EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 3, 2022, 1067-1089 ISSN 1307-5543 – ejpam.com Published by New York Business Global

The Fuglede-Putnam theorem and quasinormality for class p-wA(s,t) operators

M.H.M.Rashid^{1,*}, N. H. Altaweel²

¹ Department of Mathematics, Faculty of Science P.O. Box(7), Mu'tah university, Al-Karak-Jordan

² Department of Mathematics-Faculty of Science, University of Tabuk, P.O.Box 741- Tabuk 71491, Saudi Arabia

Abstract. In this work, we demonstrate that (i) if T is a class p-wA(s,t) operator and T(s,t) is quasinormal (resp., normal), then T is also quasinormal (resp., normal) (ii) If T and T* are class p-wA(s,t) operators, then T is normal; (iii) the normal portions of quasisimilar class p-wA(s,t) operators are unitarily equivalent; and (iv) Fuglede-Putnam type theorem holds for a class p-wA(s,t) operator T for 0 < s, t, s + t = 1 and 0 if <math>T satisfies a kernel condition ker $(T) \subset \text{ker}(T^*)$.

2020 Mathematics Subject Classifications: 47A10, 47A11, 47B20

Key Words and Phrases: Quasinormal, Class A(s,t) operators, Class p-(A(s,t) operators, Fuglede-Putnam theorem

1. Introduction

On a complex Hilbert space \mathcal{H} , let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators. Aluthge [2] investigated the *p*-hyponormal operator *T*, which is defined as $(T^*T)^p \geq (TT^*)^p$ with $0 \leq p \leq 1$ using the Furuta inequality [14]. When p = 1, *T* is said to be hyponormal. As a result, *p*-hyponormality is a broadening of hyponormality. Following [2], several authors are looking towards novel hyponormal operator generalizations.

It is known that p-hyponormal operators have many interesting properties as hyponormal operators, for example, Putnam's inequality, Fuglede-Putnam type theorem, Bishop's property (β), Weyl's theorem and polaroid. Let $T \in \mathcal{B}(\mathcal{H})$ and $|T| = (T^*T)^{\frac{1}{2}}$. By taking U|T|x = Tx for $x \in \mathcal{H}$ and Ux = 0 for $x \in \ker |T|$, T has a unique polar decomposition T = U|T| with condition ker $U = \ker |T|$. We say that T = U|T| is the polar decomposition of T. In [2], Aluthge extended the class of hyponormal operators by introducing p-hyponormal operators and obtained some properties with the help of the transformation

Email addresses: malik_okasha@yahoo.com (M.H.M. Rashid), naltawil@ut.edu.sa (N. H. Altaweel)

https://www.ejpam.com

© 2022 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4412

 $T(\frac{1}{2},\frac{1}{2}) = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$, which now known as the Aluthge transform. The introduction of these operators by Aluthge has inspired many researchers not only to expose some important properties of *p*-hyponormal operators but also to introduce the number of extensions ([1, 7, 8, 13]).

The Aluthge transform, and more broadly, the generalized Aluthge transform defined as $T(s,t) = |T|^s U|T|^t$ with s,t > 0, have proven to be useful tools in this attempt. The generalized Aluthge transform is used to analyze class p-wA(s,t) operators in this article.

Definition 1. Let T = U|T| be the polar decomposition of an operator $T \in \mathcal{B}(\mathcal{H})$. Then the generalized Aluthge transform T(s,t) of T is defined as follows:

$$T(s,t) = |T|^s U|T|^t.$$

Moreover, for each nonnegative integer n, the n-th generalized Aluthge transform $\Delta^n(T(s,t))$ of T(s,t) is defined as follows:

$$\Delta^n(T(s,t)) = \Delta(\Delta^{n-1}(T(s,t))), \Delta^0(T(s,t)) = T(s,t)$$

Definition 2. Let 0 < s, t, and 0 . An operator T is said to be a class

(i) p-wA(s,t) if

and

$$|T|^{2sp} \ge (|T|^s |T^*|^{2t} |T|^s)^{\frac{sp}{s+t}}.$$

 $(|T^*|^t |T|^{2s} |T^*|^t)^{\frac{tp}{s+t}} > |T^*|^{2tp}$

(*ii*) p - A(s,t) if $(|T^*|^t |T|^{2s} |T^*|^t)^{\frac{tp}{s+t}} \ge |T^*|^{2tp}$.

(iii)
$$p - A$$
 if $|T^2|^p \ge |T|^{2p}$.

(iv) (s, p)-w-hyponormal if $|T(s, s)|^p \ge |T|^{2sp} \ge |(T(s, s)^*)^p$.

It is known that p-hyponormal operators and log-hyponormal operators are class 1-wA(s,t) for any 0 < s,t. Class p-wA(s,s) is called class (s,p)-w-hyponormal, class 1-wA(1,1) is called class A and class $1-wA(\frac{1}{2},\frac{1}{2})$ is called w-hyponormal [13, 15, 18, 19, 33]. Hence class p-wA(s,t) operator is a generalization of class (s,p)-w-hyponormal, class A and w-hyponormal operators. C. Yang and J. Yuan [34–36] studied class wF(p,r,q) operator T, i.e.,

$$\left(|T^*|^r|T|^{2p}|T^*|^r\right)^{\frac{1}{q}} \ge |T^*|^{\frac{2(p+r)}{q}}$$

and

$$|T|^{2(p+r)(1-\frac{1}{q})} \ge \left(|T|^p |T^*|^{2r} |T|^p\right)^{1-\frac{1}{q}}$$

where $0 < p, 0 < r, 1 \le q$. If we take small p_1 such that $0 < p_1 \le \frac{p+r}{qr}$ and $p_1 \le \frac{(p+r)(q-1)}{pq}$, then T is class p_1 -wA(p,r). Hence class p_1 -wA(p,r) is a generalization of class wF(p,r,q). We will use this property frequently.

It is known that T = U|T| is class p-wA(s, t) if and only if

$$|T(s,t)|^{\frac{2tp}{s+t}} \ge |T|^{2tp}, \quad |T|^{2sp} \ge |T(s,t)^*|^{\frac{2sp}{s+t}}$$

by [26]. Hence

$$|T(s,t)|^{\frac{2rp}{s+t}} \ge |T|^{2rp} \ge |T(s,t)^*|^{\frac{2rp}{s+t}}$$

and T(s,t) is *rp*-hyponormal for all $r \in (0, \min\{s, t\}]$.

The following is a breakdown of the paper's structure: In section 2, we prove that if T is a class of p-wA(s,t) operators and its Aluthge transform T(s,t) is quasinormal (respectively, normal), then T is also quasinormal (resp., normal). The normal parts of quasisimilar class p-wA(s,t) operators are unitarily equivalent in section 3. The major goal of Section 4 is to demonstrate that the Fuglede-Putnam theorem holds for a class p-wA(s,t) operator T with 0 < s, t, s+t = 1 and 0 if <math>T fulfills the kernel condition ker $(T) \subset \text{ker}(T^*)$.

2. Quasinormality

Let T = U|T| be the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. T is said to be quasinormal if |T|U = U|T|, or equivalently, $TT^*T = T^*TT$. S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida [27] proved that if T is class A(s,t) and T(s,t) is quasinormal, then T is quasinormal and T = T(s,t) if s + t = 1. The following is a generalization of this result.

Theorem 1. Let T be a class p-wA(s,t) operator with the polar decomposition T = U|T|. If $T(s,t) = |T|^s U|T|^t$ is quasinormal, then T is also quasinormal. Hence T coincides with its generalized Aluthge transform T(s,t).

Proof. Since T is a class p-A(s,t) operator,

$$|T(s,t)|^{\frac{2rp}{s+t}} \ge |T|^{2rp} \ge |(T(s,t))^*|^{\frac{2rp}{s+t}}$$
(1)

for all $r \in (0, \min\{s, t\})$ by [19, Theorem 3] and Löwner-Heinz inequality. Then Douglas's theorem [11] implies

$$\overline{\operatorname{ran}(T(s,t))} = \overline{\operatorname{ran}((|T(s,t))^*|)} \subset \overline{\operatorname{ran}(|T|)} = \overline{\operatorname{ran}(|T(s,t)|)}$$

where $\overline{\mathcal{M}}$ denotes the norm closure of \mathcal{M} . Let T(s,t) = W|T(s,t)| be the polar decomposition of T(s,t). Then $E := W^*W = U^*U \ge WW^* =: F$. Put

$$|(T(s,t))^*|^{\frac{1}{s+t}} = \begin{pmatrix} X & 0\\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} W_1 & W_2\\ 0 & 0 \end{pmatrix}$$

on $\mathcal{H} = \overline{\operatorname{ran}(T(s,t))} \oplus \ker((T(s,t))^*).$

Then X is injective and has a dense range. Since T(s,t) is quasinormal, W commutes with |T(s,t)| and

$$|T(s,t)|^{\frac{2rp}{s+t}} = W^*W|T(s,t)|^{\frac{2rp}{s+t}} = W^*|T(s,t)|^{\frac{2rp}{s+t}}W$$

$$\geq W^* |T|^{2rp} W \geq W^* |(T(s,t))^*|^{\frac{2rp}{s+t}} W = |T(s,t)|^{\frac{2rp}{s+t}}.$$

