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Abstract. In this work, we demonstrate that (i) if T is a class p-wA(s, t) operator and T (s, t)
is quasinormal (resp., normal), then T is also quasinormal (resp., normal) (ii) If T and T∗ are
class p-wA(s, t) operators, then T is normal; (iii) the normal portions of quasisimilar class p-
wA(s, t) operators are unitarily equivalent; and (iv) Fuglede-Putnam type theorem holds for a
class p-wA(s, t) operator T for 0 < s, t, s + t = 1 and 0 < p ≤ 1 if T satisfies a kernel condition
ker(T ) ⊂ ker(T ∗).
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1. Introduction

On a complex Hilbert space H, let B(H) be the algebra of all bounded linear opera-
tors. Aluthge [2] investigated the p-hyponormal operator T , which is defined as (T ∗T )p ≥
(TT ∗)p with 0 ≤ p ≤ 1 using the Furuta inequality [14]. When p = 1, T is said to be
hyponormal. As a result, p-hyponormality is a broadening of hyponormality. Following
[2], several authors are looking towards novel hyponormal operator generalizations.

It is known that p-hyponormal operators have many interesting properties as hyponor-
mal operators, for example, Putnam’s inequality, Fuglede-Putnam type theorem, Bishop’s

property (β), Weyl’s theorem and polaroid. Let T ∈ B(H) and |T | = (T ∗T )
1
2 . By taking

U |T |x = Tx for x ∈ H and Ux = 0 for x ∈ ker |T |, T has a unique polar decomposition
T = U |T | with condition kerU = ker |T |. We say that T = U |T | is the polar decompo-
sition of T . In [2], Aluthge extended the class of hyponormal operators by introducing
p-hyponormal operators and obtained some properties with the help of the transformation
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T (12 ,
1
2) = |T |

1
2U |T |

1
2 , which now known as the Aluthge transform. The introduction of

these operators by Aluthge has inspired many researchers not only to expose some impor-
tant properties of p-hyponormal operators but also to introduce the number of extensions
([1, 7, 8, 13]).

The Aluthge transform, and more broadly, the generalized Aluthge transform defined
as T (s, t) = |T |sU |T |t with s, t > 0, have proven to be useful tools in this attempt. The
generalized Aluthge transform is used to analyze class p-wA(s, t) operators in this article.

Definition 1. Let T = U |T | be the polar decomposition of an operator T ∈ B(H). Then
the generalized Aluthge transform T (s, t) of T is defined as follows:

T (s, t) = |T |sU |T |t.

Moreover, for each nonnegative integer n, the n-th generalized Aluthge transform ∆n(T (s, t))
of T (s, t) is defined as follows:

∆n(T (s, t)) = ∆(∆n−1(T (s, t))),∆0(T (s, t)) = T (s, t).

Definition 2. Let 0 < s, t, and 0 < p ≤ 1. An operator T is said to be a class

(i) p-wA(s, t) if

(|T ∗|t|T |2s|T ∗|t)
tp
s+t ≥ |T ∗|2tp

and
|T |2sp ≥ (|T |s|T ∗|2t|T |s)

sp
s+t .

(ii) p-A(s, t) if (|T ∗|t|T |2s|T ∗|t)
tp
s+t ≥ |T ∗|2tp.

(iii) p-A if |T 2|p ≥ |T |2p.

(iv) (s, p)-w-hyponormal if |T (s, s)|p ≥ |T |2sp ≥ |(T (s, s)∗|p.

It is known that p-hyponormal operators and log-hyponormal operators are class 1-
wA(s, t) for any 0 < s, t. Class p-wA(s, s) is called class (s, p)-w-hyponormal, class 1-
wA(1, 1) is called class A and class 1-wA(12 ,

1
2) is called w-hyponormal [13, 15, 18, 19, 33].

Hence class p-wA(s, t) operator is a generalization of class (s, p)-w-hyponormal, class A and
w-hyponormal operators. C. Yang and J. Yuan [34–36] studied class wF (p, r, q) operator
T , i.e., (

|T ∗|r|T |2p|T ∗|r
) 1

q ≥ |T ∗|
2(p+r)

q

and

|T |2(p+r)(1− 1
q
) ≥

(
|T |p|T ∗|2r|T |p

)1− 1
q

where 0 < p, 0 < r, 1 ≤ q. If we take small p1 such that 0 < p1 ≤ p+r
qr and p1 ≤ (p+r)(q−1)

pq ,
then T is class p1-wA(p, r). Hence class p1-wA(p, r) is a generalization of class wF (p, r, q).
We will use this property frequently.
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It is known that T = U |T | is class p-wA(s, t) if and only if

|T (s, t)|
2tp
s+t ≥ |T |2tp, |T |2sp ≥ |T (s, t)∗|

2sp
s+t

by [26]. Hence

|T (s, t)|
2rp
s+t ≥ |T |2rp ≥ |T (s, t)∗|

2rp
s+t

and T (s, t) is rp-hyponormal for all r ∈ (0,min{s, t}].
The following is a breakdown of the paper’s structure: In section 2, we prove that

if T is a class of p-wA(s, t) operators and its Aluthge transform T (s, t) is quasinormal
(respectively, normal), then T is also quasinormal (resp., normal). The normal parts of
quasisimilar class p-wA(s, t) operators are unitarily equivalent in section 3. The major
goal of Section 4 is to demonstrate that the Fuglede-Putnam theorem holds for a class
p-wA(s, t) operator T with 0 < s, t, s+t = 1 and 0 < p ≤ 1 if T fulfills the kernel condition
ker(T ) ⊂ ker(T ∗).

2. Quasinormality

Let T = U |T | be the polar decomposition of T ∈ B(H) . T is said to be quasinormal
if |T |U = U |T | , or equivalently, TT ∗T = T ∗TT . S. M. Patel, K. Tanahashi, A. Uchiyama
and M. Yanagida [27] proved that if T is class A(s, t) and T (s, t) is quasinormal, then T is
quasinormal and T = T (s, t) if s+ t = 1. The following is a generalization of this result.

Theorem 1. Let T be a class p-wA(s, t) operator with the polar decomposition T = U |T |.
If T (s, t) = |T |sU |T |t is quasinormal, then T is also quasinormal. Hence T coincides with
its generalized Aluthge transform T (s, t).

Proof. Since T is a class p-A(s, t) operator,

|T (s, t)|
2rp
s+t ≥ |T |2rp ≥ |(T (s, t))∗|

2rp
s+t (1)

for all r ∈ (0,min{s, t}) by [19, Theorem 3] and Löwner-Heinz inequality. Then Douglas’s
theorem [11] implies

ran(T (s, t)) = ran((|T (s, t))∗|) ⊂ ran(|T |) = ran(|T (s, t)|)

where M denotes the norm closure of M . Let T (s, t) = W |T (s, t)| be the polar decom-
position of T (s, t) . Then E := W ∗W = U∗U ≥ WW ∗ =: F . Put

|(T (s, t))∗|
1

s+t =

(
X 0
0 0

)
,W =

(
W1 W2

0 0

)
on H = ran(T (s, t))⊕ ker((T (s, t))∗).
Then X is injective and has a dense range. Since T (s, t) is quasinormal, W commutes
with |T (s, t)| and

|T (s, t)|
2rp
s+t = W ∗W |T (s, t)|

2rp
s+t = W ∗|T (s, t)|

2rp
s+tW
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≥ W ∗|T |2rpW ≥ W ∗|(T (s, t))∗|
2rp
s+tW = |T (s, t)|

2rp
s+t .

