EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 3, 2022, 1067-1089
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

The Fuglede-Putnam theorem and quasinormality for class $p-w A(s, t)$ operators

M.H.M.Rashid ${ }^{1, *}$, N. H. Altaweel ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science P.O. Box(7), Mu'tah university, Al-KarakJordan
${ }^{2}$ Department of Mathematics-Faculty of Science, University of Tabuk, P.O.Box 741- Tabuk 71491, Saudi Arabia

Abstract

In this work, we demonstrate that (i) if T is a class $p-w A(s, t)$ operator and $T(s, t)$ is quasinormal (resp., normal), then T is also quasinormal (resp., normal) (ii) If T and $T *$ are class $p-w A(s, t)$ operators, then T is normal; (iii) the normal portions of quasisimilar class p $w A(s, t)$ operators are unitarily equivalent; and (iv) Fuglede-Putnam type theorem holds for a class $p-w A(s, t)$ operator T for $0<s, t, s+t=1$ and $0<p \leq 1$ if T satisfies a kernel condition $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$.

2020 Mathematics Subject Classifications: 47A10, 47A11, 47B20
Key Words and Phrases: Quasinormal, Class $A(s, t)$ operators, Class $p-(A(s, t)$ operators, Fuglede-Putnam theorem

1. Introduction

On a complex Hilbert space \mathcal{H}, let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators. Aluthge [2] investigated the p-hyponormal operator T, which is defined as $\left(T^{*} T\right)^{p} \geq$ $\left(T T^{*}\right)^{p}$ with $0 \leq p \leq 1$ using the Furuta inequality [14]. When $p=1, T$ is said to be hyponormal. As a result, p-hyponormality is a broadening of hyponormality. Following [2], several authors are looking towards novel hyponormal operator generalizations.

It is known that p-hyponormal operators have many interesting properties as hyponormal operators, for example, Putnam's inequality, Fuglede-Putnam type theorem, Bishop's property (β), Weyl's theorem and polaroid. Let $T \in \mathcal{B}(\mathcal{H})$ and $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. By taking $U|T| x=T x$ for $x \in \mathcal{H}$ and $U x=0$ for $x \in \operatorname{ker}|T|, T$ has a unique polar decomposition $T=U|T|$ with condition $\operatorname{ker} U=\operatorname{ker}|T|$. We say that $T=U|T|$ is the polar decomposition of T. In [2], Aluthge extended the class of hyponormal operators by introducing p-hyponormal operators and obtained some properties with the help of the transformation

[^0]Email addresses: malik_okasha@yahoo.com (M.H.M. Rashid), naltawil@ut.edu.sa (N. H. Altaweel)
$T\left(\frac{1}{2}, \frac{1}{2}\right)=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$, which now known as the Aluthge transform. The introduction of these operators by Aluthge has inspired many researchers not only to expose some important properties of p-hyponormal operators but also to introduce the number of extensions ([1, 7, 8, 13]).

The Aluthge transform, and more broadly, the generalized Aluthge transform defined as $T(s, t)=|T|^{s} U|T|^{t}$ with $s, t>0$, have proven to be useful tools in this attempt. The generalized Aluthge transform is used to analyze class $p-w A(s, t)$ operators in this article.

Definition 1. Let $T=U|T|$ be the polar decomposition of an operator $T \in \mathcal{B}(\mathcal{H})$. Then the generalized Aluthge transform $T(s, t)$ of T is defined as follows:

$$
T(s, t)=|T|^{s} U|T|^{t} .
$$

Moreover, for each nonnegative integer n, the n-th generalized Aluthge transform $\Delta^{n}(T(s, t))$ of $T(s, t)$ is defined as follows:

$$
\Delta^{n}(T(s, t))=\Delta\left(\Delta^{n-1}(T(s, t))\right), \Delta^{0}(T(s, t))=T(s, t)
$$

Definition 2. Let $0<s, t$, and $0<p \leq 1$. An operator T is said to be a class
(i) $p-w A(s, t)$ if

$$
\left(\left|T^{*}\right| t|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T^{*}\right|^{2 t p}
$$

and

$$
|T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}}
$$

(ii) $p-A(s, t)$ if $\left(\left|T^{*}\right| t|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T^{*}\right|^{2 t p}$.
(iii) $p-A$ if $\left|T^{2}\right|^{p} \geq|T|^{2 p}$.
(iv) (s, p)-w-hyponormal if $|T(s, s)|^{p} \geq|T|^{2 s p} \geq \mid\left(\left.T(s, s)^{*}\right|^{p}\right.$.

It is known that p-hyponormal operators and log-hyponormal operators are class 1 $w A(s, t)$ for any $0<s, t$. Class $p-w A(s, s)$ is called class (s, p) - w-hyponormal, class 1$w A(1,1)$ is called class A and class $1-w A\left(\frac{1}{2}, \frac{1}{2}\right)$ is called w-hyponormal [13, 15, 18, 19, 33]. Hence class $p-w A(s, t)$ operator is a generalization of class ($s, p)$-w-hyponormal, class A and w-hyponormal operators. C. Yang and J. Yuan [34-36] studied class $w F(p, r, q)$ operator T, i.e.,

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}}
$$

and

$$
|T|^{2(p+r)\left(1-\frac{1}{q}\right)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{1-\frac{1}{q}}
$$

where $0<p, 0<r, 1 \leq q$. If we take small p_{1} such that $0<p_{1} \leq \frac{p+r}{q r}$ and $p_{1} \leq \frac{(p+r)(q-1)}{p q}$, then T is class $p_{1}-w A(p, r)$. Hence class $p_{1}-w A(p, r)$ is a generalization of class $w F(p, r, q)$. We will use this property frequently.