Hence

$$|T(s,t)|^{\frac{2rp}{s+t}} = W^* |T(s,t)|^{\frac{2rp}{s+t}} W = W^* |T|^{2rp} W,$$

and

$$|(T(s,t))^*|^{\frac{2rp}{s+t}} = W|T(s,t)|^{\frac{2rp}{s+t}}W^* = WW^*|T(s,t)|^{\frac{2rp}{s+t}}WW^*$$
(2)

$$= WW^* |T|^{2rp} WW^* = \begin{pmatrix} X^{2rp} & 0\\ 0 & 0 \end{pmatrix}.$$
 (3)

Since $WW^* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, (1), (2) and (3) imply that $|T(s,t)|^{\frac{2rp}{s+t}}$ and $|T|^{2rp}$ are of the forms

$$|T(s,t)|^{\frac{2rp}{s+t}} = \begin{pmatrix} X^{2rp} & 0\\ 0 & Y^{2rp} \end{pmatrix} \ge |T|^{2rp} = \begin{pmatrix} X^{2rp} & 0\\ 0 & Z^{2rp} \end{pmatrix},$$
(4)

where $\overline{\operatorname{ran}(Y)} = \overline{\operatorname{ran}(Z)} = \overline{\operatorname{ran}(|T|)} \ominus \overline{\operatorname{ran}(T(s,t))} = \ker((T(s,t))^*) \ominus \ker(T).$ Since W commutes with |T(s,t)|,

$$\left(\begin{array}{cc} W_1 & W_2 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} X & 0 \\ 0 & Y \end{array}\right) = \left(\begin{array}{cc} X & 0 \\ 0 & Y \end{array}\right) \left(\begin{array}{cc} W_1 & W_2 \\ 0 & 0 \end{array}\right).$$

So $W_1X = XW_1$ and $W_2Y = XW_2$, and hence $\overline{\operatorname{ran}(W_1)}$ and $\overline{\operatorname{ran}(W_2)}$ are reducing subspaces of X. Since $W^*W|T(s,t)| = |T(s,t)|$, we have $W_1^*W_1 = 1$ and

$$X^{k} = W_{1}^{*}W_{1}X^{k} = W_{1}^{*}X^{k}W_{1},$$

$$Y^{k} = W_{2}^{*}W_{2}Y^{k} = W_{2}^{*}X^{k}W_{2},$$

for $k = 1, 2, \cdots$.

Put
$$U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$$
. Then $T(s,t) = |T|^s U |T|^t = W |T(s,t)|$ implies
 $\begin{pmatrix} X^s & 0 \\ 0 & Z^s \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} X^t & 0 \\ 0 & Z^t \end{pmatrix} = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X^{s+t} & 0 \\ 0 & Y^{s+t} \end{pmatrix}$.

Hence

$$X^{s}U_{11}X^{t} = W_{1}X^{s+t} = X^{s}W_{1}X^{t},$$

$$X^{s}U_{12}Z^{t} = W_{2}Y^{s+t} = X^{s+t}W_{2}$$

and

$$X^{s}(U_{11} - W_{1})X^{t} = 0,$$

$$X^{s}(U_{12}Z^{t} - X^{t}W_{2}) = 0.$$

Since X is injective and has a dense range, $U_{11} = W_1$ is isometry and $U_{12}Z^t = X^t W_2$. Then

$$U^*U = \begin{pmatrix} U_{11}^*U_{11} + U_{21}^*U_{21} & U_{11}^*U_{l2} + U_{21}^*U_{22} \\ U_{12}^*U_{11} + U_{22}^*U_{21} & U_{12}^*U_{12} + U_{22}^*U_{22} \end{pmatrix}$$

on $\mathcal{H} = \overline{\operatorname{ran}(T(s,t))} \oplus \operatorname{ker}((T(s,t))^*)$ is the orthogonal projection onto $\overline{\operatorname{ran}(|T|)} \supset \overline{\operatorname{ran}(T(s,t))}$, we have $U_{21} = 0$ and

$$U^*U = \left(\begin{array}{cc} 1 & 0\\ 0 & U_{12}^*U_{12} + U_{22}^*U_{22} \end{array}\right).$$

Since $U_{12}Z^t = X^t W_2$, we have

$$Z^{2t} \ge Z^t U_{12}^* U_{12} Z^t = W_2^* X^{2t} W_2 = Y^{2t},$$

and

$$Z^{2rp} \ge (Z^t U_{12}^* U_{12} Z^t)^{\frac{rp}{t}} = (W_2^* X^t W_2)^{\frac{rp}{t}} = Y^{2rp} \ge Z^{2rp}$$

by Löwner-Heinz inequality and (4). Hence

$$(Z^t U_{12}^* U_{12} Z^t)^{\frac{rp}{t}} = Z^{2rp} = Y^{2rp},$$

so Z = Y and $|T(s,t)| = |T|^{s+t}$. Since

$$Z^{2t} = Z^{t} U_{12}^{*} U_{12} Z^{t}$$

$$\leq Z^{t} U_{12}^{*} U_{12} Z^{t} + Z^{t} U_{22}^{*} U_{22} Z^{t} \leq Z^{2t}$$

 $Z^t U_{22}^* U_{22} Z^t = 0$ and $U_{22} Z^t = 0$. This implies $\operatorname{ran}(U_{22}^*) \subset \ker(Z)$. Since $\operatorname{ran}(U_{12}^* U_{12} + U_{22}^* U_{22}) \subset \operatorname{ran}(Z)$ and $U_{22}^* U_{22} \leq U_{12}^* U_{12} + U_{22}^* U_{22}$, we have $\operatorname{ran}(U_{22}^*) \subset \operatorname{ran}(Z)$. Hence

$$U_{22} = 0, U = \left(\begin{array}{cc} W_1 & U_{12} \\ 0 & 0 \end{array}\right)$$

and

$$\operatorname{ran}(U) \subset \overline{\operatorname{ran}(T(s,t))} \subset \overline{\Re(|T|)} = \operatorname{ran}(E).$$

Since W commutes with $|T(s,t)| = |T|^{s+t}$, W commutes with |T| and

$$|T|^{s}(W - U)|T|^{t} = W|T|^{s}|T|^{t} - |T|^{s}U|T|^{t}$$

= W|T(s,t)| - T(s,t) = 0.

Hence E(W - U)E = 0 and

$$U = UE = EUE = EWE = WE = W.$$

Thus U = W commutes with |T| and T is quasinormal.

Corollary 1. Let T = U|T| be a class p-wA(s,t) operator. If $T(s,t) = |T|^s U|T|^t$ is normal, then T is also normal.

Proof. Since T(s,t) is normal, T is quasinormal by Theorem 1. Hence $T(s,t) = |T|^s U|T|^t = U|T|^{s+t}$ and $(T(s,t))^* = |T|^{s+t}U^*$. Hence

$$|T|^{2(s+t)} = |T(s,t)|^2 = |(T(s,t))^*|^2 = |T^*|^{2(s+t)}.$$

This implies $|T| = |T^*|$ and T is normal.

Theorem 2. [25] Let $s_1 > 0$, $s_2 > 0$, $t_1 > 0$, $t_2 > 0$ and $0 . If T belongs to class <math>p_1$ -w $A(s_1, t_1)$ for $0 < p_1 \le p$ and T^* belongs to class p_2 -w $A(s_2, t_2)$ for $0 < p_2 \le p$, then T is normal.

To prove Theorem 2, we need the following results.

Lemma 1. ([21]) If T is class p-wA(s,t) and $0 < s \le s_1$, $0 < t \le t_1$, $0 < p_1 \le p < 1$, then T is class p_1 -wA(s_1, t_1).

Theorem 3 (Furuta theorem [14]). If $A \ge B \ge 0$, then for each $r \ge 0$,

- (i) $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \ge B^{\frac{r+p}{q}}$ and
- (*ii*) $A^{\frac{r+p}{q}} \ge (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

Proposition 1. ([19]) Let $A \ge 0$ and $B \ge 0$. If

$$B^{\frac{1}{2}}AB^{\frac{1}{2}} \ge B^2$$
 and $A^{\frac{1}{2}}BA^{\frac{1}{2}} \ge A^2$, (5)

then A = B.

Proof. [Proof of Theorem 2] Let $r = \max\{s_1, s_2, t_1, t_2\}$ and let $q = \min\{p_1, p_2\}$.

Firstly, if T belongs to class p_1 - $wA(s_1, t_1)$, then T belongs to class q-wA(r, r) by Lemma 1. Hence we have

$$(|T^*|^r |T|^{2r} |T^*|^r)^{\frac{q}{2}} \ge |T^*|^{2rq} \text{ and } |T|^{2rq} \ge (|T|^r |T^*|^{2r} |T|^r)^{\frac{q}{2}}$$
 (6)

Secondly, if T^* belongs to class p_2 - $wA(s_2, t_2)$, then T^* belongs to class q-wA(r, r) by Lemma 1. Hence we have

$$(|T|^r |T^*|^{2r} |T|^r)^{\frac{q}{2}} \ge |T|^{2rq} \text{ and } |T^*|^{2rq} \ge (|T^*|^r |T|^{2r} |T^*|^r)^{\frac{q}{2}}$$
 (7)

Therefore

 $|T^*|^r |T|^{2r} |T^*|^r = |T^*|^{4r}$ and $|T|^{4r} = |T|^r |T^*|^{2r} |T|^r$

hold by (6) and (7), and then $|T| = |T^*|$ by Proposition 1.

