for every x € D2H there exists a bounded

function f: C — H such that (T — \)f(\) = .

Proof. [Proof of Proposition 2] ker(T') C ker(7*) implies ker(7) reduces T. Also
ker(S) reduces S since S is normal. Using the orthogonal decompositions H = ran(|T|) &

ker(T) and H = m @ ker(S), we can represent T' and S as follows: T = (1(;1 8) ’

S = (%1 8)7 where T} is an injective class p-wA(s,t) operator on ran(|T|) and S is

injective normal on ran(S). The assumption T7X = XS asserts that X maps ran(5)

to ran(7) C ran(|T|) and ker(S) to ker(7), hence X is the form: X = <X1 . >,

0 Xo
where X; € B(ran(9S),ran(|7]), X2 € B(ker(S),ker(T)). Since TX = XS, we have that
T1 X1 = X157. Since X is injective with dense range, X is also injective with dense range.
Put Wy = |T1|° X1, then W is also injective with dense range and satisfies T'(s,t)W; =
WiS. Put W,, = |A™(T(s,t))|*W,—1, then W, is also injective with dense range and
satisfies A™(T'(s,t))W,, = W,,S. From [26, Corollary 2.7] and [6], if there exists an integer
m such that A™(T(s,t)) is a hyponormal operator, then A™(T(s,t)) is a hyponormal
operator for n > m. It follows from Lemma 12 that there exists a bounded function f :
C — H such that (A™(T1(s,t))* — A f(A) = z, for every x € (A™(T1(s,t))* A™(T(s,t) —
AMT (s, £)(A™(Ty(s,))*)2H. Hence

Wyx =Wi(A™(Ti(s,1))" = A f(AN)
= (ST =MW f(\) € ran(ST — A) for all A € C.



M.H.M.Rashid, N. H. Altaweel / Eur. J. Pure Appl. Math, 15 (3) (2022), 1067-1089 1080

By Lemma 11, we have Wz = 0, and hence = = 0 because W} is injective. This implies
that A™(T1(s,t) is normal. By Corollary 1, T is normal and therefore 7' =T & 0 is also
normal.

Theorem 8. Let T and S* be class p-wA(s,t) operators with 0 < s,t,s +t = 1 and
0 < p <1 such that ker(T) C ker(T*) and ker(S*) C ker(S). If there exist a quasiaffinity
X such that TX = XS, then T and S are unitarily equivalent normal operators.

Proof. First decompose T' and S* into their normal and pure parts by T' = T1 & 15
on H = H1®Hg and S* = ST @ S5 on K = Ky & Ky, where T7,5; are normal and
15,55 are pure. Let X = [Xij]zz,jzl' Then TX = XS implies that 75 X9, = X951 and
Ty X909 = X99S52. Let Ty = Us|Ts|, S5 = V5£|S5| be the polar decompositions of T5 and S5,

respectively and

Ty(s,t) = |T2" V2| T, S5(s,t) = |S3°V5[S5", W = |Ta|"X22|S5]°.

Then
TQ(S, t)W = |T2’ST2X22|S;|S
= |T2]* X52.52| 55|
= W(S3(s,1))"
Since ran(W) reduces T (s, t) and ker(W)* reduces S; (s, ) and Ty(s, t) ]W and S3 (8, ) |ker () -
are unitarily equivalent normal operators, and since 15, S5 are injective class p-wA(s,t)
operators, we have TQ’W = Th(s, t)\m and S3 |xer(wyr = 55(8,)|xer(wy+ by Lemma

9. Since T, S5 are pure, it implies W = |T5]° X22|S5]° = 0. Hence X992 = 0. Similarly
X195 =0,X91 =0. Hence X = X471 and S, T are unitarily equivalent normal operators.

The following lemma is due to Williams [32, Lemma 1.1]

Lemma 13. Let Ny € B(H) and Ny € B(K) be normal. If X € B(K,H) andY € B(H,K)
are injective such that N1 X = XNy and YN; = NoY, then N1 and No are unitarily
equivalent.