It is known that $T=U|T|$ is class $p-w A(s, t)$ if and only if

$$
|T(s, t)|^{\frac{2 t p}{s+t}} \geq|T|^{2 t p}, \quad|T|^{2 s p} \geq\left|T(s, t)^{*}\right|^{\frac{2 s p}{s+t}}
$$

by [26]. Hence

$$
|T(s, t)|^{\frac{2 r p}{s+t}} \geq|T|^{2 r p} \geq\left|T(s, t)^{*}\right|^{\frac{2 r p}{s+t}}
$$

and $T(s, t)$ is $r p$-hyponormal for all $r \in(0, \min \{s, t\}]$.
The following is a breakdown of the paper's structure: In section 2, we prove that if T is a class of $p-w A(s, t)$ operators and its Aluthge transform $T(s, t)$ is quasinormal (respectively, normal), then T is also quasinormal (resp., normal). The normal parts of quasisimilar class $p-w A(s, t)$ operators are unitarily equivalent in section 3 . The major goal of Section 4 is to demonstrate that the Fuglede-Putnam theorem holds for a class $p-w A(s, t)$ operator T with $0<s, t, s+t=1$ and $0<p \leq 1$ if T fulfills the kernel condition $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$.

2. Quasinormality

Let $T=U|T|$ be the polar decomposition of $T \in \mathcal{B}(\mathcal{H}) . T$ is said to be quasinormal if $|T| U=U|T|$, or equivalently, $T T^{*} T=T^{*} T T$. S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida [27] proved that if T is class $A(s, t)$ and $T(s, t)$ is quasinormal, then T is quasinormal and $T=T(s, t)$ if $s+t=1$. The following is a generalization of this result.

Theorem 1. Let T be a class $p-w A(s, t)$ operator with the polar decomposition $T=U|T|$. If $T(s, t)=|T|^{s} U|T|^{t}$ is quasinormal, then T is also quasinormal. Hence T coincides with its generalized Aluthge transform $T(s, t)$.

Proof. Since T is a class $p-A(s, t)$ operator,

$$
\begin{equation*}
|T(s, t)|^{\frac{2 r p}{s+t}} \geq|T|^{2 r p} \geq\left|(T(s, t))^{*}\right|^{\frac{2 r p}{s+t}} \tag{1}
\end{equation*}
$$

for all $r \in(0, \min \{s, t\})$ by [19, Theorem 3] and Löwner-Heinz inequality. Then Douglas's theorem [11] implies

$$
\overline{\operatorname{ran}(T(s, t))}=\overline{\operatorname{ran}\left((\mid T(s, t))^{*} \mid\right)} \subset \overline{\operatorname{ran}(|T|)}=\overline{\operatorname{ran}(|T(s, t)|)}
$$

where $\overline{\mathcal{M}}$ denotes the norm closure of \mathcal{M}. Let $T(s, t)=W|T(s, t)|$ be the polar decomposition of $T(s, t)$. Then $E:=W^{*} W=U^{*} U \geq W W^{*}=: F$. Put

$$
\left|(T(s, t))^{*}\right|^{\frac{1}{s+t}}=\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right), W=\left(\begin{array}{cc}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)
$$

on $\mathcal{H}=\overline{\operatorname{ran}(T(s, t))} \oplus \operatorname{ker}\left((T(s, t))^{*}\right)$.
Then X is injective and has a dense range. Since $T(s, t)$ is quasinormal, W commutes with $|T(s, t)|$ and

$$
|T(s, t)|^{\frac{2 r p}{s+t}}=W^{*} W|T(s, t)|^{\frac{2 r p}{s+t}}=W^{*}|T(s, t)|^{\frac{2 r p}{s+t}} W
$$

$$
\geq W^{*}|T|^{2 r p} W \geq W^{*}\left|(T(s, t))^{*}\right|^{\frac{2 r p}{s+t}} W=|T(s, t)|^{\frac{2 r}{s+t}} .
$$

Hence

$$
|T(s, t)|^{\frac{2 r p}{s+t}}=W^{*}|T(s, t)|^{\frac{2 r p}{s+t}} W=W^{*}|T|^{2 r p} W,
$$

and

$$
\begin{align*}
\left|(T(s, t))^{*}\right|^{\frac{2 r p}{s+t}} & \left.\left.=W|T(s, t)|^{\frac{2 r p}{s p t}} W^{*}=W W^{*} \right\rvert\, T(s, t)\right)^{\frac{2 r p}{s+t}} W W^{*} \tag{2}\\
& =W W^{*}|T|^{2 r p} W W^{*}=\left(\begin{array}{cc}
X^{2 r p} & 0 \\
0 & 0
\end{array}\right) . \tag{3}
\end{align*}
$$

Since $W W^{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),(1),(2)$ and (3) imply that $|T(s, t)|^{\frac{2 r p}{s+t}}$ and $|T|^{2 r p}$ are of the forms

$$
|T(s, t)|^{\frac{2 r p}{s+t}}=\left(\begin{array}{ll}
X^{2 r p} & 0 \tag{4}\\
0 & Y^{2 r p}
\end{array}\right) \geq|T|^{2 r p}=\left(\begin{array}{ll}
X^{2 r p} & 0 \\
0 & Z^{2 r p}
\end{array}\right)
$$

where $\overline{\operatorname{ran}(Y)}=\overline{\operatorname{ran}(Z)}=\overline{\operatorname{ran}(|T|)} \ominus \overline{\operatorname{ran}(T(s, t))}=\operatorname{ker}\left((T(s, t))^{*}\right) \ominus \operatorname{ker}(T)$.
Since W commutes with $|T(s, t)|$,

$$
\left(\begin{array}{ll}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right)=\left(\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right)\left(\begin{array}{ll}
W_{1} & W_{2} \\
0 & 0
\end{array}\right) .
$$