The following result is very important in the sequal

Theorem 4. [17, Jensen's Operator Inequality (JOI)] Suppose that f is a continuous function defined on an interval I. Then f is operator convex on an interval I containing 0 with $f(0) \leq 0$ if and only if $f(a^*xa) \leq a^*f(x)a$ for every self-adjoint x with spectrum in I and every contraction a.

Theorem 5. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H} . Then the following are equivalent:

- (i) $ran(A) \subseteq ran(B);$
- (ii) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0$; and
- (i) there exists a bounded linear operator C on \mathcal{H} so that A = BC.

Lemma 2. Let A, B and C be positive operators. Then the following assertions hold for each $p \ge 0$, $r \in [0, 1]$ and $0 < q \le 1$:

- (i) If $(B^{r/2}A^pB^{r/2})^{\frac{rq}{p+r}} \ge B^{rq}$ and $B \ge C$, then $(C^{r/2}A^pC^{r/2})^{\frac{rq}{p+r}} \ge C^{rq}$.
- (ii) If $A \ge B$, $B^{rq} \ge (B^{r/2}C^pB^{r/2})^{\frac{rq}{p+r}}$ and the condition

$$if \lim_{n \to \infty} B^{1/2} x_n = 0 \text{ and } \lim_{n \to \infty} A^{1/2} x_n \text{ exists,}$$

then
$$\lim_{n \to \infty} A^{1/2} x_n = 0 \text{ for any sequence of vectors} \{x_n\}$$
 (8)

hold, then $A^{rq} \ge (A^{r/2}C^p A^{r/2})^{\frac{rq}{p+r}}$.

Lemma 2 can be obtained as an application of the following results.

Theorem 6. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H} . Then the following are equivalent:

- (i) $ran(A) \subseteq ran(B);$
- (ii) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0$; and
- (iii) there exists a bounded linear operator C on \mathcal{H} so that A = BC.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator C so that

- (a) $||C||^2 = \inf\{\mu : AA^* \le \mu BB^*\};$
- (b) $\ker(A) = \ker(C)$; and
- (c) $ran(C) \subseteq \overline{ran(B^*)}$.

Theorem 7. ([16]) Let X and A be bounded linear operator on a Hilbert space \mathcal{H} . We suppose that $A \ge 0$ and $||X|| \le 1$. If f is an operator monotone function defined on $[0, \infty)$, then

$$X^*f(A)X \le f(X^*AX).$$

We remark that the condition (c) of Theorem 6 is equivalent to (c'): $\overline{ran(C)} \subseteq \overline{ran(B^*)}$. Here we consider when the equality of (c') holds.

Lemma 3. ([33]) Let A and B be operators which satisfy (i), (ii) and (iii) of Theorem 6 and C be the operator which is given in (iii) and determined uniquely by (a), (b) and (c) of Theorem 6. Then the following assertions are mutually equivalent:

(i)
$$\overline{ran(C)} = \overline{ran(B^*)}.$$

(ii) If $\lim_{n \to \infty} A^* x_n = 0$ and $\lim_{n \to \infty} B^* x_n$ exists, then $\lim_{n \to \infty} B^* x_n = 0$ for any sequence of vectors $\{x_n\}$.

We also prepare the following lemma in order to give a proof of Lemma 2.

Lemma 4. ([33]) Let S be a positive operator and $0 < q \leq 1$. If $\lim_{n \to \infty} Sx_n = 0$ and $\lim_{n \to \infty} S^q x_n$ exists, then $\lim_{n \to \infty} S^q x_n = 0$ for any sequence of vectors $\{x_n\}$.

Proof. [Proof of Lemma 2] (i) The hypothesis $B \ge C$ ensures then $B^t \ge C^t$ for each $t \in (0,1]$ by Löwner-Heinz theorem. By Theorem 6, there exists an operator X with $||X|| \le 1$ such that

$$B^{\frac{t}{2}}X = X^*B^{\frac{t}{2}} = C^{\frac{t}{2}}.$$
(9)

Then we have

$$(C^{r/2}A^{p}C^{r/2})^{\frac{r_{q}}{p+r}} = (X^{*}B^{r/2}A^{p}B^{r/2}X)^{\frac{r_{q}}{p+r}}$$

$$\geq X^{*}(B^{r/2}A^{p}B^{r/2})^{\frac{r_{q}}{p+r}}X \text{ (by Theorem 7)}$$

$$\geq X^{*}B^{rq}X \text{ (by the hypothesis)}$$

$$= X^{*}(B^{r})^{q}X \geq (X^{*}B^{\frac{r}{2}}B^{\frac{r}{2}}X)^{q} \text{ (by Theorem 4)}$$

$$= (C^{\frac{r}{2}}C^{\frac{r}{2}})^{q} = C^{rq} \text{ (by Equation (9)).}$$

(ii) The hypothesis $A \ge B$ ensures $A^s \ge B^s$ for $s \in (0, 1]$ by Löwner-Heinz theorem. By Theorem 6, there exists an operator X with $||X|| \le 1$ such that

$$A^{s/2}X = X^*A^{s/2} = B^{s/2}. (10)$$

Then we have

$$\begin{array}{lll} X^* (A^{r/2} C^p A^{r/2})^{\frac{rq}{p+r}} X &\leq & (X^* A^{r/2} C^p A^{r/2} X)^{\frac{rq}{p+r}} \text{ (by Theorem 7)} \\ &= & (B^{r/2} C^p B^{r/2})^{\frac{rq}{p+r}} \\ &\leq & B^{rq} \text{ (by the hypothesis)} \\ &= & (B^r)^q = (X^* A^{\frac{r}{2}} A^{\frac{r}{2}} X)^q \leq X^* A^{rq} X \text{ (by Theorem 4)} \end{array}$$

so that $A^{rq} \ge (A^{r/2}C^pA^{r/2})^{\frac{rq}{p+r}}$ holds on $\overline{ran(X)}$. On the other hand, the hypothesis (8) implies the following (11)

If
$$\lim_{n \to \infty} B^{r/2} x_n = 0$$
 and $\lim_{n \to \infty} A^{r/2} x_n$ exists,

then
$$\lim_{n \to \infty} A^{r/2} x_n = 0$$
 for any sequence of vectors $\{x_n\}$. (11)

since $\lim_{n \to \infty} B^{r/2} x_n = 0$ and $\lim_{n \to \infty} A^{r/2} x_n$ exists, then $\lim_{n \to \infty} B^{1/2} x_n = B^{(1-r)/2} (\lim_{n \to \infty} B^{r/2} x_n) = 0$ and $\lim_{n \to \infty} A^{1/2} x_n = A^{(1-r)/2} (\lim_{n \to \infty} A^{r/2} x_n)$ ex-ists, so that $\lim_{n \to \infty} A^{1/2} x_n = 0$ by (8), hence $\lim_{n \to \infty} A^{r/2} x_n = 0$ by Lemma 4. (11) ensures $\overline{ran(X)} = \overline{ran(A^{r/2})}$ by Lemma 3, hence we have

$$\ker((A^{r/2}C^p A^{r/2})^{\frac{r_q}{p+r}}) = \ker(A^{r/2}C^p A^{r/2})$$

$$\supseteq \ \ker(A^{r/2}) = \ker(A^r) = \ker(A^{qr}) = \ker(X^*),$$

so that $A^{qr} = (A^{r/2}C^pA^{r/2})^{\frac{rq}{p+r}} = 0$ holds on ker (X^*) . Consequently the proof is complete since $\mathcal{H} = \overline{ran(X)} \oplus \ker(X^*)$.

Lemma 5. ([26]) Let $T = U|T| \in \mathcal{B}(\mathcal{H})$ be the polar decomposition of T. Then T is class p-wA(s,t) if and only if $|T(s,t)|^{\frac{2tp}{s+t}} \ge |T|^{2tp}$ and $|T|^{2sp} \ge |(T(s,t))^*|^{\frac{2sp}{s+t}}$.

Lemma 6. Let $0 < s, t, s + t \leq 1$ and $0 . Let <math>T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s,t) and let \mathcal{M} an invariant subspace of T. Then the restriction $T|_{\mathcal{M}}$ is also class p-wA(s,t).

Proof. Let
$$T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ and P the orthogonal projection onto
 \mathcal{M} . Let $T_0 := TP = PTP = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$. Then
 $|T_0|^{2t} = (P|T|^2P)^t \ge P|T|^{2t}P$ for each $0 < t \le 1$

by Hansen's inequality, and

$$|T^*|^2 = TT^* \ge TPT^* = |T_0^*|^2.$$

Hence

$$T \text{ is class } p\text{-}A(s,t) \iff |T^*|^{2tp} \le (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{tp}{s+t}}$$
$$\implies |T_0^*|^{2tp} \le (|T_0^*|^t |T|^{2s} |T_0^*|^t)^{\frac{tp}{s+t}} \text{ (by Lemma 2)}$$
$$\implies |T_0^*|^{2tp} \le (|T_0^*|^t |T_0|^{2s} |T_0^*|^t)^{\frac{tp}{s+t}} \text{ (since } |T_0^*|^t = |T_0^*|^t P = P|T_0^*|^t \text{ for every } 0 < t \le 1)$$

Now

$$|T_0| = P|\tilde{T}|P \ge P|T|P \ge P|(\tilde{T})^*|P = |T_0^*|.$$

Then by Theorem 3 it follows that

$$|T_0|^{2sp} \ge (|T_0|^s |T_0^*|^{2t} ||T_0|^s |)^{\frac{ps}{s+t}}.$$

Therefore, $T|_{\mathcal{M}}$ is class p-A(s,t) operator.