Stampfli and Wadhwa [28] proved that the normal parts of quasisimilar dominant
operators are unitarily equivalent. This result was generalized to classes of p-hyponormal
operators in [12]. We prove that theses results hold for class p-wA(s,t) operators.

Theorem 9. Suppose that 0 < s,t,s +t =1 and ) < p < 1. For each i = 1,2, let
T; € B(Hi) be class p-wA(s,t) operators such that ker(T;) C ker(T}) and let T; = N; &'V,
on H; = Hix ® Hio, where N; and V; are the normal and pure parts, respectively of T;.
If T1 and Ty are quasisimilar, then N1 and No are unitarily equivalent and there exist
X. € B(Haz, H12) and Y, € B(Hi2, Ha2) having dense range such that V1 X, = X, Vo and
Y.Vi = 1LY,
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Proof. By hypothesis there exist quasiaffinities X € B(Ho,H1) and Y € B(H1,Hs)
such that 71X = X715 and Y711 =T1T5Y. Let

- X1 XQ o Yl Yé
X—(X3 X4> andY—(Yé Y4>
with respect to Ho = Hoy P Hoo and Hy = Hi1 D Hig, respectively. A simple matrix

calculation shows that
V1X3 = X3N2 and V2Y3 = YE),Nl.

We claim that X3 = Y3 = 0. Let M = ran(X3). Then M is a non-trivial invariant
subspace of Vi. Since V" X3 = X35 by Proposition 2, M is an invariant subspace of V}*.
Hence M reduces Vi, o(Vi|m) C o(Vi) and Vi|aq is invertible. Let Vi = Vi|a and define
an operator X} : Hig — M by Xjx = Xaz for each & € Hiz. Then V/ is class p-wA(s, t)
by Lemma 6, so that X4 has dense range and satisfies V/ X4 = X3 Ny. Hence V] is normal
by Propsition 2. Since Vj is pure, this implies that M = {0} and X3 = 0. Similarly, we
have Y3 = 0. Hence X; and Y] are injective.

SInce N1 X7 = X1Ns and Y1 N1 = NoY7, N7 and Ny are unitarily equivalent, by Lemma
13. Also, X4 and Y; have dense ranges. Hence V1 X, = X4V and Y,V = VLYy, so the
proof is complete.

Corollary 3. Let Ty € B(H1) and Ty € B(Hz) be quasisimilar class p-wA(s,t) operators
forO0<s,t,s+t=1and 0<p<1. IfTy is pure, then Ts is also pure.

Corollary 4. Let Th € B(H1) be class p-wA(s,t) operators for 0 < s,t,s+t =1 and
0<p<1andTy € B(Ha) be normal. If T\ and Ty are quasisimilar, then T and Ty are
unitarily equivalent normal operators.

4. The Fuglede-Putnam Theorem

We offer various results related to the Fuglede-Putnam theorem in this section. If
T*X = XS* whenever TX = XS for every X € B(K,H), a pair (T,5) is said to have
the Fuglede-Putnam property. In operator theory, the Fuglede-Putnam theorem is well-
known. It claims that the pair (7,S) possesses the Fuglede-Putnam property for any
normal operators 7" and S. There are several generalizations of this theorem, the majority
of which loosen the normality of 7" and S; see, for example, [22-24, 27, 28], and some
references therein and for more details (see [3],[5],[4]). The Fuglede-Putnam theorem is
the subject of the next lemma, which we will require in the future.

Lemma 14. ([29]) Let T € B(H) and S € B(K). Then the following assertions equivalent.
(i) The pair (T,S) has the Fuglede-Putnam property.