So $W_{1} X=X W_{1}$ and $W_{2} Y=X W_{2}$, and hence $\overline{\operatorname{ran}\left(W_{1}\right)}$ and $\overline{\operatorname{ran}\left(W_{2}\right)}$ are reducing subspaces of X. Since $W^{*} W|T(s, t)|=|T(s, t)|$, we have $W_{1}^{*} W_{1}=1$ and

$$
\begin{aligned}
& X^{k}=W_{1}^{*} W_{1} X^{k}=W_{1}^{*} X^{k} W_{1}, \\
& Y^{k}=W_{2}^{*} W_{2} Y^{k}=W_{2}^{*} X^{k} W_{2},
\end{aligned}
$$

for $k=1,2, \cdots$.
Put $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$. Then $T(s, t)=|T|^{s} U|T|^{t}=W|T(s, t)|$ implies

$$
\left(\begin{array}{ll}
X^{s} & 0 \\
0 & Z^{s}
\end{array}\right)\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{ll}
X^{t} & 0 \\
0 & Z^{t}
\end{array}\right)=\left(\begin{array}{ll}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
X^{s+t} & 0 \\
0 & Y^{s+t}
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
X^{s} U_{11} X^{t} & =W_{1} X^{s+t}=X^{s} W_{1} X^{t}, \\
X^{s} U_{12} Z^{t} & =W_{2} Y^{s+t}=X^{s+t} W_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& X^{s}\left(U_{11}-W_{1}\right) X^{t}=0 \\
& X^{s}\left(U_{12} Z^{t}-X^{t} W_{2}\right)=0 .
\end{aligned}
$$

Since X is injective and has a dense range, $U_{11}=W_{1}$ is isometry and $U_{12} Z^{t}=X^{t} W_{2}$. Then

$$
U^{*} U=\left(\begin{array}{ll}
U_{11}^{*} U_{11}+U_{21}^{*} U_{21} & U_{11}^{*} U_{l 2}+U_{21}^{*} U_{22} \\
U_{12}^{*} U_{11}+U_{22}^{*} U_{21} & U_{12}^{*} U_{12}+U_{22}^{*} U_{22}
\end{array}\right)
$$

on $\mathcal{H}=\overline{\operatorname{ran}(T(s, t))} \oplus \operatorname{ker}\left((T(s, t))^{*}\right)$ is the orthogonal projection onto $\overline{\operatorname{ran}(|T|)} \supset \overline{\operatorname{ran}(T(s, t))}$, we have $U_{21}=0$ and

$$
U^{*} U=\left(\begin{array}{ll}
1 & 0 \\
0 & U_{12}^{*} U_{12}+U_{22}^{*} U_{22}
\end{array}\right)
$$

Since $U_{12} Z^{t}=X^{t} W_{2}$, we have

$$
Z^{2 t} \geq Z^{t} U_{12}^{*} U_{12} Z^{t}=W_{2}^{*} X^{2 t} W_{2}=Y^{2 t}
$$

and

$$
Z^{2 r p} \geq\left(Z^{t} U_{12}^{*} U_{12} Z^{t}\right)^{\frac{r p}{t}}=\left(W_{2}^{*} X^{t} W_{2}\right)^{\frac{r p}{t}}=Y^{2 r p} \geq Z^{2 r p}
$$

by Löwner-Heinz inequality and (4). Hence

$$
\left(Z^{t} U_{12}^{*} U_{12} Z^{t}\right)^{\frac{r p}{t}}=Z^{2 r p}=Y^{2 r p},
$$

so $Z=Y$ and $|T(s, t)|=|T|^{s+t}$. Since

$$
\begin{aligned}
Z^{2 t} & =Z^{t} U_{12}^{*} U_{12} Z^{t} \\
& \leq Z^{t} U_{12}^{*} U_{12} Z^{t}+Z^{t} U_{22}^{*} U_{22} Z^{t} \leq Z^{2 t}
\end{aligned}
$$

$Z^{t} U_{22}^{*} U_{22} Z^{t}=0$ and $U_{22} Z^{t}=0$. This implies $\operatorname{ran}\left(U_{22}^{*}\right) \subset \operatorname{ker}(Z)$. Since ran $\left(U_{12}^{*} U_{12}+\right.$ $\left.U_{22}^{*} U_{22}\right) \subset \overline{\operatorname{ran}(Z)}$ and $U_{22}^{*} U_{22} \leq U_{12}^{*} U_{12}+U_{22}^{*} U_{22}$, we have $\operatorname{ran}\left(U_{22}^{*}\right) \subset \overline{\operatorname{ran}(Z)}$. Hence

$$
U_{22}=0, U=\left(\begin{array}{ll}
W_{1} & U_{12} \\
0 & 0
\end{array}\right)
$$

and

$$
\operatorname{ran}(U) \subset \overline{\operatorname{ran}(T(s, t))} \subset \overline{\Re(|T|)}=\operatorname{ran}(E) .
$$

Since W commutes with $|T(s, t)|=|T|^{s+t}, W$ commutes with $|T|$ and

$$
\begin{aligned}
|T|^{s}(W-U)|T|^{t} & =W|T|^{s}|T|^{t}-|T|^{s} U|T|^{t} \\
& =W|T(s, t)|-T(s, t)=0 .
\end{aligned}
$$

Hence $E(W-U) E=0$ and

$$
U=U E=E U E=E W E=W E=W .
$$

Thus $U=W$ commutes with $|T|$ and T is quasinormal.
Corollary 1. Let $T=U|T|$ be a class $p-w A(s, t)$ operator. If $T(s, t)=|T|^{s} U|T|^{t}$ is normal, then T is also normal.

Proof. Since $T(s, t)$ is normal, T is quasinormal by Theorem 1. Hence $T(s, t)=$ $|T|^{s} U|T|^{t}=U|T|^{s+t}$ and $(T(s, t))^{*}=|T|^{s+t} U^{*}$. Hence

$$
|T|^{2(s+t)}=|T(s, t)|^{2}=\left|(T(s, t))^{*}\right|^{2}=\left|T^{*}\right|^{2(s+t)}
$$

This implies $|T|=\left|T^{*}\right|$ and T is normal.