The following example shows that there exists a class p-wA(s,t) operator T such that $T|_{\mathcal{M}}$ is quasinormal but \mathcal{M} does not reduce T.

Example 1. Let T be a bilateral shift on $\ell^2(\mathbb{Z})$ defined by $Te_n = e_{n+1}$ and $\mathcal{M} = \bigvee_{n \ge 0} \mathbb{C}e_n$. Then T is unitary and $T|_{\mathcal{M}}$ is isometry. However, \mathcal{M} does not reduce T.

Lemma 7. Let 0 < s, t, s+t = 1 and $0 . Let <math>T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s, t) operator, let \mathcal{M} be an invariant subspace for T and a reducing subspace for T(s,t) such that $T(s,t)|_{\mathcal{M}}$ the restriction of T(s,t) to \mathcal{M} is an injective normal operator, then $T|_{\mathcal{M}} = T(s,t)|_{\mathcal{M}}$ and \mathcal{M} reduces T.

Proof. Let

$$T(s,t) = \begin{pmatrix} T_0 & 0\\ 0 & A \end{pmatrix}, \ T = \begin{pmatrix} S & B\\ 0 & D \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}.$$

Since T is class p-wA(s,t) we have $|T(s,t)|^{2rp} \ge |T|^{2rp} \ge |(T(s,t))^*|^{2rp}$ for $r \in \min\{s,t\}$. Let P be the orthogonal projection onto \mathcal{M} . Then

$$|T_0| = P|T(s,t)|P \ge P|T|P \ge P|(T(s,t))^*|P = |T_0^*|$$

By Löwner-Heinz theorem we get

$$|T_0|^{2rp} = P|T(s,t)|^{2rp}P \ge P|T|^{2rp}P \ge P|(T(s,t))^*|^{2rp}P = |T_0^*|^{2rp}P$$

Since $|T|^s T = T(s,t)|T|^s$ and $P|T|^s P = |T_0|^s$, we deduce that

$$|T_0|^s S = T_0 |T_0|^s.$$

We have T_0 is an injective normal operator, then $S = T|_{\mathcal{M}} = T_0 = T(s,t)|_{\mathcal{M}}$, consequently

$$T = \begin{pmatrix} T_0 & B \\ 0 & D \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

Hence

$$T^*T = \begin{pmatrix} T_0^*T_0 & T_0^*B \\ B^*T_0 & B^*B + D^*D \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}.$$

So we can write

$$|T|^{rp} = \begin{pmatrix} |T_0|^{rp} & X\\ X^* & Y \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

Since

$$P|T|^{pr}|T|^{pr}P = |T_0|^{2rp},$$

then $|T_0|^{2rp} = |T_0|^{2rp} + XX^*$, and thus X = 0. It follows that $|T|^{rp} = |T_0|^{rp} \oplus Y^2$ implying $|T|^{2rp} = |T_0|^{2rp} \oplus Y^4$. Consequently we get $B^*B = 0$ it follows that B = 0 and hence \mathcal{M} reduces T.

The next lemma is a simple consequence of the preceding one.

Lemma 8. Let 0 < s, t, s + t = 1 and $0 . Let <math>T \in \mathcal{B}(\mathcal{H})$ be a class p-wA(s, t) operator with ker $(T) \subset$ ker (T^*) . Then $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where T_1 is normal, ker $(T_2) = \{0\}$ and T_2 is pure class p-wA(s, t) i.e., T_2 has no non-zero invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal.

Lemma 9. Let 0 < s, t, s+t = 1 and $0 . Let <math>T = U|T| \in \mathcal{B}(\mathcal{H})$ be class p-wA(s, t)and ker $(T) \subset \text{ker}(T^*)$. Suppose $T(s, t) = |T|^s U|T|^t$ be of the form $N \oplus T'$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M} . Then $T = N \oplus T_1$ and $U = U_{11} \oplus U_{22}$ where T_1 is class p-wA(s, t) with ker $(T_1) \subset \text{ker}(T_1^*)$ and $N = U_{11}|N|$ is the polar decomposition of N.

Proof. Since

$$|T(s,t)|^{2rp} \ge |T|^{2rp} \ge |(T(s,t))^*|^{2rp}$$

for $r \in \min\{s, t\}$, we have

$$|N|^{2rp} \oplus |T'|^{2rp} \ge |T|^{2rp} \ge |N|^{2rp} \oplus |T'^*|^{2rp}$$

by assumption. This implies that |T| is of the form $|N| \oplus L$ for some positive operator L. Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be 2×2 matrix representation of U with respect to the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then the definition T(s, t) means

$$\begin{pmatrix} N & 0 \\ 0 & T' \end{pmatrix} = \begin{pmatrix} |N|^s & 0 \\ 0 & L^s \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |N|^t & 0 \\ 0 & L^t \end{pmatrix}$$

Hence, we have

$$N = |N|^{s} U_{11} |N|^{t}, \ |N|^{s} U_{12} L^{t} = 0 \text{ and } L^{s} U_{21} |N|^{t} = 0.$$

Since $\ker(T) \subset \ker(T^*)$,

$$\overline{\operatorname{ran}(U)} = \overline{\operatorname{ran}(T)} = \ker(T^*)^{\perp} \subset \ker(T)^{\perp} = \overline{\operatorname{ran}(|T|)}.$$

Let Nx = 0 for $x \in \mathcal{M}$. Then $x \in \ker(|T|) = \ker(U)$, and

$$Ux = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} = 0.$$

Hence

$$\ker(N) \subset \ker(U_{11}) \cap \ker(U_{21}).$$

Let $x \in \mathcal{M}$. Then

$$U\begin{pmatrix}x\\0\end{pmatrix} = \begin{pmatrix}U_{11}x\\U_{21}x\end{pmatrix} \in \overline{\operatorname{ran}(|T|)} = \overline{\operatorname{ran}(|N| \oplus L)}.$$

Hence

$$\operatorname{ran}(U_{11}) \subset \operatorname{ran}(|N|), \ \operatorname{ran}(U_{21}) \subset \overline{\operatorname{ran}(L)}.$$

$$\operatorname{ran}(U_{12}) \subset \operatorname{ran}(|N|), \ \operatorname{ran}(U_{22}) \subset \overline{\operatorname{ran}(L)}.$$

Let Lx = 0 for $x \in \mathcal{M}^{\perp}$. Then $x \in \ker(|T|) = \ker(U)$ and

$$U\begin{pmatrix}0\\x\end{pmatrix} = \begin{pmatrix}U_{12}x\\U_{22}x\end{pmatrix} = 0$$

Hence

$$\ker(L) \subset \ker(U_{12}) \cap \ker(U_{22}).$$

Let N = V|N| be the polar decomposition of N. Then

$$(V|N|^s - |N|^s U_{11})|N|^t = 0.$$

Hence $V|N|^s - |N|^s U_{11} = 0$ on $\overline{ran(|N|)}$. Since ker $(N) \subset ker(U_{11})$, this implies $0 = V|N|^s - |N|^s U_{11} = |N|^s (V - U_{11})$. Hence

$$\operatorname{ran}(V - U_{11}) \subset \ker(|N|) \cap \overline{\operatorname{ran}(|N|)} = \{0\}.$$

Hence $V = U_{11}$ and $N = U_{11}|N|$ is the polar decomposition of N. Since $|N|^s U_{12}L^t = 0$,

$$\operatorname{ran}(U_{11}L^t) \subset \ker(|N|) \cap \overline{\operatorname{ran}(|N|)} = \{0\}$$

Hence $U_{12}L^t$ and $U_{12} = 0$. Similarly we have $U_{21} = 0$ by $L^s U_{21}|N|^t = 0$. Hence $U = U_{11} \oplus U_{22}$. So we obtain

$$T = U|T| = U_{11}|N| \oplus U_{22}L = N \oplus T_1,$$

where $T_1 = U_{22}L$.

3. Quasisimilarity

An operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is called quasiaffinity if X is both injective and has a dense range. For $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, if there exist quasiaffinities $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that TX = XS and YT = SY, then we say that T and S are quasisimilar. The operator $T \in \mathcal{B}(\mathcal{H})$ is said to be pure if there exists no nontrivial reducing subspace \mathcal{M} of \mathcal{H} such that the restriction of T to \mathcal{M} is normal and is completely hyponormal if it is pure. Recall that every operator $T \in \mathcal{B}(\mathcal{H})$ has a direct sum decomposition $T = T_1 \oplus T_2$, where T_1 and T_2 are normal and pure parts, respectively. Of course in the sum decomposition, either T_1 or T_2 may be absent. The following lemma is due to Williams [32, Lemma 1.1].

Lemma 10. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be normal operators. It there exist injective operators $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that TX = XS and YT = SY, then T and S are unitarily equivalent.

Corollary 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s,t) operator for 0 < s, t, s + t = 1 and $0 . Then <math>T = T_1 \oplus T_2$ on the space $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where T_1 is normal and T_2 is pure and class p-wA(s,t), i.e., T_2 has no invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal.