(i) If TX = XS, then ran(X) reduces T, ker(X)* reduces S, and T|
are unitarily equivalent normal operators.

ran ()7 S fker(x) -
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Remark 1. A necessary condition for the pair (T, T™) to satisfy Fuglede-Putnam’s theorem
is ker(T') C ker(T™). Since for a class p-wA(s,t) operator this is not always true, class
p-wA(s,t) operator do not Fuglede-Putnam’s theorem. For example, if P is the orthogonal
projection onto ker(T'), with T is class p-wA(s,t), then TP = PT* but T*P # PT.
The following result (Corollary 6) prove that if T*, S are p-class A(s,t) operators for
0<s,t,s+t=1and0<p <1 such that ker(T*) reduces T* and ker(S) reduces S, then
the pair (T, S) satisfy Fuglede-Putnam’s theorem.

Theorem 10. Let T € B(H) be class p-wA(s,t) operator for 0 < s,t,s +t = 1 and
0<p<1andker(T) C ker(T*). If L is self-adjoint and TL = LT*, then T*L = LT.

Proof. Since ker(T") C ker(7™) and TL = LT*, ker(T') reduces T and L. Hence

T=T18%0, L=L; & Ly on H =ran(T*) & ker(T),

T1Ly = LiT* and {0} = ker(T1) C ker(77y). Since ran(L;) is invariant under 77 and
reduces L1,

T = <181 1:9 > , L1 =L11 ®0on H =ran(T*) =ran(Lq) ® ker(Lq).
292

T11 is an injective class p-wA(s, t) operator by Lemma 6 and Lj; is an injective self-adjoint
operator (hence it has dense range) such that 711L1; = L11T7. Let Th1 = Vi1|T11| be the
polar decomposition of Th1 and Ty (s,t) = |T11|*Vi1|T11|t, W = |T11|°L11|T11]*. Then

Ti1 (s, )W = [T [*Var |Tua || Tua |* La | T1a |°
= [Ty [*T11 Ly |T11|*
= [Tu P L T5 [T ?
= [Tu]* L | T || T [V T |°
= W (T11(s,t))*.
Since T11(s,t) is min{sp, tp}-hyponormal and ran(W) is dense (because ker(W) = {0}),

T11(s,t) is normal by [12, Theorem 7]. Hence 771 is normal and T7; = 171 (s, t) by Corollary
1. Then ran(L;) reduces T} by Lemma 7 and 77, L11 = L11T1; by Lemma 14. Hence

T=T11 ®Tr PO,
L=L1 9208 Ly

and
T"L=T{1L11®080=L1T112000=LT.

Example 2. Let H = @C2 and define an operator R on H by

n=0

R("'@l‘_g@x_l@xéo)@1’1@"'):"'@Ax_z@A.%'(_()%@Bﬁfo@B%l@"',
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Then R is a class p-wA(s,t). Moreover, ran(E) = ker(R), E is not a self-adjoint and
ker(R) # ker(R*), where E is the Riesz idempotent with respect to 0, see [31, Example
13]. Let T = R and L = P be the orthogonal projection onto ker(T). Then T is a
class p-wA(s,t) operator and TL =0 = LT*, but T*L # LT. Hence the kernel condition
ker(T') C ker(T™) is necessary for Theorem 10.

where

Corollary 5. Let T € B(H) be a class p-wA(s,t) operator for 0 < s,t,s +t =1 and
0<p<1andker(T) Cker(T*). If TX = XT* for some X € B(H) then T*X = XT.

Proof. Let X = L+1iJ be the Cartesian decomposition of X. Then we have TL = LT*
and T'J = JT™ by the assumption. By Theorem 10, we have T*L = LT and T*J = JT.
This implies that T*X = XT.

If we use the 2 x 2 matrix trick, we easily deduce the following result.

Corollary 6. Suppose that 0 < s,t,s+t=1and 0 <p < 1. Let T* € B(H) be a class
p-wA(s,t) operator and S € B(K) be a class p-wA(s,t) operator with ker(T*) C ker(T)
and ker(S) C ker(S*). If X € B(H,K) and XT = SX, then XT* = S*X.