Hence
|T (s, t)|

2rp
s+t = W ∗|T (s, t)|

2rp
s+tW = W ∗|T |2rpW,

and

|(T (s, t))∗|
2rp
s+t = W |T (s, t)|

2rp
s+tW ∗ = WW ∗|T (s, t)|

2rp
s+tWW ∗ (2)

= WW ∗|T |2rpWW ∗ =

(
X2rp 0
0 0

)
. (3)

Since WW ∗ =

(
1 0
0 0

)
, (1), (2) and (3) imply that |T (s, t)|

2rp
s+t and |T |2rp are of the

forms

|T (s, t)|
2rp
s+t =

(
X2rp 0
0 Y 2rp

)
≥ |T |2rp =

(
X2rp 0
0 Z2rp

)
, (4)

where ran(Y ) = ran(Z) = ran(|T |)⊖ ran(T (s, t)) = ker((T (s, t))∗)⊖ ker(T ).
Since W commutes with |T (s, t)| ,(

W1 W2

0 0

)(
X 0
0 Y

)
=

(
X 0
0 Y

)(
W1 W2

0 0

)
.

So W1X = XW1 and W2Y = XW2 , and hence ran(W1) and ran(W2) are reducing
subspaces of X . Since W ∗W |T (s, t)| = |T (s, t)| , we have W ∗

1W1 = 1 and

Xk = W ∗
1W1X

k = W ∗
1X

kW1,

Y k = W ∗
2W2Y

k = W ∗
2X

kW2,

for k = 1, 2, · · · .

Put U =

(
U11 U12

U21 U22

)
. Then T (s, t) = |T |sU |T |t = W |T (s, t)| implies

(
Xs 0
0 Zs

)(
U11 U12

U21 U22

)(
Xt 0
0 Zt

)
=

(
W1 W2

0 0

)(
Xs+t 0
0 Y s+t

)
.

Hence

XsU11X
t = W1X

s+t = XsW1X
t,

XsU12Z
t = W2Y

s+t = Xs+tW2

and

Xs(U11 −W1)X
t = 0,

Xs(U12Z
t −XtW2) = 0.
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Since X is injective and has a dense range, U11 = W1 is isometry and U12Z
t = XtW2.

Then

U∗U =

(
U∗
11U11 + U∗

21U21 U∗
11Ul2 + U∗

21U22

U∗
12U11 + U∗

22U21 U∗
12U12 + U∗

22U22

)
onH = ran(T (s, t))⊕ker((T (s, t))∗) is the orthogonal projection onto ran(|T |) ⊃ ran(T (s, t)),
we have U21 = 0 and

U∗U =

(
1 0
0 U∗

12U12 + U∗
22U22

)
.

Since U12Z
t = XtW2 , we have

Z2t ≥ ZtU∗
12U12Z

t = W ∗
2X

2tW2 = Y 2t,

and
Z2rp ≥ (ZtU∗

12U12Z
t)

rp
t = (W ∗

2X
tW2)

rp
t = Y 2rp ≥ Z2rp

by Löwner-Heinz inequality and (4). Hence

(ZtU∗
12U12Z

t)
rp
t = Z2rp = Y 2rp,

so Z = Y and |T (s, t)| = |T |s+t . Since

Z2t = ZtU∗
12U12Z

t

≤ ZtU∗
12U12Z

t + ZtU∗
22U22Z

t ≤ Z2t

ZtU∗
22U22Z

t = 0 and U22Z
t = 0 . This implies ran(U∗

22) ⊂ ker(Z). Since ran(U∗
12U12 +

U∗
22U22) ⊂ ran(Z) and U∗

22U22 ≤ U∗
12U12 + U∗

22U22 , we have ran(U∗
22) ⊂ ran(Z) . Hence

U22 = 0, U =

(
W1 U12

0 0

)
and

ran(U) ⊂ ran(T (s, t)) ⊂ ℜ(|T |) = ran(E).

Since W commutes with |T (s, t)| = |T |s+t, W commutes with |T | and

|T |s(W − U)|T |t = W |T |s|T |t − |T |sU |T |t

= W |T (s, t)| − T (s, t) = 0.

Hence E(W − U)E = 0 and

U = UE = EUE = EWE = WE = W.

Thus U = W commutes with |T | and T is quasinormal.

Corollary 1. Let T = U |T | be a class p-wA(s, t) operator. If T (s, t) = |T |sU |T |t is
normal, then T is also normal.
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Proof. Since T (s, t) is normal, T is quasinormal by Theorem 1. Hence T (s, t) =
|T |sU |T |t = U |T |s+t and (T (s, t))∗ = |T |s+tU∗. Hence

|T |2(s+t) = |T (s, t)|2 = |(T (s, t))∗|2 = |T ∗|2(s+t).

This implies |T | = |T ∗| and T is normal.

Theorem 2. [25] Let s1 > 0, s2 > 0, t1 > 0, t2 > 0 and 0 < p ≤ 1. If T belongs to class
p1-wA(s1, t1) for 0 < p1 ≤ p and T ∗ belongs to class p2-wA(s2, t2) for 0 < p2 ≤ p , then
T is normal.

To prove Theorem 2, we need the following results.

Lemma 1. ([21]) If T is class p-wA(s, t) and 0 < s ≤ s1, 0 < t ≤ t1, 0 < p1 ≤ p < 1,
then T is class p1-wA(s1, t1).

Theorem 3 (Furuta theorem [14]). If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2ApB

r
2 )

1
q ≥ B

r+p
q and

(ii) A
r+p
q ≥ (A

r
2BpA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

Proposition 1. ([19]) Let A ≥ 0 and B ≥ 0. If

B
1
2AB

1
2 ≥ B2 and A

1
2BA

1
2 ≥ A2, (5)

then A = B.

Proof. [Proof of Theorem 2] Let r = max{s1, s2, t1, t2} and let q = min{p1, p2}.
Firstly, if T belongs to class p1-wA(s1, t1), then T belongs to class q-wA(r, r) by Lemma

1. Hence we have

(|T ∗|r|T |2r|T ∗|r)
q
2 ≥ |T ∗|2rq and |T |2rq ≥ (|T |r|T ∗|2r|T |r)

q
2 (6)

Secondly, if T ∗ belongs to class p2-wA(s2, t2), then T ∗ belongs to class q-wA(r, r) by
Lemma 1. Hence we have

(|T |r|T ∗|2r|T |r)
q
2 ≥ |T |2rq and |T ∗|2rq ≥ (|T ∗|r|T |2r|T ∗|r)

q
2 (7)

Therefore
|T ∗|r|T |2r|T ∗|r = |T ∗|4r and |T |4r = |T |r|T ∗|2r|T |r

hold by (6) and (7), and then |T | = |T ∗| by Proposition 1.