The next result was proved for dominant operators in [28, Theorem 1], for p-hyponormal operators in [20] and for w-hyponormal operators in [22, Lemma 2.12].

Proposition 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s,t) operator for 0 < s,t,s+t = 1 and $0 such that ker<math>(T) \subset \text{ker}(T^*)$ and let $S \in \mathcal{B}(\mathcal{K})$ be a normal operator. If there exists a quasiaffinity $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ with dense range such that TX = XS, then T is normal.

To prove Proposition 2, we need the following lemmas.

Lemma 11. [9] If N is a normal operator on \mathcal{H} , then we have

$$\bigcap_{\lambda \in \mathbb{C}} (N - \lambda)\mathcal{H} = \{0\}.$$

Lemma 12. ([10]) Let $T \in \mathcal{B}(\mathcal{H})$, $D \in \mathcal{B}(\mathcal{H})$ with $0 \leq D \leq M(T - \lambda)(T - \lambda)^*$ for all $\lambda \in \mathbb{C}$, where M is a positive real number. Then for every $x \in D^{\frac{1}{2}}\mathcal{H}$ there exists a bounded function $f : \mathbb{C} \longrightarrow \mathcal{H}$ such that $(T - \lambda)f(\lambda) \equiv x$.

Proof. [Proof of Proposition 2] $\ker(T) \subset \ker(T^*)$ implies $\ker(T)$ reduces T. Also $\ker(S)$ reduces S since S is normal. Using the orthogonal decompositions $\mathcal{H} = \operatorname{ran}(|T|) \oplus \ker(T)$ and $\mathcal{H} = \operatorname{ran}(S) \oplus \ker(S)$, we can represent T and S as follows: $T = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$, $S = \begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$, where T_1 is an injective class $p \cdot wA(s,t)$ operator on $\operatorname{ran}(|T|)$ and S_1 is injective normal on $\operatorname{ran}(S)$. The assumption TX = XS asserts that X maps $\operatorname{ran}(S)$ to $\operatorname{ran}(T) \subset \operatorname{ran}(|T|)$ and $\ker(S)$ to $\ker(T)$, hence X is the form: $X = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix}$, where $X_1 \in \mathcal{B}(\operatorname{ran}(S), \operatorname{ran}(|T|), X_2 \in \mathcal{B}(\ker(S), \ker(T))$. Since TX = XS, we have that $T_1X_1 = X_1S_1$. Since X is injective with dense range, X_1 is also injective with dense range. Put $W_1 = |T_1|^s X_1$, then W_1 is also injective with dense range and satisfies $T(s,t)W_1 = W_1S$. Put $W_n = |\Delta^n(T(s,t))|^s W_{n-1}$, then W_n is also injective with dense range and satisfies $\Delta^n(T(s,t))W_n = W_nS$. From [26, Corollary 2.7] and [6], if there exists an integer m such that $\Delta^m(T(s,t))^* - \lambda f(\lambda) \equiv x$, for every $x \in (\Delta^n(T_1(s,t))^* \Delta^n(T_1(s,t) - \Delta^n(T_1(s,t))^*]^{\frac{1}{2}}\mathcal{H}$. Hence

$$W_n^* x = W_n^* (\Delta^n (T_1(s,t))^* - \lambda) f(\lambda)$$

= $(S_1^* - \lambda) W_n^* f(\lambda) \in \operatorname{ran}(S_1^* - \lambda)$ for all $\lambda \in \mathbb{C}$.

By Lemma 11, we have $W_n^* x = 0$, and hence x = 0 because W_n^* is injective. This implies that $\Delta^n(T_1(s,t))$ is normal. By Corollary 1, T_1 is normal and therefore $T = T_1 \oplus 0$ is also normal.

Theorem 8. Let T and S^* be class p-wA(s,t) operators with 0 < s, t, s + t = 1 and $0 such that <math>\ker(T) \subset \ker(T^*)$ and $\ker(S^*) \subset \ker(S)$. If there exist a quasiaffinity X such that TX = XS, then T and S are unitarily equivalent normal operators.

Proof. First decompose T and S^* into their normal and pure parts by $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and $S^* = S_1^* \oplus S_2^*$ on $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$, where T_1, S_1 are normal and T_2, S_2^* are pure. Let $X = [X_{ij}]_{i,j=1}^2$. Then TX = XS implies that $T_2X_{21} = X_{21}S_1$ and $T_2X_{22} = X_{22}S_2$. Let $T_2 = U_2|T_2|, S_2^* = V_2^*|S_2^*|$ be the polar decompositions of T_2 and S_2^* , respectively and

$$T_2(s,t) = |T_2|^s U_2 |T_2|^t, \ S_2^*(s,t) = |S_2^*|^s V_2^* |S_2^*|^t, \ W = |T_2|^s X_{22} |S_2^*|^s.$$

Then

$$T_2(s,t)W = |T_2|^s T_2 X_{22} |S_2^*|^s$$

= $|T_2|^s X_{22} S_2 |S_2^*|^s$
= $W(S_2^*(s,t))^*.$

Since $\overline{\operatorname{ran}(W)}$ reduces $T_2(s,t)$ and $\ker(W)^{\perp}$ reduces $S_2^*(s,t)$ and $T_2(s,t)|_{\overline{\operatorname{ran}(W)}}$ and $S_2^*(s,t)|_{\ker(W)^{\perp}}$ are unitarily equivalent normal operators, and since T_2, S_2^* are injective class p-wA(s,t)operators, we have $T_2|_{\overline{\operatorname{ran}(W)}} = T_2(s,t)|_{\overline{\operatorname{ran}(W)}}$ and $S_2^*|_{\ker(W)^{\perp}} = S_2^*(s,t)|_{\ker(W)^{\perp}}$ by Lemma 9. Since T_2, S_2^* are pure, it implies $W = |T_2|^s X_{22} |S_2^*|^s = 0$. Hence $X_{22} = 0$. Similarly $X_{12} = 0, X_{21} = 0$. Hence $X = X_{11}$ and S, T are unitarily equivalent normal operators.

The following lemma is due to Williams [32, Lemma 1.1]

Lemma 13. Let $N_1 \in \mathcal{B}(\mathcal{H})$ and $N_2 \in \mathcal{B}(\mathcal{K})$ be normal. If $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ are injective such that $N_1X = XN_2$ and $YN_1 = N_2Y$, then N_1 and N_2 are unitarily equivalent.

Stampfli and Wadhwa [28] proved that the normal parts of quasisimilar dominant operators are unitarily equivalent. This result was generalized to classes of p-hyponormal operators in [12]. We prove that theses results hold for class p-wA(s,t) operators.

Theorem 9. Suppose that 0 < s, t, s + t = 1 and) . For each <math>i = 1, 2, let $T_i \in \mathcal{B}(\mathcal{H}_i)$ be class p-wA(s, t) operators such that $\ker(T_j) \subset \ker(T_j^*)$ and let $T_i = N_i \oplus V_i$ on $\mathcal{H}_i = \mathcal{H}_{i1} \oplus \mathcal{H}_{i2}$, where N_i and V_i are the normal and pure parts, respectively of T_i . If T_1 and T_2 are quasisimilar, then N_1 and N_2 are unitarily equivalent and there exist $X_* \in \mathcal{B}(\mathcal{H}_{22}, \mathcal{H}_{12})$ and $Y_* \in \mathcal{B}(\mathcal{H}_{12}, \mathcal{H}_{22})$ having dense range such that $V_1X_* = X_*V_2$ and $Y_*V_1 = V_2Y_*$.

Proof. By hypothesis there exist quasiaffinities $X \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ such that $T_1X = XT_2$ and $YT_1 = T_2Y$. Let

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \text{ and } Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix}$$

with respect to $\mathcal{H}_2 = \mathcal{H}_{21} \oplus \mathcal{H}_{22}$ and $\mathcal{H}_1 = \mathcal{H}_{11} \oplus \mathcal{H}_{12}$, respectively. A simple matrix calculation shows that

$$V_1X_3 = X_3N_2$$
 and $V_2Y_3 = Y_3N_1$.

We claim that $X_3 = Y_3 = 0$. Let $\mathcal{M} = \operatorname{ran}(X_3)$. Then \mathcal{M} is a non-trivial invariant subspace of V_1 . Since $V_1^*X_3 = X_3N_2^*$ by Proposition 2, \mathcal{M} is an invariant subspace of V_1^* . Hence \mathcal{M} reduces $V_1, \sigma(V_1|_{\mathcal{M}}) \subset \sigma(V_1)$ and $V_1|_{\mathcal{M}}$ is invertible. Let $V_1' = V_1|_{\mathcal{M}}$ and define an operator $X_3' : \mathcal{H}_{12} \longrightarrow \mathcal{M}$ by $X_3'x = X_3x$ for each $x \in \mathcal{H}_{12}$. Then V_1' is class p-wA(s,t)by Lemma 6, so that X_3' has dense range and satisfies $V_1'X_3' = X_3'N_2$. Hence V_1' is normal by Propsition 2. Since V_1 is pure, this implies that $\mathcal{M} = \{0\}$ and $X_3 = 0$. Similarly, we have $Y_3 = 0$. Hence X_1 and Y_1 are injective.