Theorem 2. [25] Let $s_{1}>0, s_{2}>0, t_{1}>0, t_{2}>0$ and $0<p \leq 1$. If T belongs to class $p_{1}-w A\left(s_{1}, t_{1}\right)$ for $0<p_{1} \leq p$ and T^{*} belongs to class $p_{2}-w A\left(s_{2}, t_{2}\right)$ for $0<p_{2} \leq p$, then T is normal.

To prove Theorem 2, we need the following results.
Lemma 1. ([21]) If T is class $p-w A(s, t)$ and $0<s \leq s_{1}, 0<t \leq t_{1}, 0<p_{1} \leq p<1$, then T is class $p_{1}-w A\left(s_{1}, t_{1}\right)$.

Theorem 3 (Furuta theorem [14]). If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{r+p}{q}}$ and
(ii) $A^{\frac{r+p}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.
Proposition 1. ([19]) Let $A \geq 0$ and $B \geq 0$. If

$$
\begin{equation*}
B^{\frac{1}{2}} A B^{\frac{1}{2}} \geq B^{2} \quad \text { and } \quad A^{\frac{1}{2}} B A^{\frac{1}{2}} \geq A^{2} \tag{5}
\end{equation*}
$$

then $A=B$.
Proof. [Proof of Theorem 2] Let $r=\max \left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ and let $q=\min \left\{p_{1}, p_{2}\right\}$.
Firstly, if T belongs to class $p_{1}-w A\left(s_{1}, t_{1}\right)$, then T belongs to class $q-w A(r, r)$ by Lemma

1. Hence we have

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 r}\left|T^{*}\right|^{r}\right)^{\frac{q}{2}} \geq\left|T^{*}\right|^{2 r q} \text { and }|T|^{2 r q} \geq\left(|T|^{r}\left|T^{*}\right|^{2 r}|T|^{r}\right)^{\frac{q}{2}} \tag{6}
\end{equation*}
$$

Secondly, if T^{*} belongs to class $p_{2}-w A\left(s_{2}, t_{2}\right)$, then T^{*} belongs to class $q-w A(r, r)$ by Lemma 1. Hence we have

$$
\begin{equation*}
\left(|T|^{r}\left|T^{*}\right|^{2 r}|T|^{r}\right)^{\frac{q}{2}} \geq|T|^{2 r q} \text { and }\left|T^{*}\right|^{2 r q} \geq\left(\left|T^{*}\right|^{r}|T|^{2 r}\left|T^{*}\right|^{r}\right)^{\frac{q}{2}} \tag{7}
\end{equation*}
$$

Therefore

$$
\left|T^{*}\right|^{r}|T|^{2 r}\left|T^{*}\right|^{r}=\left|T^{*}\right|^{4 r} \text { and }|T|^{4 r}=|T|^{r}\left|T^{*}\right|^{2 r}|T|^{r}
$$

hold by (6) and (7), and then $|T|=\left|T^{*}\right|$ by Proposition 1.
The following result is very important in the sequal

Theorem 4. [17, Jensen's Operator Inequality (JOI)] Suppose that f is a continuous function defined on an interval I. Then f is operator convex on an interval I containing 0 with $f(0) \leq 0$ if and only if $f\left(a^{*} x a\right) \leq a^{*} f(x) a$ for every self-adjoint x with spectrum in I and every contraction a.

Theorem 5. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H}. Then the following are equivalent:
(i) $\operatorname{ran}(A) \subseteq \operatorname{ran}(B)$;
(ii) $A A^{*} \leq \lambda^{2} B B^{*}$ for some $\lambda \geq 0$; and
(i) there exists a bounded linear operator C on \mathcal{H} so that $A=B C$.

Lemma 2. Let A, B and C be positive operators. Then the following assertions hold for each $p \geq 0, r \in[0,1]$ and $0<q \leq 1$:
(i) If $\left(B^{r / 2} A^{p} B^{r / 2}\right)^{\frac{r q}{p+r}} \geq B^{r q}$ and $B \geq C$, then $\left(C^{r / 2} A^{p} C^{r / 2}\right)^{\frac{r q}{p+r}} \geq C^{r q}$.
(ii) If $A \geq B, B^{r q} \geq\left(B^{r / 2} C^{p} B^{r / 2}\right)^{\frac{r q}{p+r}}$ and the condition

$$
\begin{align*}
\text { if } \lim _{n \rightarrow \infty} B^{1 / 2} x_{n} & =0 \text { and } \lim _{n \rightarrow \infty} A^{1 / 2} x_{n} \text { exists } \\
\text { then } \lim _{n \rightarrow \infty} A^{1 / 2} x_{n} & =0 \text { for any sequence of vectors }\left\{x_{n}\right\} \tag{8}
\end{align*}
$$

hold, then $A^{r q} \geq\left(A^{r / 2} C^{p} A^{r / 2}\right)^{\frac{r q}{p+r}}$.
Lemma 2 can be obtained as an application of the following results.
Theorem 6. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H}. Then the following are equivalent:
(i) $\operatorname{ran}(A) \subseteq \operatorname{ran}(B)$;
(ii) $A A^{*} \leq \lambda^{2} B B^{*}$ for some $\lambda \geq 0$; and
(iii) there exists a bounded linear operator C on \mathcal{H} so that $A=B C$.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator C so that
(a) $\|C\|^{2}=\inf \left\{\mu: A A^{*} \leq \mu B B^{*}\right\}$;
(b) $\operatorname{ker}(A)=\operatorname{ker}(C)$; and
(c) $\operatorname{ran}(C) \subseteq \overline{\operatorname{ran}\left(B^{*}\right)}$.