The following result is very important in the sequal
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Theorem 4. [17, Jensen’s Operator Inequality (JOI)] Suppose that f is a continuous
function defined on an interval I. Then f is operator convex on an interval I containing
0 with f(0) ≤ 0 if and only if f(a∗xa) ≤ a∗f(x)a for every self-adjoint x with spectrum in
I and every contraction a.

Theorem 5. ([11]) Let A and B be bounded linear operators on a Hilbert space H. Then
the following are equivalent:

(i) ran(A) ⊆ ran(B);

(ii) AA∗ ≤ λ2BB∗ for some λ ≥ 0; and

(i) there exists a bounded linear operator C on H so that A = BC.

Lemma 2. Let A,B and C be positive operators. Then the following assertions hold for
each p ≥ 0, r ∈ [0, 1] and 0 < q ≤ 1:

(i) If (Br/2ApBr/2)
rq
p+r ≥ Brq and B ≥ C, then (Cr/2ApCr/2)

rq
p+r ≥ Crq.

(ii) If A ≥ B, Brq ≥ (Br/2CpBr/2)
rq
p+r and the condition

if lim
n→∞

B1/2xn = 0 and lim
n→∞

A1/2xn exists,

then lim
n→∞

A1/2xn = 0 for any sequence of vectors {xn} (8)

hold, then Arq ≥ (Ar/2CpAr/2)
rq
p+r .

Lemma 2 can be obtained as an application of the following results.

Theorem 6. ([11]) Let A and B be bounded linear operators on a Hilbert space H. Then
the following are equivalent:

(i) ran(A) ⊆ ran(B);

(ii) AA∗ ≤ λ2BB∗ for some λ ≥ 0; and

(iii) there exists a bounded linear operator C on H so that A = BC.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator C so that

(a) ∥C∥2 = inf{µ : AA∗ ≤ µBB∗};

(b) ker(A) = ker(C); and

(c) ran(C) ⊆ ran(B∗).

Theorem 7. ([16]) Let X and A be bounded linear operator on a Hilbert space H. We
suppose that A ≥ 0 and ∥X∥ ≤ 1. If f is an operator monotone function defined on [0,∞),
then

X∗f(A)X ≤ f(X∗AX).
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We remark that the condition (c) of Theorem 6 is equivalent to (c′): ran(C) ⊆ ran(B∗).
Here we consider when the equality of (c′) holds.

Lemma 3. ([33]) Let A and B be operators which satisfy (i), (ii) and (iii) of Theorem 6
and C be the operator which is given in (iii) and determined uniquely by (a), (b) and (c)
of Theorem 6. Then the following assertions are mutually equivalent:

(i) ran(C) = ran(B∗).

(ii) If lim
n→∞

A∗xn = 0 and lim
n→∞

B∗xn exists, then lim
n→∞

B∗xn = 0 for any sequence of

vectors {xn}.

We also prepare the following lemma in order to give a proof of Lemma 2.

Lemma 4. ([33]) Let S be a positive operator and 0 < q ≤ 1. If lim
n→∞

Sxn = 0 and

lim
n→∞

Sqxn exists, then lim
n→∞

Sqxn = 0 for any sequence of vectors {xn}.

Proof. [Proof of Lemma 2] (i) The hypothesis B ≥ C ensures then Bt ≥ Ct for each
t ∈ (0, 1] by Löwner-Heinz theorem. By Theorem 6, there exists an operator X with
∥X∥ ≤ 1 such that

B
t
2X = X∗B

t
2 = C

t
2 . (9)

Then we have

(Cr/2ApCr/2)
rq
p+r = (X∗Br/2ApBr/2X)

rq
p+r

≥ X∗(Br/2ApBr/2)
rq
p+rX (by Theorem 7)

≥ X∗BrqX (by the hypothesis)

= X∗(Br)qX ≥ (X∗B
r
2B

r
2X)q (by Theorem 4)

= (C
r
2C

r
2 )q = Crq (by Equation (9)).

(ii) The hypothesis A ≥ B ensures As ≥ Bs for s ∈ (0, 1] by Löwner-Heinz theorem. By
Theorem 6, there exists an operator X with ∥X∥ ≤ 1 such that

As/2X = X∗As/2 = Bs/2. (10)

Then we have

X∗(Ar/2CpAr/2)
rq
p+rX ≤ (X∗Ar/2CpAr/2X)

rq
p+r (by Theorem 7)

= (Br/2CpBr/2)
rq
p+r

≤ Brq (by the hypothesis)

= (Br)q = (X∗A
r
2A

r
2X)q ≤ X∗ArqX (by Theorem 4)

so that Arq ≥ (Ar/2CpAr/2)
rq
p+r holds on ran(X). On the other hand, the hypothesis (8)

implies the following (11)

If lim
n→∞

Br/2xn = 0 and lim
n→∞

Ar/2xn exists,
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then lim
n→∞

Ar/2xn = 0 for any sequence of vectors {xn}. (11)

since lim
n→∞

Br/2xn = 0 and lim
n→∞

Ar/2xn exists, then

lim
n→∞

B1/2xn = B(1−r)/2( lim
n→∞

Br/2xn) = 0 and lim
n→∞

A1/2xn = A(1−r)/2( lim
n→∞

Ar/2xn) ex-

ists, so that lim
n→∞

A1/2xn = 0 by (8), hence lim
n→∞

Ar/2xn = 0 by Lemma 4. (11) ensures

ran(X) = ran(Ar/2) by Lemma 3, hence we have

ker((Ar/2CpAr/2)
rq
p+r ) = ker(Ar/2CpAr/2)

⊇ ker(Ar/2) = ker(Ar) = ker(Aqr) = ker(X∗),

so that Aqr = (Ar/2CpAr/2)
rq
p+r = 0 holds on ker(X∗). Consequently the proof is complete

since H = ran(X)⊕ ker(X∗).

Lemma 5. ([26]) Let T = U |T | ∈ B(H) be the polar decomposition of T . Then T is class

p-wA(s, t) if and only if |T (s, t)|
2tp
s+t ≥ |T |2tp and |T |2sp ≥ |(T (s, t))∗|

2sp
s+t .

Lemma 6. Let 0 < s, t, s + t ≤ 1 and 0 < p ≤ 1. Let T ∈ B(H) be class p-wA(s, t) and
let M an invariant subspace of T . Then the restriction T |M is also class p-wA(s, t).

Proof. Let T =

(
T1 S
0 T2

)
on H = M ⊕ M⊥ and P the orthogonal projection onto

M. Let T0 := TP = PTP =

(
T1 0
0 0

)
. Then

|T0|2t = (P |T |2P )t ≥ P |T |2tP for each 0 < t ≤ 1

by Hansen’s inequality, and

|T ∗|2 = TT ∗ ≥ TPT ∗ = |T ∗
0 |2.

Hence

T is class p-A(s, t) ⇐⇒ |T ∗|2tp ≤ (|T ∗|t|T |2s|T ∗|t)
tp
s+t

=⇒ |T ∗
0 |2tp ≤ (|T ∗

0 |t|T |2s|T ∗
0 |t)

tp
s+t (by Lemma 2)

=⇒ |T ∗
0 |2tp ≤ (|T ∗

0 |t|T0|2s|T ∗
0 |t)

tp
s+t (since |T ∗

0 |t = |T ∗
0 |tP = P |T ∗

0 |t for every 0 < t ≤ 1).