T 0 0 0 .

Proof. Put A = 0 9 and B = x o) on H @ K. Then A is a class p-wA(s,t)

operator on ‘H @ K that satisfies BA* = AB and ker(A) C ker(A*). Hence we have
BA = A*B, by Corollary 5, and so XT* = §*X.

Example 3. Let S =T* = R as in FExample 2 and X = P be the orthogonal projection
onto ker(S). Then SX = 0 = XT, but S*X # XT*. Hence the kernel condition is
necessary for Corollary 6.

As an application of Corollary 6, we establish the following result.

Corollary 7. Suppose that 0 < s,t,s+t = 1. Let T € B(H) and S* € B(K) be class
p-wA(s,t) and ker(T) C ker(T™), ker(S*) C ker(S). Let TX = XS for some operator
X € B(K,H). Then ran(X) reduces T, ker(S)* reduces S and T]m, Slier(x)L are
unitarily equivalent normal operators.

Proof. By Corollary 6, T*X = XS*. Therefore T*TX = X.S*S and so |[T'|X = X|S|.
Let T'= U|T|,S = V|S| be the polar decomposition. Then UX|S| = U|T|X =TX =
XS = XV|S|. Let z € ker(|S]). Then Vo = 0 and TXz = XSz = 0. Hence Xz €
ker(T) = ker(U) and UXz = 0. Hence UX = XV. Since ker(U) = ker(T) C ker(T™") =
ker(U*), UU* < U*U. Hence U*UU = U*UUU*U = UU*U = U. This implies U and
V* are quasinormal. Hence U*X = XV*, ran(X) reduces U, |T|, ker(X)* reduces V, |S].
We may assume ¢t < s. Then T, S* are class p-wA(s, s) operators with reducing kernels.
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Let T'(s,s) = |T]*U|T|*, S(s,s) = |S|°V|S|°. Then T(s,s), S*(s,s) = |S*|°V*|S*|® =
VS(s,s)*V* are L-hyponormal. Also, since

15(s,8)"[ = [S(s,s)| = VF(|5(s,8)| = [S%(s,8)")V = 0,
S(s,s)* is £-hyponormal, too. Then

T(s,s)X = |T|*U|T|*X = |T|*'UX|S|*
= [TPPXV[S]" = X5(s, ),

hence T'(s,5)*X = X S(s,s)*, ran(X) reduces T(s, s), ker(X)* reduces S(s,s) and
Tlaneoy(5:8) = T, 8) fany = S8 8) lker(x)+ = Slier(x) 1 (5, 9)

are unitarily equivalent normal operators. Hence T|m, Slker(x)+ are normal by Corol-
lary 1, and that they are unitarily equivalent follows from the fact that if N = U|N| and
M = W|M]| are normal operators, then for a unitary operator V, N = V*MV if and only
if U=V*WV and |N|* = V*|M|*V for any s > 0.

Theorem 11. Suppose that 0 < s,t,s+t=1. Let T € B(H) be class p-wA(s,t) and N
a normal operator. Let TX = XN. Then the following assertions hold.

(i) If the range ran(X) is dense, then T is normal.
(i1) If ker(X™) C ker(T*), then T is quasinormal.
Proof. Let Z = |T|*X. Then

T(s,t)Z = |T|*UIT|Y|T|*X = |T|°*’TX
= |T|°XN = ZN.

Since T'(s,t) is min{sp, tp}-hyponormal, we have
T(s,t)"Z = ZN*
by [30]. Hence

(T(s,£)*T(s,t) — T(s,t)T(s,t)")|T|°X = T(s,t)*T(s,£)Z — T(s,t)T(s,t)* Z
= T(s,t)*ZN — T(s,t)ZN* = ZN*N — ZNN* = 0.

(i) If ran(X) is dense, then
(T'(s,t)"T(s,t) —T(s,t)T(s,t)")|T]° = 0.