Theorem 7. ([16]) Let X and A be bounded linear operator on a Hilbert space \mathcal{H}. We suppose that $A \geq 0$ and $\|X\| \leq 1$. If f is an operator monotone function defined on $[0, \infty)$, then

$$
X^{*} f(A) X \leq f\left(X^{*} A X\right)
$$

We remark that the condition (c) of Theorem 6 is equivalent to $\left(c^{\prime}\right): \overline{\operatorname{ran}(C)} \subseteq \overline{\operatorname{ran}\left(B^{*}\right)}$. Here we consider when the equality of (c^{\prime}) holds.

Lemma 3. ([33]) Let A and B be operators which satisfy (i), (ii) and (iii) of Theorem 6 and C be the operator which is given in (iii) and determined uniquely by (a), (b) and (c) of Theorem 6. Then the following assertions are mutually equivalent:
(i) $\overline{\operatorname{ran}(C)}=\overline{\operatorname{ran}\left(B^{*}\right)}$.
(ii) If $\lim _{n \rightarrow \infty} A^{*} x_{n}=0$ and $\lim _{n \rightarrow \infty} B^{*} x_{n}$ exists, then $\lim _{n \rightarrow \infty} B^{*} x_{n}=0$ for any sequence of vectors $\left\{x_{n}\right\}$.

We also prepare the following lemma in order to give a proof of Lemma 2.
Lemma 4. ([33]) Let S be a positive operator and $0<q \leq 1$. If $\lim _{n \rightarrow \infty} S x_{n}=0$ and $\lim _{n \rightarrow \infty} S^{q} x_{n}$ exists, then $\lim _{n \rightarrow \infty} S^{q} x_{n}=0$ for any sequence of vectors $\left\{x_{n}\right\}$.

Proof. [Proof of Lemma 2] (i) The hypothesis $B \geq C$ ensures then $B^{t} \geq C^{t}$ for each $t \in(0,1]$ by Löwner-Heinz theorem. By Theorem 6 , there exists an operator X with $\|X\| \leq 1$ such that

$$
\begin{equation*}
B^{\frac{t}{2}} X=X^{*} B^{\frac{t}{2}}=C^{\frac{t}{2}} \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\left(C^{r / 2} A^{p} C^{r / 2}\right)^{\frac{r q}{p+r}} & =\left(X^{*} B^{r / 2} A^{p} B^{r / 2} X\right)^{\frac{r q}{p+r}} \\
& \left.\geq X^{*}\left(B^{r / 2} A^{p} B^{r / 2}\right)^{\frac{r q}{p+r}} X \text { (by Theorem } 7\right) \\
& \geq X^{*} B^{r q} X(\text { by the hypothesis) } \\
& =X^{*}\left(B^{r}\right)^{q} X \geq\left(X^{*} B^{\frac{r}{2}} B^{\frac{r}{2}} X\right)^{q}(\text { by Theorem } 4) \\
& =\left(C^{\frac{r}{2}} C^{\frac{r}{2}}\right)^{q}=C^{r q} \quad(\text { by Equation (9) }) .
\end{aligned}
$$

(ii) The hypothesis $A \geq B$ ensures $A^{s} \geq B^{s}$ for $s \in(0,1]$ by Löwner-Heinz theorem. By Theorem 6, there exists an operator X with $\|X\| \leq 1$ such that

$$
\begin{equation*}
A^{s / 2} X=X^{*} A^{s / 2}=B^{s / 2} \tag{10}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
X^{*}\left(A^{r / 2} C^{p} A^{r / 2}\right)^{\frac{r q}{p+r}} X & \leq\left(X^{*} A^{r / 2} C^{p} A^{r / 2} X\right)^{\frac{r q}{p+r}} \text { (by Theorem 7) } \\
& =\left(B^{r / 2} C^{p} B^{r / 2}\right)^{\frac{r q}{p+r}} \\
& \leq B^{r q}(\text { by the hypothesis) } \\
& =\left(B^{r}\right)^{q}=\left(X^{*} A^{\frac{r}{2}} A^{\frac{r}{2}} X\right)^{q} \leq X^{*} A^{r q} X \text { (by Theorem 4) }
\end{aligned}
$$

so that $A^{r q} \geq\left(A^{r / 2} C^{p} A^{r / 2}\right)^{\frac{r q}{p+r}}$ holds on $\overline{\operatorname{ran}(X)}$. On the other hand, the hypothesis (8) implies the following (11)

$$
\text { If } \lim _{n \rightarrow \infty} B^{r / 2} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} A^{r / 2} x_{n} \text { exists, }
$$

$$
\begin{equation*}
\text { then } \lim _{n \rightarrow \infty} A^{r / 2} x_{n}=0 \text { for any sequence of vectors }\left\{x_{n}\right\} . \tag{11}
\end{equation*}
$$

since $\lim _{n \rightarrow \infty} B^{r / 2} x_{n}=0$ and $\lim _{n \rightarrow \infty} A^{r / 2} x_{n}$ exists, then
$\lim _{n \rightarrow \infty} B^{1 / 2} x_{n}=B^{(1-r) / 2}\left(\lim _{n \rightarrow \infty} B^{r / 2} x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} A^{1 / 2} x_{n}=A^{(1-r) / 2}\left(\lim _{n \rightarrow \infty} A^{r / 2} x_{n}\right)$ exists, so that $\lim _{n \rightarrow \infty} A^{1 / 2} x_{n}=0$ by (8), hence $\lim _{n \rightarrow \infty} A^{r / 2} x_{n}=0$ by Lemma 4. (11) ensures $\overline{\operatorname{ran}(X)}=\frac{n \rightarrow \infty}{\operatorname{ran}\left(A^{r / 2}\right)}$ by Lemma 3, hence we have

$$
\begin{aligned}
\operatorname{ker}\left(\left(A^{r / 2} C^{p} A^{r / 2}\right)^{\frac{r q}{p+r}}\right) & =\operatorname{ker}\left(A^{r / 2} C^{p} A^{r / 2}\right) \\
& \supseteq \operatorname{ker}\left(A^{r / 2}\right)=\operatorname{ker}\left(A^{r}\right)=\operatorname{ker}\left(A^{q r}\right)=\operatorname{ker}\left(X^{*}\right),
\end{aligned}
$$

so that $A^{q r}=\left(A^{r / 2} C^{p} A^{r / 2}\right)^{\frac{r q}{p+r}}=0$ holds on $\operatorname{ker}\left(X^{*}\right)$. Consequently the proof is complete since $\mathcal{H}=\overline{\operatorname{ran}(X)} \oplus \operatorname{ker}\left(X^{*}\right)$.