Since $N_1X_1 = X_1N_2$ and $Y_1N_1 = N_2Y_1$, N_1 and N_2 are unitarily equivalent, by Lemma 13. Also, X_4 and Y_4 have dense ranges. Hence $V_1X_4 = X_4V_2$ and $Y_4V_1 = V_2Y_4$, so the proof is complete.

Corollary 3. Let $T_1 \in \mathcal{B}(\mathcal{H}_1)$ and $T_2 \in \mathcal{B}(\mathcal{H}_2)$ be quasisimilar class p-wA(s,t) operators for 0 < s, t, s + t = 1 and $0 . If <math>T_1$ is pure, then T_2 is also pure.

Corollary 4. Let $T_1 \in \mathcal{B}(\mathcal{H}_1)$ be class p-wA(s,t) operators for 0 < s, t, s + t = 1 and $0 and <math>T_2 \in \mathcal{B}(\mathcal{H}_2)$ be normal. If T_1 and T_2 are quasisimilar, then T_1 and T_2 are unitarily equivalent normal operators.

4. The Fuglede-Putnam Theorem

We offer various results related to the Fuglede-Putnam theorem in this section. If $T^*X = XS^*$ whenever TX = XS for every $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, a pair (T, S) is said to have the Fuglede-Putnam property. In operator theory, the Fuglede-Putnam theorem is well-known. It claims that the pair (T, S) possesses the Fuglede-Putnam property for any normal operators T and S. There are several generalizations of this theorem, the majority of which loosen the normality of T and S; see, for example, [22–24, 27, 28], and some references therein and for more details (see [3],[5],[4]). The Fuglede-Putnam theorem is the subject of the next lemma, which we will require in the future.

Lemma 14. ([29]) Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$. Then the following assertions equivalent.

- (i) The pair (T, S) has the Fuglede-Putnam property.
- (ii) If TX = XS, then $\overline{\operatorname{ran}(X)}$ reduces T, $\ker(X)^{\perp}$ reduces S, and $T|_{\overline{\operatorname{ran}(X)}}$, $S|_{\ker(X)^{\perp}}$ are unitarily equivalent normal operators.

Remark 1. A necessary condition for the pair (T, T^*) to satisfy Fuglede-Putnam's theorem is ker $(T) \subset$ ker (T^*) . Since for a class p-wA(s,t) operator this is not always true, class p-wA(s,t) operator do not Fuglede-Putnam's theorem. For example, if P is the orthogonal projection onto ker(T), with T is class p-wA(s,t), then $TP = PT^*$ but $T^*P \neq PT$. The following result (Corollary 6) prove that if T^* , S are p-class A(s,t) operators for 0 < s, t, s + t = 1 and $0 such that ker<math>(T^*)$ reduces T^* and ker(S) reduces S, then the pair (T, S) satisfy Fuglede-Putnam's theorem.

Theorem 10. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s,t) operator for 0 < s, t, s + t = 1 and $0 and <math>\ker(T) \subset \ker(T^*)$. If L is self-adjoint and $TL = LT^*$, then $T^*L = LT$.

Proof. Since $\ker(T) \subset \ker(T^*)$ and $TL = LT^*$, $\ker(T)$ reduces T and L. Hence

$$T = T_1 \oplus 0, \ L = L_1 \oplus L_2 \text{ on } \mathcal{H} = \overline{\operatorname{ran}(T^*)} \oplus \ker(T),$$

 $T_1L_1 = L_1T^*$ and $\{0\} = \ker(T_1) \subset \ker(T_1^*)$. Since $\overline{\operatorname{ran}(L_1)}$ is invariant under T_1 and reduces L_1 ,

$$T = \begin{pmatrix} T_{11} & S \\ 0 & T_{22} \end{pmatrix}, \ L_1 = L_{11} \oplus 0 \text{ on } \mathcal{H} = \overline{\operatorname{ran}(T^*)} = \overline{\operatorname{ran}(L_1)} \oplus \ker(L_1).$$

 T_{11} is an injective class p-wA(s,t) operator by Lemma 6 and L_{11} is an injective self-adjoint operator (hence it has dense range) such that $T_{11}L_{11} = L_{11}T_{11}^*$. Let $T_{11} = V_{11}|T_{11}|$ be the polar decomposition of T_{11} and $T_{11}(s,t) = |T_{11}|^s V_{11}|T_{11}|^t$, $W = |T_{11}|^s L_{11}|T_{11}|^s$. Then

$$T_{11}(s,t)W = |T_{11}|^{s}V_{11}|T_{11}|^{t}|T_{11}|^{s}L_{11}|T_{11}|^{s}$$

$$= |T_{11}|^{s}T_{11}L_{11}|T_{11}|^{s}$$

$$= |T_{11}|^{s}L_{11}T_{11}^{*}|T_{11}|^{s}$$

$$= |T_{11}|^{s}L_{11}|T_{11}|^{s}|T_{11}|^{t}V_{11}^{*}|T_{11}|^{s}$$

$$= W(T_{11}(s,t))^{*}.$$

Since $T_{11}(s,t)$ is min $\{sp,tp\}$ -hyponormal and ran(W) is dense (because ker $(W) = \{0\}$), $T_{11}(s,t)$ is normal by [12, Theorem 7]. Hence T_{11} is normal and $T_{11} = T_{11}(s,t)$ by Corollary 1. Then ran (L_1) reduces T_1 by Lemma 7 and $T_{11}^*L_{11} = L_{11}T_{11}$ by Lemma 14. Hence

$$T = T_{11} \oplus T_{22} \oplus 0,$$
$$L = L_{11} \oplus 0 \oplus L_2$$

and

$$T^*L = T^*_{11}L_{11} \oplus 0 \oplus 0 = L_{11}T_{11} \oplus 0 \oplus 0 = LT.$$

Example 2. Let $\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathbb{C}^2$ and define an operator R on \mathcal{H} by $R(\dots \oplus x_{-2} \oplus x_{-1} \oplus x_0^{(0)} \oplus x_1 \oplus \dots) = \dots \oplus Ax_{-2} \oplus Ax_{-1}^{(0)} \oplus Bx_0 \oplus Bx_1 \oplus \dots,$

where

$$A = \frac{1}{4} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Then R is a class p-wA(s,t). Moreover, $\operatorname{ran}(E) = \ker(R)$, E is not a self-adjoint and $\ker(R) \neq \ker(R^*)$, where E is the Riesz idempotent with respect to 0, see [31, Example 13]. Let T = R and L = P be the orthogonal projection onto $\ker(T)$. Then T is a class p-wA(s,t) operator and $TL = 0 = LT^*$, but $T^*L \neq LT$. Hence the kernel condition $\ker(T) \subset \ker(T^*)$ is necessary for Theorem 10.

Corollary 5. Let $T \in \mathcal{B}(\mathcal{H})$ be a class p-wA(s,t) operator for 0 < s,t,s+t = 1 and $0 and <math>\ker(T) \subset \ker(T^*)$. If $TX = XT^*$ for some $X \in \mathcal{B}(\mathcal{H})$ then $T^*X = XT$.

Proof. Let X = L + iJ be the Cartesian decomposition of X. Then we have $TL = LT^*$ and $TJ = JT^*$ by the assumption. By Theorem 10, we have $T^*L = LT$ and $T^*J = JT$. This implies that $T^*X = XT$.

If we use the 2×2 matrix trick, we easily deduce the following result.

Corollary 6. Suppose that 0 < s, t, s + t = 1 and $0 . Let <math>T^* \in \mathcal{B}(\mathcal{H})$ be a class p-wA(s,t) operator and $S \in \mathcal{B}(\mathcal{K})$ be a class p-wA(s,t) operator with $\ker(T^*) \subset \ker(T)$ and $\ker(S) \subset \ker(S^*)$. If $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and XT = SX, then $XT^* = S^*X$.

Proof. Put $A = \begin{pmatrix} T^* & 0 \\ 0 & S \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{K}$. Then A is a class p-wA(s,t) operator on $\mathcal{H} \oplus \mathcal{K}$ that satisfies $BA^* = AB$ and $\ker(A) \subset \ker(A^*)$. Hence we have $BA = A^*B$, by Corollary 5, and so $XT^* = S^*X$.

Example 3. Let $S = T^* = R$ as in Example 2 and X = P be the orthogonal projection onto ker(S). Then SX = 0 = XT, but $S^*X \neq XT^*$. Hence the kernel condition is necessary for Corollary 6.

As an application of Corollary 6, we establish the following result.

Corollary 7. Suppose that 0 < s, t, s + t = 1. Let $T \in \mathcal{B}(\mathcal{H})$ and $S^* \in \mathcal{B}(\mathcal{K})$ be class p-wA(s,t) and $\ker(T) \subseteq \ker(T^*)$, $\ker(S^*) \subset \ker(S)$. Let TX = XS for some operator $X \in \mathcal{B}(\mathcal{K},\mathcal{H})$. Then $\operatorname{ran}(X)$ reduces T, $\ker(S)^{\perp}$ reduces S and $T|_{\operatorname{ran}(X)}$, $S|_{\ker(X)^{\perp}}$ are unitarily equivalent normal operators.