Since
ker(|T'|*) C ker(T'(s,t)) Nker(T(s,t)*),
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this implies T'(s,t) is normal. Hence T is normal by Corollary 1.
(ii) Let X*|T|°x2 = 0. Then |T|°z € ker(X*) C ker(T*) = ker(U*) and T'(s,t)*z =
|T|'U*|T|*x = 0. Hence ker(X*|T|*) C ker(T'(s,t)*) and ran(T(s,t)) C ran(|T|*X). Hence

(T(s,t)"T(5,£) — T(s,)T(s,))T(s,t) = 0

by (i). This implies T'(s,t) is quasinormal, and 7' is quasinormal by Theorem 1.

Theorem 12. Suppose that 0 < s,t,s+t =1 and 0 < ¢ < 1. Let T € B(H) be
such that T* is p-hyponormal or log-hyponormal. Let S € B(K) be class q-wA(s,t) with
ker(S) C ker(S*). If XT = SX, for some X € B(H,K). Then XT* = S*X.

Proof. Let T be a p-hyponormal operator for p > % and let T'= U|T| be the polar
decomposition of 7. Then the generalized Aluthge transform 7%(s,t) of T™* is hyponormal
and satisfies

T*(s,0)> > | T > |(T*(s,1))* |, (12)

X'T(s,t) = SX’ (13)

where X’ = XU|T|'. Using the decompositions # = ker(X’)*@ker(X’) and K = ran(X’)®
ran(X’)+, we see that T'(s,t), S and X’ are of the form

« . T 0 . S1 Sy r X; 0
T(S’t)_<T2 Ts)’ S_<0 Ss)’ X={0 o
where T7 is hyponormal, Sy is class ¢-wA(s, t) with ker(S7) C ker(S7) and X is a one-one
operator with dense range. Since X'T(s,t) = SX', we have

X\T) = S, X;. (14)

Hence T} and S; are normal by Corollary 6, so that 75 = 0, by Lemma 12 of [30] and Sy = 0
by Lemma 7. Then |T'| = |T}|® P, for some positive operator P, by (12) and U = (Iél g2>
3
X Xio
Xo1 Xoo
respect to the decomposition # = ker(X’)* @ ker(X’) and K = ran(X’) @ran(X’)*. Then
X" = XU|T|" implies that X; = X11U;|T1|" and hence ker(T}) C ker(X;) = {0}. This
shows that 77 is one-one and hence it has dense range, so that Uy =0 and T =T & T}
for some hyponormal operator T, by [30, Lemma 13]. Since

X1 0\ o/ ¢ (X Xa2\ (UiTh) 0
(O 0> =X = XU = <X21 X22> < 0 Us|Ty|!

we deduce the following assertions.

by Lemma 13 of [30]. Let X = ( > be a 2 x 2 matrix representation of X with

X12Us|Ty|" = 0; hence X12T3 = 0 because Ty = Us|Ty|.
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X21U1]T1]t; hence X192 = 0 because U1|T1|% has dense range.
X22U3|T4|t = 0; hence X22T3 =0.
The assumption X7 = SX tell us that,

XuTy =51 Xn
X12Ty = 51X12 =0,
XooTy = S3X99 = 0.

Since T7 and S; are normal, we have X171} = 5] X11, by Fuglede-Putnam theorem. The
p-hyponormality of T} shows that ran(7)) C ran(7y). Also, we have ker(Ss3) C ker(S3).
Hence, we also have X127} = S7X12 = 0 and X927/ S5 X929 = 0. This implies that XT™ =
X1y 20=5X100=5"X.