Lemma 5. ([26]) Let $T=U|T| \in \mathcal{B}(\mathcal{H})$ be the polar decomposition of T. Then T is class $p-w A(s, t)$ if and only if $|T(s, t)|^{\frac{2 t p}{s+t}} \geq|T|^{2 t p}$ and $|T|^{2 s p} \geq\left|(T(s, t))^{*}\right|^{\frac{2 s p}{s+t}}$.
Lemma 6. Let $0<s, t, s+t \leq 1$ and $0<p \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ and let \mathcal{M} an invariant subspace of T. Then the restriction $\left.T\right|_{\mathcal{M}}$ is also class $p-w A(s, t)$.

Proof. Let $T=\left(\begin{array}{cc}T_{1} & S \\ 0 & T_{2}\end{array}\right)$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$ and P the orthogonal projection onto \mathcal{M}. Let $T_{0}:=T P=P T P=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)$. Then

$$
\left|T_{0}\right|^{2 t}=\left(P|T|^{2} P\right)^{t} \geq P|T|^{2 t} P \text { for each } 0<t \leq 1
$$

by Hansen's inequality, and

$$
\left|T^{*}\right|^{2}=T T^{*} \geq T P T^{*}=\left|T_{0}^{*}\right|^{2}
$$

Hence
T is class $p-A(s, t) \Longleftrightarrow\left|T^{*}\right|^{2 t p} \leq\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}}$

$$
\begin{aligned}
& \Longrightarrow\left|T_{0}^{*}\right|^{2 t p} \leq\left(\left|T_{0}^{*}\right|^{t}|T|^{2 s}\left|T_{0}^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \quad(\text { by Lemma 2) } \\
& \Longrightarrow\left|T_{0}^{*}\right|^{2 t p} \leq\left(\left|T_{0}^{*}\right|^{t}\left|T_{0}\right|^{2 s}\left|T_{0}^{*}\right|^{t}\right)^{\frac{t p}{s+t}}\left(\text { since }\left|T_{0}^{*}\right|^{t}=\left|T_{0}^{*}\right|^{t} P=P\left|T_{0}^{*}\right|^{t} \text { for every } 0<t \leq 1\right)
\end{aligned}
$$

Now

$$
\left|T_{0}\right|=P|\widetilde{T}| P \geq P|T| P \geq P\left|(\widetilde{T})^{*}\right| P=\left|T_{0}^{*}\right| .
$$

Then by Theorem 3 it follows that

$$
\left|T_{0}\right|^{2 s p} \geq\left(\left.\left|T_{0}\right|^{s}\left|T_{0}^{*}\right|^{2 t}| | T_{0}\right|^{s} \mid\right)^{\frac{p s}{s+t}} .
$$

Therefore, $\left.T\right|_{\mathcal{M}}$ is class $p-A(s, t)$ operator.
The following example shows that there exists a class $p-w A(s, t)$ operator T such that $\left.T\right|_{\mathcal{M}}$ is quasinormal but \mathcal{M} does not reduce T.

Example 1. Let T be a bilateral shift on $\ell^{2}(\mathbb{Z})$ defined by $T e_{n}=e_{n+1}$ and $\mathcal{M}=\bigvee_{n \geq 0} \mathbb{C} e_{n}$.
Then T is unitary and $\left.T\right|_{\mathcal{M}}$ is isometry. However, \mathcal{M} does not reduce T.
Lemma 7. Let $0<s, t, s+t=1$ and $0<p \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ operator, let \mathcal{M} be an invariant subspace for T and a reducing subspace for $T(s, t)$ such that $\left.T(s, t)\right|_{\mathcal{M}}$ the restriction of $T(s, t)$ to \mathcal{M} is an injective normal operator, then $\left.T\right|_{\mathcal{M}}=\left.T(s, t)\right|_{\mathcal{M}}$ and \mathcal{M} reduces T.

Proof. Let

$$
T(s, t)=\left(\begin{array}{cc}
T_{0} & 0 \\
0 & A
\end{array}\right), T=\left(\begin{array}{ll}
S & B \\
0 & D
\end{array}\right) \text { on } \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}
$$

Since T is class $p-w A(s, t)$ we have $|T(s, t)|^{2 r p} \geq|T|^{2 r p} \geq\left|(T(s, t))^{*}\right|^{2 r p}$ for $r \in \min \{s, t\}$. Let P be the orthogonal projection onto \mathcal{M}. Then

$$
\left|T_{0}\right|=P|T(s, t)| P \geq P|T| P \geq P\left|(T(s, t))^{*}\right| P=\left|T_{0}^{*}\right| .
$$

By Löwner-Heinz theorem we get

$$
\left|T_{0}\right|^{2 r p}=P|T(s, t)|^{2 r p} P \geq P|T|^{2 r p} P \geq P\left|(T(s, t))^{*}\right|^{2 r p} P=\left|T_{0}^{*}\right|^{2 r p}
$$