Now
|T0| = P |T̃ |P ≥ P |T |P ≥ P |(T̃ )∗|P = |T ∗

0 |.
Then by Theorem 3 it follows that

|T0|2sp ≥ (|T0|s|T ∗
0 |2t||T0|s|)

ps
s+t .

Therefore, T |M is class p-A(s, t) operator.

The following example shows that there exists a class p-wA(s, t) operator T such that
T |M is quasinormal but M does not reduce T .
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Example 1. Let T be a bilateral shift on ℓ2(Z) defined by Ten = en+1 and M =
∨
n≥0

Cen.

Then T is unitary and T |M is isometry. However, M does not reduce T.

Lemma 7. Let 0 < s, t, s+t = 1 and 0 < p ≤ 1. Let T ∈ B(H) be class p-wA(s, t) operator,
let M be an invariant subspace for T and a reducing subspace for T (s, t) such that T (s, t)|M
the restriction of T (s, t) to M is an injective normal operator, then T |M = T (s, t)|M and
M reduces T.

Proof. Let

T (s, t) =

(
T0 0
0 A

)
, T =

(
S B
0 D

)
on H = M⊕M⊥.

Since T is class p-wA(s, t) we have |T (s, t)|2rp ≥ |T |2rp ≥ |(T (s, t))∗|2rp for r ∈ min{s, t}.
Let P be the orthogonal projection onto M. Then

|T0| = P |T (s, t)|P ≥ P |T |P ≥ P |(T (s, t))∗|P = |T ∗
0 |.

By Löwner-Heinz theorem we get

|T0|2rp = P |T (s, t)|2rpP ≥ P |T |2rpP ≥ P |(T (s, t))∗|2rpP = |T ∗
0 |2rp.

Since |T |sT = T (s, t)|T |s and P |T |sP = |T0|s, we deduce that

|T0|sS = T0|T0|s.

We have T0 is an injective normal operator, then S = T |M = T0 = T (s, t)|M, consequently

T =

(
T0 B
0 D

)
on H = M⊕M⊥.

Hence

T ∗T =

(
T ∗
0 T0 T ∗

0B
B∗T0 B∗B +D∗D

)
on H = M⊕M⊥.

So we can write

|T |rp =
(
|T0|rp X
X∗ Y

)
on H = M⊕M⊥.

Since
P |T |pr|T |prP = |T0|2rp,

then |T0|2rp = |T0|2rp +XX∗, and thus X = 0.
It follows that |T |rp = |T0|rp⊕Y 2 implying |T |2rp = |T0|2rp⊕Y 4. Consequently we get

B∗B = 0 it follows that B = 0 and hence M reduces T .

The next lemma is a simple consequence of the preceding one.
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Lemma 8. Let 0 < s, t, s + t = 1 and 0 < p ≤ 1. Let T ∈ B(H) be a class p-wA(s, t)
operator with ker(T ) ⊂ ker(T ∗). Then T = T1 ⊕ T2 on H = H1 ⊕H2 where T1 is normal,
ker(T2) = {0} and T2 is pure class p-wA(s, t) i.e., T2 has no non-zero invariant subspace
M such that T2|M is normal.

Lemma 9. Let 0 < s, t, s+ t = 1 and 0 < p ≤ 1. Let T = U |T | ∈ B(H) be class p-wA(s, t)
and ker(T ) ⊂ ker(T ∗). Suppose T (s, t) = |T |sU |T |t be of the form N⊕T ′ on H = M⊕M⊥,
where N is a normal operator on M. Then T = N ⊕ T1 and U = U11 ⊕ U22 where T1 is
class p-wA(s, t) with ker(T1) ⊂ ker(T ∗

1 ) and N = U11|N | is the polar decomposition of N .

Proof. Since
|T (s, t)|2rp ≥ |T |2rp ≥ |(T (s, t))∗|2rp

for r ∈ min{s, t}, we have

|N |2rp ⊕ |T ′|2rp ≥ |T |2rp ≥ |N |2rp ⊕ |T ′∗|2rp

by assumption. This implies that |T | is of the form |N | ⊕L for some positive operator L.

Let U =

(
U11 U12

U21 U22

)
be 2×2 matrix representation of U with respect to the decomposition

H = M⊕M⊥. Then the definition T (s, t) means(
N 0
0 T ′

)
=

(
|N |s 0
0 Ls

)(
U11 U12

U21 U22

)(
|N |t 0
0 Lt

)
Hence, we have

N = |N |sU11|N |t, |N |sU12L
t = 0 and LsU21|N |t = 0.

Since ker(T ) ⊂ ker(T ∗),

ran(U) = ran(T ) = ker(T ∗)⊥ ⊂ ker(T )⊥ = ran(|T |).

Let Nx = 0 for x ∈ M. Then x ∈ ker(|T |) = ker(U), and

Ux =

(
U11 U12

U21 U22

)(
x
0

)
=

(
U11x
U21x

)
= 0.

Hence
ker(N) ⊂ ker(U11) ∩ ker(U21).

Let x ∈ M. Then

U

(
x
0

)
=

(
U11x
U21x

)
∈ ran(|T |) = ran(|N | ⊕ L).

Hence
ran(U11) ⊂ ran(|N |), ran(U21) ⊂ ran(L).
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Similarly
ran(U12) ⊂ ran(|N |), ran(U22) ⊂ ran(L).

Let Lx = 0 for x ∈ M⊥. Then x ∈ ker(|T |) = ker(U) and

U

(
0
x

)
=

(
U12x
U22x

)
= 0

Hence
ker(L) ⊂ ker(U12) ∩ ker(U22).

Let N = V |N | be the polar decomposition of N . Then

(V |N |s − |N |sU11)|N |t = 0.

Hence V |N |s − |N |sU11 = 0 on ran(|N |). Since ker(N) ⊂ ker(U11), this implies 0 =
V |N |s − |N |sU11 = |N |s(V − U11). Hence

ran(V − U11) ⊂ ker(|N |) ∩ ran(|N |) = {0}.

Hence V = U11 and N = U11|N | is the polar decomposition of N . Since |N |sU12L
t = 0,

ran(U11L
t) ⊂ ker(|N |) ∩ ran(|N |) = {0}.

Hence U12L
t and U12 = 0. Similarly we have U21 = 0 by LsU21|N |t = 0. Hence U =

U11 ⊕ U22. So we obtain

T = U |T | = U11|N | ⊕ U22L = N ⊕ T1,

where T1 = U22L.

3. Quasisimilarity

An operator X ∈ B(K,H) is called quasiaffinity if X is both injective and has a
dense range. For T ∈ B(H) and S ∈ B(K), if there exist quasiaffinities X ∈ B(K,H)
and Y ∈ B(H,K) such that TX = XS and Y T = SY, then we say that T and S
are quasisimilar. The operator T ∈ B(H) is said to be pure if there exists no non-
trivial reducing subspace M of H such that the restriction of T to M is normal and is
completely hyponormal if it is pure. Recall that every operator T ∈ B(H) has a direct
sum decomposition T = T1⊕T2, where T1 and T2 are normal and pure parts, respectively.
Of course in the sum decomposition, either T1 or T2 may be absent. The following lemma
is due to Williams [32, Lemma 1.1].