Proof. By Corollary 6, $T^*X = XS^*$. Therefore $T^*TX = XS^*S$ and so |T|X = X|S|. Let T = U|T|, S = V|S| be the polar decomposition. Then UX|S| = U|T|X = TX = XS = XV|S|. Let $x \in \ker(|S|)$. Then Vx = 0 and TXx = XSx = 0. Hence $Xx \in \ker(T) = \ker(U)$ and UXx = 0. Hence UX = XV. Since $\ker(U) = \ker(T) \subset \ker(T^*) = \ker(U^*)$, $UU^* \leq U^*U$. Hence $U^*UU = U^*UUU^*U = UU^*U = U$. This implies U and V^* are quasinormal. Hence $U^*X = XV^*$, $\overline{\operatorname{ran}(X)}$ reduces U, |T|, $\ker(X)^{\perp}$ reduces V, |S|. We may assume t < s. Then T, S^* are class p-wA(s, s) operators with reducing kernels.

Let $T(s,s) = |T|^{s}U|T|^{s}$, $S(s,s) = |S|^{s}V|S|^{s}$. Then T(s,s), $S^{*}(s,s) = |S^{*}|^{s}V^{*}|S^{*}|^{s} = VS(s,s)^{*}V^{*}$ are $\frac{p}{2}$ -hyponormal. Also, since

$$|S(s,s)^*| - |S(s,s)| = V^*(|S^*(s,s)| - |S^*(s,s)^*|)V \ge 0,$$

 $S(s,s)^*$ is $\frac{p}{2}$ -hyponormal, too. Then

$$T(s,s)X = |T|^s U|T|^s X = |T|^s UX|S|^s$$
$$= |T|^s XV|S|^s = XS(s,s),$$

hence $T(s,s)^*X = XS(s,s)^*$, $\overline{\operatorname{ran}(X)}$ reduces T(s,s), $\ker(X)^{\perp}$ reduces S(s,s) and

$$T|_{\overline{\operatorname{ran}(X)}}(s,s) = T(s,s)|_{\overline{\operatorname{ran}(X)}} \simeq S(s,s)|_{\ker(X)^{\perp}} = S|_{\ker(X)^{\perp}}(s,s)$$

are unitarily equivalent normal operators. Hence $T|_{\overline{\operatorname{ran}(X)}}$, $S|_{\ker(X)^{\perp}}$ are normal by Corollary 1, and that they are unitarily equivalent follows from the fact that if N = U|N| and M = W|M| are normal operators, then for a unitary operator V, $N = V^*MV$ if and only if $U = V^*WV$ and $|N|^s = V^*|M|^sV$ for any s > 0.

Theorem 11. Suppose that 0 < s, t, s + t = 1. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-wA(s, t) and N a normal operator. Let TX = XN. Then the following assertions hold.

- (i) If the range ran(X) is dense, then T is normal.
- (ii) If $\ker(X^*) \subset \ker(T^*)$, then T is quasinormal.

Proof. Let $Z = |T|^s X$. Then

$$T(s,t)Z = |T|^s U|T|^t |T|^s X = |T|^s T X$$
$$= |T|^s X N = Z N.$$

Since T(s,t) is min $\{sp,tp\}$ -hyponormal, we have

$$T(s,t)^*Z = ZN^*$$

by [30]. Hence

$$\begin{split} (T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)|T|^sX &= T(s,t)^*T(s,t)Z - T(s,t)T(s,t)^*Z \\ &= T(s,t)^*ZN - T(s,t)ZN^* = ZN^*N - ZNN^* = 0. \end{split}$$

(i) If $\overline{\operatorname{ran}(X)}$ is dense, then

$$(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)|T|^s = 0.$$

Since

$$\ker(|T|^s) \subset \ker(T(s,t)) \cap \ker(T(s,t)^*),$$

this implies T(s,t) is normal. Hence T is normal by Corollary 1.

(ii) Let $X^*|T|^s x = 0$. Then $|T|^s x \in \ker(X^*) \subset \ker(\underline{T^*}) = \ker(\underline{U^*})$ and $\underline{T(s,t)^*}x = |T|^t U^*|T|^s x = 0$. Hence $\ker(X^*|T|^s) \subset \ker(T(s,t)^*)$ and $\operatorname{ran}(T(s,t)) \subset \operatorname{ran}(|T|^s X)$. Hence

$$(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)T(s,t) = 0$$

by (i). This implies T(s,t) is quasinormal, and T is quasinormal by Theorem 1.

Theorem 12. Suppose that 0 < s, t, s + t = 1 and $0 < q \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be such that T^* is p-hyponormal or log-hyponormal. Let $S \in \mathcal{B}(\mathcal{K})$ be class q-wA(s, t) with $\ker(S) \subset \ker(S^*)$. If XT = SX, for some $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $XT^* = S^*X$.

Proof. Let T^* be a *p*-hyponormal operator for $p \ge \frac{1}{2}$ and let T = U|T| be the polar decomposition of T. Then the generalized Aluthge transform $T^*(s,t)$ of T^* is hyponormal and satisfies

$$|T^*(s,t)|^2 \ge |T|^2 \ge |(T^*(s,t))^*|^2, \tag{12}$$

$$X'T(s,t) = SX' \tag{13}$$

where $X' = XU|T|^t$. Using the decompositions $\mathcal{H} = \ker(X')^{\perp} \oplus \ker(X')$ and $\mathcal{K} = \overline{\operatorname{ran}(X')} \oplus \operatorname{ran}(X')^{\perp}$, we see that T(s,t), S and X' are of the form

$$T^*(s,t) = \begin{pmatrix} T_1 & 0 \\ T_2 & T_3 \end{pmatrix}, \ S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}, \ X' = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix}$$

where T_1^* is hyponormal, S_1 is class q-wA(s,t) with $\ker(S_1) \subset \ker(S_1^*)$ and X_1 is a one-one operator with dense range. Since X'T(s,t) = SX', we have

$$X_1 T_1 = S_1 X_1. (14)$$

Hence T_1 and S_1 are normal by Corollary 6, so that $T_2 = 0$, by Lemma 12 of [30] and $S_2 = 0$ by Lemma 7. Then $|T| = |T_1| \oplus P$, for some positive operator P, by (12) and $U = \begin{pmatrix} U_1 & U_2 \\ 0 & U_3 \end{pmatrix}$ by Lemma 13 of [30]. Let $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ be a 2 × 2 matrix representation of X with respect to the decomposition $\mathcal{H} = \ker(X')^{\perp} \oplus \ker(X')$ and $\mathcal{K} = \overline{\operatorname{ran}(X')} \oplus \operatorname{ran}(X')^{\perp}$. Then $X' = XU|T|^t$ implies that $X_1 = X_{11}U_1|T_1|^t$ and hence $\ker(T_1) \subset \ker(X_1) = \{0\}$. This shows that T_1 is one-one and hence it has dense range, so that $U_2 = 0$ and $T = T_1 \oplus T_4$ for some hyponormal operator T_4^* by [30, Lemma 13]. Since

$$\begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} = X' = XU|T|^t = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} U_1|T_1|^t & 0 \\ 0 & U_3|T_4|^t \end{pmatrix}$$

we deduce the following assertions.

$$X_{12}U_2|T_4|^t = 0$$
; hence $X_{12}T_3 = 0$ because $T_4 = U_3|T_4|$.

$$X_{21}U_1|T_1|^t$$
; hence $X_{12} = 0$ because $U_1|T_1|^{\frac{1}{2}}$ has dense range.

$$X_{22}U_3|T_4|^t = 0$$
; hence $X_{22}T_3 = 0$.

The assumption XT = SX tell us that,

$$X_{11}T_1 = S_1X_{11}$$

$$X_{12}T_4 = S_1X_{12} = 0,$$

$$X_{22}T_4 = S_3X_{22} = 0.$$

Since T_1 and S_1 are normal, we have $X_{11}T_1^* = S_1^*X_{11}$, by Fuglede-Putnam theorem. The *p*-hyponormality of T_4^* shows that $\overline{\operatorname{ran}}(T_4^*) \subset \overline{\operatorname{ran}}(T_4)$. Also, we have $\ker(S_3) \subset \ker(S_3^*)$. Hence, we also have $X_{12}T_4^* = S_1^*X_{12} = 0$ and $X_{22}T_4^*S_3^*X_{22} = 0$. This implies that $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S^*X$.

Next, we prove the case where T^* is *p*-hyponormal for 0 . Let <math>X' be as above. Then $T^*(s,t)$ is $(p+\frac{1}{2})$ -hyponormal and satisfies X'T(s,t) = SX'. Use the same argument as above. We obtain $T(s,t) = T_1 \oplus T_3$ on $\mathcal{H} = \ker(X')^{\perp} \oplus \ker(X')$ and $S = S_1 \oplus S_3$, where T_1 is an injective normal operator and S_1 is also normal. Hence we have $T = T_1 \oplus T_4$ for some *p*-hyponormal T_4^* , by Lemma 13 of [30]. Again using the same argument as above, we obtain $X_{21} = 0, X_{11}T_1^* = S_1^*X_{11}, X_{12}T_4^* = S_1^*X_{12} = 0$ and $X_{22}T_4^* = S_3^*X_{22} = 0$. Hence we have $XT^* = S^*X$.