Since $|T|^{s} T=T(s, t)|T|^{s}$ and $P|T|^{s} P=\left|T_{0}\right|^{s}$, we deduce that

$$
\left|T_{0}\right|^{s} S=T_{0}\left|T_{0}\right|^{s}
$$

We have T_{0} is an injective normal operator, then $S=\left.T\right|_{\mathcal{M}}=T_{0}=\left.T(s, t)\right|_{\mathcal{M}}$, consequently

$$
T=\left(\begin{array}{cc}
T_{0} & B \\
0 & D
\end{array}\right) \text { on } \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}
$$

Hence

$$
T^{*} T=\left(\begin{array}{cc}
T_{0}^{*} T_{0} & T_{0}^{*} B \\
B^{*} T_{0} & B^{*} B+D^{*} D
\end{array}\right) \text { on } \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}
$$

So we can write

$$
|T|^{r p}=\left(\begin{array}{cc}
\left|T_{0}\right|^{r p} & X \\
X^{*} & Y
\end{array}\right) \text { on } \mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}
$$

Since

$$
P|T|^{p r}|T|^{p r} P=\left|T_{0}\right|^{2 r p}
$$

then $\left|T_{0}\right|^{2 r p}=\left|T_{0}\right|^{2 r p}+X X^{*}$, and thus $X=0$.
It follows that $|T|^{r p}=\left|T_{0}\right|^{r p} \oplus Y^{2}$ implying $|T|^{2 r p}=\left|T_{0}\right|^{2 r p} \oplus Y^{4}$. Consequently we get $B^{*} B=0$ it follows that $B=0$ and hence \mathcal{M} reduces T.

The next lemma is a simple consequence of the preceding one.

Lemma 8. Let $0<s, t, s+t=1$ and $0<p \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be a class $p-w A(s, t)$ operator with $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. Then $T=T_{1} \oplus T_{2}$ on $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ where T_{1} is normal, $\operatorname{ker}\left(T_{2}\right)=\{0\}$ and T_{2} is pure class $p-w A(s, t)$ i.e., T_{2} has no non-zero invariant subspace \mathcal{M} such that $\left.T_{2}\right|_{\mathcal{M}}$ is normal.

Lemma 9. Let $0<s, t, s+t=1$ and $0<p \leq 1$. Let $T=U|T| \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. Suppose $T(s, t)=|T|^{s} U|T|^{t}$ be of the form $N \oplus T^{\prime}$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M}. Then $T=N \oplus T_{1}$ and $U=U_{11} \oplus U_{22}$ where T_{1} is class $p-w A(s, t)$ with $\operatorname{ker}\left(T_{1}\right) \subset \operatorname{ker}\left(T_{1}^{*}\right)$ and $N=U_{11}|N|$ is the polar decomposition of N.

Proof. Since

$$
|T(s, t)|^{2 r p} \geq|T|^{2 r p} \geq\left|(T(s, t))^{*}\right|^{2 r p}
$$

for $r \in \min \{s, t\}$, we have

$$
|N|^{2 r p} \oplus\left|T^{\prime}\right|^{2 r p} \geq|T|^{2 r p} \geq|N|^{2 r p} \oplus\left|T^{\prime *}\right|^{2 r p}
$$

by assumption. This implies that $|T|$ is of the form $|N| \oplus L$ for some positive operator L. Let $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ be 2×2 matrix representation of U with respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then the definition $T(s, t)$ means

$$
\left(\begin{array}{cc}
N & 0 \\
0 & T^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
|N|^{s} & 0 \\
0 & L^{s}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{cc}
|N|^{t} & 0 \\
0 & L^{t}
\end{array}\right)
$$

Hence, we have

$$
N=|N|^{s} U_{11}|N|^{t},|N|^{s} U_{12} L^{t}=0 \text { and } L^{s} U_{21}|N|^{t}=0
$$

Since $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$,

$$
\overline{\operatorname{ran}(U)}=\overline{\operatorname{ran}(T)}=\operatorname{ker}\left(T^{*}\right)^{\perp} \subset \operatorname{ker}(T)^{\perp}=\overline{\operatorname{ran}(|T|)}
$$

Let $N x=0$ for $x \in \mathcal{M}$. Then $x \in \operatorname{ker}(|T|)=\operatorname{ker}(U)$, and

$$
U x=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\binom{x}{0}=\binom{U_{11} x}{U_{21} x}=0
$$

Hence

$$
\operatorname{ker}(N) \subset \operatorname{ker}\left(U_{11}\right) \cap \operatorname{ker}\left(U_{21}\right)
$$

Let $x \in \mathcal{M}$. Then

$$
U\binom{x}{0}=\binom{U_{11} x}{U_{21} x} \in \overline{\operatorname{ran}(|T|)}=\overline{\operatorname{ran}(|N| \oplus L)}
$$

Hence

$$
\operatorname{ran}\left(U_{11}\right) \subset \operatorname{ran}(|N|), \operatorname{ran}\left(U_{21}\right) \subset \overline{\operatorname{ran}(L)}
$$

Similarly

$$
\operatorname{ran}\left(U_{12}\right) \subset \operatorname{ran}(|N|), \operatorname{ran}\left(U_{22}\right) \subset \overline{\operatorname{ran}(L)} .
$$

Let $L x=0$ for $x \in \mathcal{M}^{\perp}$. Then $x \in \operatorname{ker}(|T|)=\operatorname{ker}(U)$ and

$$
U\binom{0}{x}=\binom{U_{12} x}{U_{22} x}=0
$$

Hence

$$
\operatorname{ker}(L) \subset \operatorname{ker}\left(U_{12}\right) \cap \operatorname{ker}\left(U_{22}\right) .
$$