Lemma 10. Let T ∈ B(H) and S ∈ B(K) be normal operators. It there exist injective
operators X ∈ B(K,H) and Y ∈ B(H,K) such that TX = XS and Y T = SY , then T and
S are unitarily equivalent.
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Corollary 2. Let T ∈ B(H) be class p-wA(s, t)operator for 0 < s, t, s + t = 1 and
0 < p ≤ 1. Then T = T1 ⊕ T2 on the space H = H1 ⊕H2, where T1 is normal and T2 is
pure and class p-wA(s, t), i.e., T2 has no invariant subspace M such that T2|M is normal.

The next result was proved for dominant operators in [28, Theorem 1], for p-hyponormal
operators in [20] and for w-hyponormal operators in [22, Lemma 2.12].

Proposition 2. Let T ∈ B(H) be class p-wA(s, t)operator for 0 < s, t, s + t = 1 and
0 < p ≤ 1 such that ker(T ) ⊂ ker(T ∗) and let S ∈ B(K) be a normal operator. If there
exists a quasiaffinity X ∈ B(K,H) with dense range such that TX = XS, then T is
normal.

To prove Proposition 2, we need the following lemmas.

Lemma 11. [9] If N is a normal operator on H, then we have⋂
λ∈C

(N − λ)H = {0}.

Lemma 12. ([10]) Let T ∈ B(H), D ∈ B(H) with 0 ≤ D ≤ M(T − λ)(T − λ)∗ for all

λ ∈ C, where M is a positive real number. Then for every x ∈ D
1
2H there exists a bounded

function f : C −→ H such that (T − λ)f(λ) ≡ x.

Proof. [Proof of Proposition 2] ker(T ) ⊂ ker(T ∗) implies ker(T ) reduces T . Also
ker(S) reduces S since S is normal. Using the orthogonal decompositions H = ran(|T |)⊕

ker(T ) and H = ran(S) ⊕ ker(S), we can represent T and S as follows: T =

(
T1 0
0 0

)
,

S =

(
S1 0
0 0

)
, where T1 is an injective class p-wA(s, t) operator on ran(|T |) and S1 is

injective normal on ran(S). The assumption TX = XS asserts that X maps ran(S)

to ran(T ) ⊂ ran(|T |) and ker(S) to ker(T ), hence X is the form: X =

(
X1 0
0 X2

)
,

where X1 ∈ B(ran(S), ran(|T |), X2 ∈ B(ker(S), ker(T )). Since TX = XS, we have that
T1X1 = X1S1. Since X is injective with dense range, X1 is also injective with dense range.
Put W1 = |T1|sX1, then W1 is also injective with dense range and satisfies T (s, t)W1 =
W1S. Put Wn = |∆n(T (s, t))|sWn−1, then Wn is also injective with dense range and
satisfies ∆n(T (s, t))Wn = WnS. From [26, Corollary 2.7] and [6], if there exists an integer
m such that ∆m(T (s, t)) is a hyponormal operator, then ∆n(T (s, t)) is a hyponormal
operator for n ≥ m. It follows from Lemma 12 that there exists a bounded function f :
C −→ H such that (∆n(T1(s, t))

∗ − λ)f(λ) ≡ x, for every x ∈ (∆n(T1(s, t))
∗∆n(T1(s, t)−

∆n(T1(s, t)(∆
n(T1(s, t))

∗)
1
2H. Hence

W ∗
nx = W ∗

n(∆
n(T1(s, t))

∗ − λ)f(λ)

= (S∗
1 − λ)W ∗

nf(λ) ∈ ran(S∗
1 − λ) for all λ ∈ C.



M.H.M.Rashid, N. H. Altaweel / Eur. J. Pure Appl. Math, 15 (3) (2022), 1067-1089 1080

By Lemma 11, we have W ∗
nx = 0, and hence x = 0 because W ∗

n is injective. This implies
that ∆n(T1(s, t) is normal. By Corollary 1, T1 is normal and therefore T = T1 ⊕ 0 is also
normal.

Theorem 8. Let T and S∗ be class p-wA(s, t) operators with 0 < s, t, s + t = 1 and
0 < p ≤ 1 such that ker(T ) ⊂ ker(T ∗) and ker(S∗) ⊂ ker(S). If there exist a quasiaffinity
X such that TX = XS, then T and S are unitarily equivalent normal operators.

Proof. First decompose T and S∗ into their normal and pure parts by T = T1 ⊕ T2

on H = H1 ⊕ H2 and S∗ = S∗
1 ⊕ S∗

2 on K = K1 ⊕ K2, where T1, S1 are normal and
T2, S

∗
2 are pure. Let X = [Xij ]

2
i,j=1. Then TX = XS implies that T2X21 = X21S1 and

T2X22 = X22S2. Let T2 = U2|T2|, S∗
2 = V ∗

2 |S∗
2 | be the polar decompositions of T2 and S∗

2 ,
respectively and

T2(s, t) = |T2|sU2|T2|t, S∗
2(s, t) = |S∗

2 |sV ∗
2 |S∗

2 |t, W = |T2|sX22|S∗
2 |s.

Then

T2(s, t)W = |T2|sT2X22|S∗
2 |s

= |T2|sX22S2|S∗
2 |s

= W (S∗
2(s, t))

∗.

Since ran(W ) reduces T2(s, t) and ker(W )⊥ reduces S∗
2(s, t) and T2(s, t)|ran(W )

and S∗
2(s, t)|ker(W )⊥

are unitarily equivalent normal operators, and since T2, S
∗
2 are injective class p-wA(s, t)

operators, we have T2|ran(W )
= T2(s, t)|ran(W )

and S∗
2 |ker(W )⊥ = S∗

2(s, t)|ker(W )⊥ by Lemma

9. Since T2, S
∗
2 are pure, it implies W = |T2|sX22|S∗

2 |s = 0. Hence X22 = 0. Similarly
X12 = 0, X21 = 0. Hence X = X11 and S, T are unitarily equivalent normal operators.

The following lemma is due to Williams [32, Lemma 1.1]

Lemma 13. Let N1 ∈ B(H) and N2 ∈ B(K) be normal. If X ∈ B(K,H) and Y ∈ B(H,K)
are injective such that N1X = XN2 and Y N1 = N2Y , then N1 and N2 are unitarily
equivalent.

Stampfli and Wadhwa [28] proved that the normal parts of quasisimilar dominant
operators are unitarily equivalent. This result was generalized to classes of p-hyponormal
operators in [12]. We prove that theses results hold for class p-wA(s, t) operators.