Finally, we assume that T^* is log-hyponormal. Let T(s,t) and X' be as above. Then X'T(s,t) = SX' and $T^*(s,t)$ is semi-hyponormal and satisfies

$$|T^*(s,t)| \ge |T^*| \ge |(T^*(s,t)^*|.$$

By the same argument as above, we have $T(s,t) = T_1 \oplus T_3$ on $\mathcal{H} = \ker(X')^{\perp} \oplus \ker(X')$ and $S = S_1 \oplus S_3$ on $\mathcal{K} = \overline{\operatorname{ran}(X')} \oplus \operatorname{ran}(X')^{\perp}$, where T_1 is an injective normal operator, S_1 is normal, T_3^* is invertible semi-hyponormal and S_3 is class $q \cdot wA(s,t)$ with $\ker(S_3) \subset \ker(S_3^*)$. By Lemma 13 of [30], we have that T is of the form $T = T_1 \oplus T_4$, for some log-hyponormal T_4^* . Let $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$. Then $X' = XU|T|^t$ implies that $X_{12} = 0, X_{21} = 0$ and $X_{22} = 0$. The assumption XT = SX implies that $X_{11}T_1 = S_1X_{11}$, hence $X_{11}T_1^* \oplus 0 = S_1^*X_{11}$ by Fuglede-Putnam theorem. Thus we have $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S^*X$. Therefore, the proof of the theorem is achieved.

Example 4. Let R be an operator such that ker(R) does not reduce R and let P be the orthogonal projection onto ker(R). Then P does not commute with T; otherwise ran(R) =ker(R) reduce T. Hence $PR \neq 0 = RP$. It is easy to see that $RP = PR^* = 0$ but $R^*P \neq PR(\neq 0)$ because ran $(R^*P) \subset$ ran $(R^*) \subset$ ker $(R^{\perp}) = I - P$. If we put T = R, then the assertion of Theorem 10 does not hold for such T. Also, if we put $T = R^*$, S = I - P and X = P, then $XT = PR^* = 0 = (I - P)P = SX$. However, $XT^* = PR \neq 0 = (I - P)P = S^*X$. Hence the assertion of Theorem 12 does not hold for such T.

REFERENCES

Theorem 13. Let $T \in \mathcal{B}(\mathcal{H})$ be such that T^* is an injective class p-wA(s,t) for $0 < s, t, s + t = and 0 < p \leq 1$. Let $S \in \mathcal{B}(\mathcal{K})$ be dominant. If XT = SX, for some $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $XT^* = S^*X$.

Proof. Assume that T^* is an injective *p*-*w*-hyponormal and let T = U|T| be the polar decomposition of T. Let T(s,t) be the aluthge transform of T and $X' = XU|T|^t$. Then X'T(s,t) = SX' and $T^*(s,t)$ is *rp*-hyponormal and satisfies

$$|T^*(s,t)|^{2rp} \ge |T^*|^{2rp} \ge |(T^*(s,t))^*|^{2rp}$$

for $r \in \min\{s,t\}$. By the same argument in the proof of Theorem 12, we conclude that $T^*(s,t) = T_1 \oplus T_3$ on $\mathcal{H} = \ker(X')^{\perp} \oplus \ker(X')$ and $S = S_1 \oplus S_3$, where T_1 is an injective normal operator and S_1 is also normal, T_3^* is invertible class p-wA(s,t) and S_3 is dominant. Hence by Lemma 7, we have that T is of the form $T = T_1 \oplus T_4$ for some class p-wA(s,t) T_4^* . Let

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}.$$

Then $X' = XU|T|^t$ implies that $X_{12} = 0$, $X_{21} = 0$ and $X_{22} = 0$. The assumption XT = SX implies that $X_{11}T_1 = S_1X_{11}$, hence $X_{11}T_1^* = S_1^*X_{11}$ by Fuglede-Putnam theorem. Thus we have $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S^*X$. Therefore, the proof of the theorem is achieved.

Example 5. Let $T^* = R$ as in Example 2. Let X = P be the orthogonal projection onto $\ker(T^*)$ and S = I - P. Then $SX = 0 = XT^*$, but $0 = S^*X \neq XT^*$. Hence the injectivity condition is necessary for Theorem 13.

References

- A. Uchiyama, K. Tanahashi and J. I. Lee. Spectrum of class A(s,t) operators. Acta Sci. Math. (Szeged), 70:279–287, 2004.
- [2] A. Aluthge. On p-hyponormal operators for 0 . Integral Equations Operator Theory, 13:307–315, 1990.
- [3] Z. Mijajlovič et al. Nestandardna Analiza. University of Belgrade, Faculty of Mathematics, Belgrade, 2014.
- [4] V. Todorčevič. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer Nature, Switzerland AG, 2019.
- [5] V. Todorčevič. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys., 9:1211–1225, 2019.
- [6] M. Chō and T. Huruya. *p*-hyponormal operator for 0 . Commentations Mthematicae, 33:23–29, 1993.

- [7] M. Chō and K. Tanahashi. Isolated point of spectrum of *p*-hyponormal, loghyponormal operators. *Integral Equations Operator Theory*, 43:379–384, 2002.
- [8] M. Chō and K. Yamazaki. An operator transform from class A to the class of hyponormal operators and its application. *Integral Equations Operator Theory*, 53:497–508, 2005.
- [9] C.R.Putnam. Ranges of normal and subnormal operators. *Michigan Math. J.*, 18:33– 36, 1971.
- [10] C.R.Putnam. Hyponormal contractions and strong power convergence. Integral Equations Operator Theory, 57:531–538, 1975.
- [11] R. G. Douglas. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17:413–415, 1966.
- [12] B. P. Duggal. Quasi-similar p-hyponormal operators. Integral Equations Operator Theory, 26:338–345, 1996.
- [13] M. Fujii, D. Jung, S. H. Lee., M. Y. Lee., and R. Nakamoto. Some classes of operators related to paranormal and log-hyponormal operators. *Math. Japon.*, 51:395–402, 2000.
- [14] T. Furuta. $A \ge B \ge O$ assures $(B^r A^p B^r)^{\frac{1}{q}} \ge B^{\frac{p+2r}{q}}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge (p+2r)$. Proc. Amer. Math. Soc., 101:85–88, 1987.
- [15] Li Haiying. Powers of an invertible (s, p)-w-hyponormal operator. Acta Math. Scientia, 28B(2):282–288, 2008.
- [16] F. Hansen. An equality. Math. Ann., 246:249–250, 1980.
- [17] F. Hansen and G. K. Pedersen. Jensen's inequality for operators and L owner's theorem. Math. Ann., 258:229–241, 1982.
- [18] M. Ito. Some classes of operators with generalised Aluthege transformations. SUT J. Math., 35:149-165, 1999.
- [19] M. Ito and T. Yamazaki. Relations between two inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{P+r}} \geq B^{r}$ and $A^{p} \geq (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{r}{P+r}}$ and their applications. Integral Equations Operator Theory, 44:442–450, 2002.
- [20] I. H. Jeon and B. P. Duggal. p-Hyponormal operators and quasisimilarity. Integral Equations Operator Theory, 49(3):397-403, 2004.
- [21] M. Chō, M.H.M Rashid, K. Tanahashi and A. Uchiyama. Spectrum Of Class pwA(s,t) Operators. Acta Sci. Math. (Szeged), 82(3-4):641-649, 2016.
- [22] M.H.M.Rashid. An Extension of Fuglede-Putnam Theorem for w-hyponormal Operators. Afr. Diaspora J. Math. (N.S.), 14(1):106-118, 2012.

- [23] M.H.M.Rashid. Class wA(s, t) operators and quasisimilarity. *Port. Math.*, 69(4):305–320, 2012.
- [24] M.H.M.Rashid. Fuglede-Putnam type theorems via the generalized Aluthge transform. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 108(2):1021-1034, 2014.
- [25] M.H.M.Rashid. A note on class p-wA(s,t) operators. Filomat, 36(5):1675–1684, 2022.
- [26] T. Prasad and K. Tanahashi. On class p-wA(s,t) operators. Functional Analysis, Approximation Computation, 6(2):39–42, 2014.
- [27] S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida. Quasinormality and Fuglede-Putnam theorem for class A(s,t) operators. Nihonkai Math. J., 17:49–67, 2006.
- [28] J. G. Stampfli and B. L. Wadhwa. An asymmetric Putnam-Fuglede theorem for dominant operators. *Indiana Univ. Math.*, 25(4):359–365, 1976.
- [29] K. Takahashi. On the converse of Putnam-Fuglede theorem. Acta Sci. Math. (Szeged), 43:123–125, 1981.
- [30] A. Uchiyama and K. Tanahashi. Fuglede-Putnam theorem for p-hyponormal or loghyponormal operators. Glasg. Math. J., 44:397–410, 2002.
- [31] A. Uchiyama and K. Tanahashi. On the Riesz idempotent of class A operators. Math. Ineq. Appl., 5(2):291–298, 2002.
- [32] L. R. Williams. Quasi-similarity and hyponormal operators. Integral Equations Operator Theory, 5:678–686, 1981.
- [33] M. Yanagida. Powers of class wA(s,t) operators with generalised Aluthge transformation. J. Inequal. Appl., 7:143–168, 2002.
- [34] C. Yang and J. Yuan. On class wF(p,r,q) operators. Acta. Math. Sci., 27:769–780, 2007.
- [35] J. Yuan and C. Yang. Spectrum of class wF(p, r, q) operators for $p+r \leq 1$ and $q \geq 1$. Acta Sci. Math. (Szeged), 71:767–779, 2005.
- [36] J. Yuan and C. Yang. Powers of class wF(p, r, q) operators. Journal Inequalities in Pure and Applied Math., 7(1):article 32, 2006.