Next, we prove the case where T* is p-hyponormal for 0 < p < % Let X’ be as above.
Then T*(s, t) is (p+ 3)-hyponormal and satisfies X'T'(s,t) = SX’. Use the same argument
as above. We obtain T'(s,t) = Ty & T3 on H = ker(X')* @ker(X’) and S = S; ® S3, where
T7 is an injective normal operator and 57 is also normal. Hence we have T' =T} ¢ T} for
some p-hyponormal T} , by Lemma 13 of [30]. Again using the same argument as above,
we obtain X21 = 0, X11T1* = STXH,XHTZ = Sleg =0 and )(22’111k = S;XQQ = 0. Hence
we have XT* = S*X.

Finally, we assume that T* is log-hyponormal. Let T'(s,¢) and X’ be as above. Then
X'T(s,t) = SX' and T*(s,t) is semi-hyponormal and satisfies

[T (s, )] = [T7] = (T (s, )"

By the same argument as above, we have T'(s,t) = Ty ® T3 on H = ker(X')* @ker(X’) and
S =851 ® 83 on K =ran(X’) ®ran(X’)t, where T} is an injective normal operator, S; is
normal, T3 is invertible semi-hyponormal and Ss is class g-wA(s, t) with ker(S3) C ker(S%).
By Lemma 13 of [30], we have that T is of the form T" = T} & Ty, for some log-hyponormal
T;. Let X = <§“ ?2). Then X’ = XU|T|" implies that X1 = 0, Xo1 = 0 and Xop =
21 K22

0. The assumption X7 = SX implies that X;;71 = S1X11, hence X117 & 0 = S7X11
by Fuglede-Putnam theorem. Thus we have XT™ = X177 @0 = S7X11 @0 = S*X.
Therefore, the proof of the theorem is achieved.

Example 4. Let R be an operator such that ker(R) does not reduce R and let P be the
orthogonal projection onto ker(R). Then P does not commute with T'; otherwise ran(R) =
ker(R) reduce T. Hence PR # 0 = RP. It is easy to see that RP = PR* = 0 but
R*P # PR(# 0) because ran(R*P) C ran(R*) C ker(R') = I — P. If we put T = R, then
the assertion of Theorem 10 does not hold for such T. Also, if we putT = R*, S=1—-P
and X = P, then XT = PR* =0 = (I — P)P = SX. However, XT* = PR # 0 =
(I — P)P = S*X. Hence the assertion of Theorem 12 does not hold for such T.
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Theorem 13. Let T € B(H) be such that T* is an injective class p-wA(s,t) for 0 <
s,t, s+t =and 0 < p < 1. Let S € B(K) be dominant. If XT = SX, for some
X € B(H,K). Then XT* = S*X.

Proof. Assume that T™* is an injective p-w-hyponormal and let T'= U|T| be the polar
decomposition of T. Let T'(s,t) be the aluthge transform of T and X’ = XU|T|*. Then
X'T(s,t) = SX" and T*(s,t) is rp-hyponormal and satisfies

[T (s, )P > | T2 = [(T* (s, 1)) "

for r € min{s,t}. By the same argument in the proof of Theorem 12, we conclude that
T*(s,t) = T1 ® T3 on H = ker(X')* @ ker(X’) and S = S; @ S3, where T} is an injective
normal operator and S} is also normal, 77 is invertible class p-wA(s,t) and S3 is dominant.
Hence by Lemma 7, we have that T is of the form 7" = T7 & T} for some class p-wA(s,t)

Ty. Let
X1 X12>
X = .
<X21 Xoo
Then X' = XU|T|" implies that Xj2 = 0, Xo1 = 0 and X92 = 0. The assumption
XT = SX implies that X171 = S51X11, hence X117 = S7X11 by Fuglede-Putnam

theorem. Thus we have XT™ = X117 & 0 = S7X11 @ 0 = S*X. Therefore, the proof of
the theorem is achieved.

Example 5. Let T* = R as in Fxample 2. Let X = P be the orthogonal projection onto
ker(T*) and S =1 — P. Then SX = 0= XT*, but 0 = S*X # XT*. Hence the injectivity
condition is necessary for Theorem 13.
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