Theorem 9. Suppose that 0 < s, t, s + t = 1 and ) < p ≤ 1. For each i = 1, 2, let
Ti ∈ B(Hi) be class p-wA(s, t) operators such that ker(Tj) ⊂ ker(T ∗

j ) and let Ti = Ni ⊕ Vi

on Hi = Hi1 ⊕ Hi2, where Ni and Vi are the normal and pure parts, respectively of Ti.
If T1 and T2 are quasisimilar, then N1 and N2 are unitarily equivalent and there exist
X∗ ∈ B(H22,H12) and Y∗ ∈ B(H12,H22) having dense range such that V1X∗ = X∗V2 and
Y∗V1 = V2Y∗.
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Proof. By hypothesis there exist quasiaffinities X ∈ B(H2,H1) and Y ∈ B(H1,H2)
such that T1X = XT2 and Y T1 = T2Y . Let

X =

(
X1 X2

X3 X4

)
and Y =

(
Y1 Y2
Y3 Y4

)
with respect to H2 = H21 ⊕ H22 and H1 = H11 ⊕ H12, respectively. A simple matrix
calculation shows that

V1X3 = X3N2 and V2Y3 = Y3N1.

We claim that X3 = Y3 = 0. Let M = ran(X3). Then M is a non-trivial invariant
subspace of V1. Since V ∗

1 X3 = X3N
∗
2 by Proposition 2, M is an invariant subspace of V ∗

1 .
Hence M reduces V1, σ(V1|M) ⊂ σ(V1) and V1|M is invertible. Let V ′

1 = V1|M and define
an operator X ′

3 : H12 −→ M by X ′
3x = X3x for each x ∈ H12. Then V ′

1 is class p-wA(s, t)
by Lemma 6, so that X ′

3 has dense range and satisfies V ′
1X

′
3 = X ′

3N2. Hence V ′
1 is normal

by Propsition 2. Since V1 is pure, this implies that M = {0} and X3 = 0. Similarly, we
have Y3 = 0. Hence X1 and Y1 are injective.

SInce N1X1 = X1N2 and Y1N1 = N2Y1, N1 and N2 are unitarily equivalent, by Lemma
13. Also, X4 and Y4 have dense ranges. Hence V1X4 = X4V2 and Y4V1 = V2Y4, so the
proof is complete.

Corollary 3. Let T1 ∈ B(H1) and T2 ∈ B(H2) be quasisimilar class p-wA(s, t) operators
for 0 < s, t, s+ t = 1 and 0 < p ≤ 1. If T1 is pure, then T2 is also pure.

Corollary 4. Let T1 ∈ B(H1) be class p-wA(s, t) operators for 0 < s, t, s + t = 1 and
0 < p ≤ 1 and T2 ∈ B(H2) be normal. If T1 and T2 are quasisimilar, then T1 and T2 are
unitarily equivalent normal operators.

4. The Fuglede-Putnam Theorem

We offer various results related to the Fuglede-Putnam theorem in this section. If
T ∗X = XS∗ whenever TX = XS for every X ∈ B(K,H), a pair (T, S) is said to have
the Fuglede-Putnam property. In operator theory, the Fuglede-Putnam theorem is well-
known. It claims that the pair (T, S) possesses the Fuglede-Putnam property for any
normal operators T and S. There are several generalizations of this theorem, the majority
of which loosen the normality of T and S; see, for example, [22–24, 27, 28], and some
references therein and for more details (see [3],[5],[4]). The Fuglede-Putnam theorem is
the subject of the next lemma, which we will require in the future.

Lemma 14. ([29]) Let T ∈ B(H) and S ∈ B(K). Then the following assertions equivalent.

(i) The pair (T, S) has the Fuglede-Putnam property.

(ii) If TX = XS, then ran(X) reduces T , ker(X)⊥ reduces S, and T |
ran(X)

, S|ker(X)⊥

are unitarily equivalent normal operators.
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Remark 1. A necessary condition for the pair (T, T ∗) to satisfy Fuglede-Putnam’s theorem
is ker(T ) ⊂ ker(T ∗). Since for a class p-wA(s, t) operator this is not always true, class
p-wA(s, t) operator do not Fuglede-Putnam’s theorem. For example, if P is the orthogonal
projection onto ker(T ), with T is class p-wA(s, t), then TP = PT ∗ but T ∗P ̸= PT.
The following result (Corollary 6) prove that if T ∗, S are p-class A(s, t) operators for
0 < s, t, s+ t = 1 and 0 < p ≤ 1 such that ker(T ∗) reduces T ∗ and ker(S) reduces S, then
the pair (T, S) satisfy Fuglede-Putnam’s theorem.

Theorem 10. Let T ∈ B(H) be class p-wA(s, t) operator for 0 < s, t, s + t = 1 and
0 < p ≤ 1 and ker(T ) ⊂ ker(T ∗). If L is self-adjoint and TL = LT ∗, then T ∗L = LT.

Proof. Since ker(T ) ⊂ ker(T ∗) and TL = LT ∗, ker(T ) reduces T and L. Hence

T = T1 ⊕ 0, L = L1 ⊕ L2 on H = ran(T ∗)⊕ ker(T ),

T1L1 = L1T
∗ and {0} = ker(T1) ⊂ ker(T ∗

1 ). Since ran(L1) is invariant under T1 and
reduces L1,

T =

(
T11 S
0 T22

)
, L1 = L11 ⊕ 0 on H = ran(T ∗) = ran(L1)⊕ ker(L1).

T11 is an injective class p-wA(s, t) operator by Lemma 6 and L11 is an injective self-adjoint
operator (hence it has dense range) such that T11L11 = L11T

∗
11. Let T11 = V11|T11| be the

polar decomposition of T11 and T11(s, t) = |T11|sV11|T11|t, W = |T11|sL11|T11|s. Then

T11(s, t)W = |T11|sV11|T11|t|T11|sL11|T11|s

= |T11|sT11L11|T11|s

= |T11|sL11T
∗
11|T11|s

= |T11|sL11|T11|s|T11|tV ∗
11|T11|s

= W (T11(s, t))
∗.

Since T11(s, t) is min{sp, tp}-hyponormal and ran(W ) is dense (because ker(W ) = {0}),
T11(s, t) is normal by [12, Theorem 7]. Hence T11 is normal and T11 = T11(s, t) by Corollary
1. Then ran(L1) reduces T1 by Lemma 7 and T ∗

11L11 = L11T11 by Lemma 14. Hence

T = T11 ⊕ T22 ⊕ 0,

L = L11 ⊕ 0⊕ L2

and
T ∗L = T ∗

11L11 ⊕ 0⊕ 0 = L11T11 ⊕ 0⊕ 0 = LT.

Example 2. Let H =

∞⊕
n=0

C2 and define an operator R on H by

R(· · · ⊕ x−2 ⊕ x−1 ⊕ x
(0)
0 ⊕ x1 ⊕ · · · ) = · · · ⊕Ax−2 ⊕Ax

(0)
−1 ⊕Bx0 ⊕Bx1 ⊕ · · · ,
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where

A =
1

4

(
1
2

1
2

1
2

1
2

)
and B =

(
1 0
0 0

)
.

Then R is a class p-wA(s, t). Moreover, ran(E) = ker(R), E is not a self-adjoint and
ker(R) ̸= ker(R∗), where E is the Riesz idempotent with respect to 0, see [31, Example
13]. Let T = R and L = P be the orthogonal projection onto ker(T ). Then T is a
class p-wA(s, t) operator and TL = 0 = LT ∗, but T ∗L ̸= LT. Hence the kernel condition
ker(T ) ⊂ ker(T ∗) is necessary for Theorem 10.

Corollary 5. Let T ∈ B(H) be a class p-wA(s, t) operator for 0 < s, t, s + t = 1 and
0 < p ≤ 1 and ker(T ) ⊂ ker(T ∗). If TX = XT ∗ for some X ∈ B(H) then T ∗X = XT.

Proof. Let X = L+ iJ be the Cartesian decomposition of X. Then we have TL = LT ∗

and TJ = JT ∗ by the assumption. By Theorem 10, we have T ∗L = LT and T ∗J = JT.
This implies that T ∗X = XT .

If we use the 2× 2 matrix trick, we easily deduce the following result.

Corollary 6. Suppose that 0 < s, t, s + t = 1 and 0 < p ≤ 1. Let T ∗ ∈ B(H) be a class
p-wA(s, t) operator and S ∈ B(K) be a class p-wA(s, t) operator with ker(T ∗) ⊂ ker(T )
and ker(S) ⊂ ker(S∗). If X ∈ B(H,K) and XT = SX, then XT ∗ = S∗X.

Proof. Put A =

(
T ∗ 0
0 S

)
and B =

(
0 0
X 0

)
on H⊕K. Then A is a class p-wA(s, t)

operator on H ⊕ K that satisfies BA∗ = AB and ker(A) ⊂ ker(A∗). Hence we have
BA = A∗B, by Corollary 5, and so XT ∗ = S∗X.

Example 3. Let S = T ∗ = R as in Example 2 and X = P be the orthogonal projection
onto ker(S). Then SX = 0 = XT, but S∗X ̸= XT ∗. Hence the kernel condition is
necessary for Corollary 6.

As an application of Corollary 6, we establish the following result.

Corollary 7. Suppose that 0 < s, t, s + t = 1. Let T ∈ B(H) and S∗ ∈ B(K) be class
p-wA(s, t) and ker(T ) ⊂ ker(T ∗), ker(S∗) ⊂ ker(S). Let TX = XS for some operator
X ∈ B(K,H). Then ran(X) reduces T , ker(S)⊥ reduces S and T |

ran(X)
, S|ker(X)⊥ are

unitarily equivalent normal operators.

Proof. By Corollary 6, T ∗X = XS∗. Therefore T ∗TX = XS∗S and so |T |X = X|S|.
Let T = U |T |, S = V |S| be the polar decomposition. Then UX|S| = U |T |X = TX =
XS = XV |S|. Let x ∈ ker(|S|). Then V x = 0 and TXx = XSx = 0. Hence Xx ∈
ker(T ) = ker(U) and UXx = 0. Hence UX = XV . Since ker(U) = ker(T ) ⊂ ker(T ∗) =
ker(U∗), UU∗ ≤ U∗U . Hence U∗UU = U∗UUU∗U = UU∗U = U . This implies U and
V ∗ are quasinormal. Hence U∗X = XV ∗, ran(X) reduces U , |T |, ker(X)⊥ reduces V , |S|.
We may assume t < s. Then T, S∗ are class p-wA(s, s) operators with reducing kernels.
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Let T (s, s) = |T |sU |T |s, S(s, s) = |S|sV |S|s. Then T (s, s), S∗(s, s) = |S∗|sV ∗|S∗|s =
V S(s, s)∗V ∗ are p

2 -hyponormal. Also, since

|S(s, s)∗| − |S(s, s)| = V ∗(|S∗(s, s)| − |S∗(s, s)∗|)V ≥ 0,

S(s, s)∗ is p
2 -hyponormal, too. Then

T (s, s)X = |T |sU |T |sX = |T |sUX|S|s

= |T |sXV |S|s = XS(s, s),

hence T (s, s)∗X = XS(s, s)∗, ran(X) reduces T (s, s), ker(X)⊥ reduces S(s, s) and

T |
ran(X)

(s, s) = T (s, s)|
ran(X)

≃ S(s, s)|ker(X)⊥ = S|ker(X)⊥(s, s)

are unitarily equivalent normal operators. Hence T |
ran(X)

, S|ker(X)⊥ are normal by Corol-

lary 1, and that they are unitarily equivalent follows from the fact that if N = U |N | and
M = W |M | are normal operators, then for a unitary operator V , N = V ∗MV if and only
if U = V ∗WV and |N |s = V ∗|M |sV for any s > 0.

Theorem 11. Suppose that 0 < s, t, s + t = 1. Let T ∈ B(H) be class p-wA(s, t) and N
a normal operator. Let TX = XN . Then the following assertions hold.

(i) If the range ran(X) is dense, then T is normal.

(ii) If ker(X∗) ⊂ ker(T ∗), then T is quasinormal.

Proof. Let Z = |T |sX. Then

T (s, t)Z = |T |sU |T |t|T |sX = |T |sTX
= |T |sXN = ZN.

Since T (s, t) is min{sp, tp}-hyponormal, we have

T (s, t)∗Z = ZN∗

by [30]. Hence

(T (s, t)∗T (s, t)− T (s, t)T (s, t)∗)|T |sX = T (s, t)∗T (s, t)Z − T (s, t)T (s, t)∗Z

= T (s, t)∗ZN − T (s, t)ZN∗ = ZN∗N − ZNN∗ = 0.

(i) If ran(X) is dense, then

(T (s, t)∗T (s, t)− T (s, t)T (s, t)∗)|T |s = 0.

Since
ker(|T |s) ⊂ ker(T (s, t)) ∩ ker(T (s, t)∗),
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this implies T (s, t) is normal. Hence T is normal by Corollary 1.
(ii) Let X∗|T |sx = 0. Then |T |sx ∈ ker(X∗) ⊂ ker(T ∗) = ker(U∗) and T (s, t)∗x =
|T |tU∗|T |sx = 0. Hence ker(X∗|T |s) ⊂ ker(T (s, t)∗) and ran(T (s, t)) ⊂ ran(|T |sX). Hence

(T (s, t)∗T (s, t)− T (s, t)T (s, t)∗)T (s, t) = 0

by (i). This implies T (s, t) is quasinormal, and T is quasinormal by Theorem 1.

Theorem 12. Suppose that 0 < s, t, s + t = 1 and 0 < q ≤ 1. Let T ∈ B(H) be
such that T ∗ is p-hyponormal or log-hyponormal. Let S ∈ B(K) be class q-wA(s, t) with
ker(S) ⊂ ker(S∗). If XT = SX, for some X ∈ B(H,K). Then XT ∗ = S∗X.

Proof. Let T ∗ be a p-hyponormal operator for p ≥ 1
2 and let T = U |T | be the polar

decomposition of T . Then the generalized Aluthge transform T ∗(s, t) of T ∗ is hyponormal
and satisfies

|T ∗(s, t)|2 ≥ |T |2 ≥ |(T ∗(s, t))∗|2, (12)

X ′T (s, t) = SX ′ (13)

whereX ′ = XU |T |t. Using the decompositionsH = ker(X ′)⊥⊕ker(X ′) and K = ran(X ′)⊕
ran(X ′)⊥, we see that T (s, t), S and X ′ are of the form

T ∗(s, t) =

(
T1 0
T2 T3

)
, S =

(
S1 S2

0 S3

)
, X ′ =

(
X1 0
0 0

)
where T ∗

1 is hyponormal, S1 is class q-wA(s, t) with ker(S1) ⊂ ker(S∗
1) and X1 is a one-one

operator with dense range. Since X ′T (s, t) = SX ′, we have

X1T1 = S1X1. (14)

Hence T1 and S1 are normal by Corollary 6, so that T2 = 0, by Lemma 12 of [30] and S2 = 0

by Lemma 7. Then |T | = |T1|⊕P, for some positive operator P, by (12) and U =

(
U1 U2

0 U3

)
by Lemma 13 of [30]. Let X =

(
X11 X12

X21 X22

)
be a 2 × 2 matrix representation of X with

respect to the decomposition H = ker(X ′)⊥⊕ker(X ′) and K = ran(X ′)⊕ ran(X ′)⊥. Then
X ′ = XU |T |t implies that X1 = X11U1|T1|t and hence ker(T1) ⊂ ker(X1) = {0}. This
shows that T1 is one-one and hence it has dense range, so that U2 = 0 and T = T1 ⊕ T4

for some hyponormal operator T ∗
4 by [30, Lemma 13]. Since(

X1 0
0 0

)
= X ′ = XU |T |t =

(
X11 X12

X21 X22

)(
U1|T1|t 0

0 U3|T4|t
)

we deduce the following assertions.

X12U2|T4|t = 0; hence X12T3 = 0 because T4 = U3|T4|.
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X21U1|T1|t; hence X12 = 0 because U1|T1|
1
2 has dense range.

X22U3|T4|t = 0; hence X22T3 = 0.

The assumption XT = SX tell us that,

X11T1 = S1X11

X12T4 = S1X12 = 0,

X22T4 = S3X22 = 0.

Since T1 and S1 are normal, we have X11T
∗
1 = S∗

1X11, by Fuglede-Putnam theorem. The
p-hyponormality of T ∗

4 shows that ran(T ∗
4 ) ⊂ ran(T4). Also, we have ker(S3) ⊂ ker(S∗

3).
Hence, we also have X12T

∗
4 = S∗

1X12 = 0 and X22T
∗
4 S

∗
3X22 = 0. This implies that XT ∗ =

X11T
∗
1 ⊕ 0 = S∗

1X11 ⊕ 0 = S∗X.
Next, we prove the case where T ∗ is p-hyponormal for 0 < p ≤ 1

2 . Let X
′ be as above.

Then T ∗(s, t) is (p+ 1
2)-hyponormal and satisfies X ′T (s, t) = SX ′. Use the same argument

as above. We obtain T (s, t) = T1⊕T3 on H = ker(X ′)⊥⊕ker(X ′) and S = S1⊕S3, where
T1 is an injective normal operator and S1 is also normal. Hence we have T = T1 ⊕ T4 for
some p-hyponormal T ∗

4 , by Lemma 13 of [30]. Again using the same argument as above,
we obtain X21 = 0, X11T

∗
1 = S∗

1X11, X12T
∗
4 = S∗

1X12 = 0 and X22T
∗
4 = S∗

3X22 = 0. Hence
we have XT ∗ = S∗X.

Finally, we assume that T ∗ is log-hyponormal. Let T (s, t) and X ′ be as above. Then
X ′T (s, t) = SX ′ and T ∗(s, t) is semi-hyponormal and satisfies

|T ∗(s, t)| ≥ |T ∗| ≥ |(T ∗(s, t)∗|.

By the same argument as above, we have T (s, t) = T1⊕T3 on H = ker(X ′)⊥⊕ker(X ′) and
S = S1 ⊕ S3 on K = ran(X ′)⊕ ran(X ′)⊥, where T1 is an injective normal operator, S1 is
normal, T ∗

3 is invertible semi-hyponormal and S3 is class q-wA(s, t) with ker(S3) ⊂ ker(S∗
3).

By Lemma 13 of [30], we have that T is of the form T = T1⊕T4, for some log-hyponormal

T ∗
4 . Let X =

(
X11 X12

X21 X22

)
. Then X ′ = XU |T |t implies that X12 = 0, X21 = 0 and X22 =

0. The assumption XT = SX implies that X11T1 = S1X11, hence X11T
∗
1 ⊕ 0 = S∗

1X11

by Fuglede-Putnam theorem. Thus we have XT ∗ = X11T
∗
1 ⊕ 0 = S∗

1X11 ⊕ 0 = S∗X.
Therefore, the proof of the theorem is achieved.

Example 4. Let R be an operator such that ker(R) does not reduce R and let P be the
orthogonal projection onto ker(R). Then P does not commute with T ; otherwise ran(R) =
ker(R) reduce T . Hence PR ̸= 0 = RP. It is easy to see that RP = PR∗ = 0 but
R∗P ̸= PR(̸= 0) because ran(R∗P ) ⊂ ran(R∗) ⊂ ker(R⊥) = I − P. If we put T = R, then
the assertion of Theorem 10 does not hold for such T . Also, if we put T = R∗, S = I −P
and X = P, then XT = PR∗ = 0 = (I − P )P = SX. However, XT ∗ = PR ̸= 0 =
(I − P )P = S∗X. Hence the assertion of Theorem 12 does not hold for such T .
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Theorem 13. Let T ∈ B(H) be such that T ∗ is an injective class p-wA(s, t) for 0 <
s, t, s + t = and 0 < p ≤ 1. Let S ∈ B(K) be dominant. If XT = SX, for some
X ∈ B(H,K). Then XT ∗ = S∗X.

Proof. Assume that T ∗ is an injective p-w-hyponormal and let T = U |T | be the polar
decomposition of T . Let T (s, t) be the aluthge transform of T and X ′ = XU |T |t. Then
X ′T (s, t) = SX ′ and T ∗(s, t) is rp-hyponormal and satisfies

|T ∗(s, t)|2rp ≥ |T ∗|2rp ≥ |(T ∗(s, t))∗|2rp

for r ∈ min{s, t}. By the same argument in the proof of Theorem 12, we conclude that
T ∗(s, t) = T1 ⊕ T3 on H = ker(X ′)⊥ ⊕ ker(X ′) and S = S1 ⊕ S3, where T1 is an injective
normal operator and S1 is also normal, T ∗

3 is invertible class p-wA(s, t) and S3 is dominant.
Hence by Lemma 7, we have that T is of the form T = T1 ⊕ T4 for some class p-wA(s, t)
T ∗
4 . Let

X =

(
X11 X12

X21 X22

)
.

Then X ′ = XU |T |t implies that X12 = 0, X21 = 0 and X22 = 0. The assumption
XT = SX implies that X11T1 = S1X11, hence X11T

∗
1 = S∗

1X11 by Fuglede-Putnam
theorem. Thus we have XT ∗ = X11T

∗
1 ⊕ 0 = S∗

1X11 ⊕ 0 = S∗X. Therefore, the proof of
the theorem is achieved.

Example 5. Let T ∗ = R as in Example 2. Let X = P be the orthogonal projection onto
ker(T ∗) and S = I − P. Then SX = 0 = XT ∗, but 0 = S∗X ̸= XT ∗. Hence the injectivity
condition is necessary for Theorem 13.
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