Let $N=V|N|$ be the polar decomposition of N. Then

$$
\left(V|N|^{s}-|N|^{s} U_{11}\right)|N|^{t}=0 .
$$

Hence $V|N|^{s}-|N|^{s} U_{11}=0$ on $\overline{\operatorname{ran}(|N|)}$. Since $\operatorname{ker}(N) \subset \operatorname{ker}\left(U_{11}\right)$, this implies $0=$ $V|N|^{s}-|N|^{s} U_{11}=|N|^{s}\left(V-U_{11}\right)$. Hence

$$
\operatorname{ran}\left(V-U_{11}\right) \subset \operatorname{ker}(|N|) \cap \overline{\operatorname{ran}(|N|)}=\{0\} .
$$

Hence $V=U_{11}$ and $N=U_{11}|N|$ is the polar decomposition of N. Since $|N|^{s} U_{12} L^{t}=0$,

$$
\operatorname{ran}\left(U_{11} L^{t}\right) \subset \operatorname{ker}(|N|) \cap \overline{\operatorname{ran}(|N|)}=\{0\} .
$$

Hence $U_{12} L^{t}$ and $U_{12}=0$. Similarly we have $U_{21}=0$ by $L^{s} U_{21}|N|^{t}=0$. Hence $U=$ $U_{11} \oplus U_{22}$. So we obtain

$$
T=U|T|=U_{11}|N| \oplus U_{22} L=N \oplus T_{1},
$$

where $T_{1}=U_{22} L$.

3. Quasisimilarity

An operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is called quasiaffinity if X is both injective and has a dense range. For $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$, if there exist quasiaffinities $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that $T X=X S$ and $Y T=S Y$, then we say that T and S are quasisimilar. The operator $T \in \mathcal{B}(\mathcal{H})$ is said to be pure if there exists no nontrivial reducing subspace \mathcal{M} of \mathcal{H} such that the restriction of T to \mathcal{M} is normal and is completely hyponormal if it is pure. Recall that every operator $T \in \mathcal{B}(\mathcal{H})$ has a direct sum decomposition $T=T_{1} \oplus T_{2}$, where T_{1} and T_{2} are normal and pure parts, respectively. Of course in the sum decomposition, either T_{1} or T_{2} may be absent. The following lemma is due to Williams [32, Lemma 1.1].

Lemma 10. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be normal operators. It there exist injective operators $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that $T X=X S$ and $Y T=S Y$, then T and S are unitarily equivalent.

Corollary 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ operator for $0<s, t, s+t=1$ and $0<p \leq 1$. Then $T=T_{1} \oplus T_{2}$ on the space $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where T_{1} is normal and T_{2} is pure and class $p-w A(s, t)$, i.e., T_{2} has no invariant subspace \mathcal{M} such that $\left.T_{2}\right|_{\mathcal{M}}$ is normal.

The next result was proved for dominant operators in [28, Theorem 1], for p-hyponormal operators in [20] and for w-hyponormal operators in [22, Lemma 2.12].

Proposition 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ operator for $0<s, t, s+t=1$ and $0<p \leq 1$ such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and let $S \in \mathcal{B}(\mathcal{K})$ be a normal operator. If there exists a quasiaffinity $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ with dense range such that $T X=X S$, then T is normal.

To prove Proposition 2, we need the following lemmas.
Lemma 11. [9] If N is a normal operator on \mathcal{H}, then we have

$$
\bigcap_{\lambda \in \mathbb{C}}(N-\lambda) \mathcal{H}=\{0\} .
$$

Lemma 12. ([10]) Let $T \in \mathcal{B}(\mathcal{H}), D \in \mathcal{B}(\mathcal{H})$ with $0 \leq D \leq M(T-\lambda)(T-\lambda)^{*}$ for all $\lambda \in \mathbb{C}$, where M is a positive real number. Then for every $x \in D^{\frac{1}{2}} \mathcal{H}$ there exists a bounded function $f: \mathbb{C} \longrightarrow \mathcal{H}$ such that $(T-\lambda) f(\lambda) \equiv x$.

Proof. [Proof of Proposition 2] $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ implies $\operatorname{ker}(T)$ reduces T. Also $\operatorname{ker}(S)$ reduces S since S is normal. Using the orthogonal decompositions $\mathcal{H}=\overline{\operatorname{ran}(|T|)} \oplus$ $\operatorname{ker}(T)$ and $\mathcal{H}=\overline{\operatorname{ran}(S)} \oplus \operatorname{ker}(S)$, we can represent T and S as follows: $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)$, $S=\left(\begin{array}{cc}S_{1} & 0 \\ 0 & 0\end{array}\right)$, where T_{1} is an injective class $p-w A(s, t)$ operator on $\overline{\operatorname{ran}(|T|)}$ and S_{1} is injective normal on $\overline{\operatorname{ran}(S)}$. The assumption $T X=X S$ asserts that X maps $\operatorname{ran}(S)$ to $\operatorname{ran}(T) \subset \overline{\operatorname{ran}(|T|)}$ and $\operatorname{ker}(S)$ to $\operatorname{ker}(T)$, hence X is the form: $X=\left(\begin{array}{cc}X_{1} & 0 \\ 0 & X_{2}\end{array}\right)$, where $X_{1} \in \mathcal{B}\left(\overline{\operatorname{ran}(S)}, \overline{\operatorname{ran}(|T|)}, X_{2} \in \mathcal{B}(\operatorname{ker}(S), \operatorname{ker}(T))\right.$. Since $T X=X S$, we have that $T_{1} X_{1}=X_{1} S_{1}$. Since X is injective with dense range, X_{1} is also injective with dense range. Put $W_{1}=\left|T_{1}\right|^{s} X_{1}$, then W_{1} is also injective with dense range and satisfies $T(s, t) W_{1}=$ $W_{1} S$. Put $W_{n}=\left|\Delta^{n}(T(s, t))\right|^{s} W_{n-1}$, then W_{n} is also injective with dense range and satisfies $\Delta^{n}(T(s, t)) W_{n}=W_{n} S$. From [26, Corollary 2.7] and [6], if there exists an integer m such that $\Delta^{m}(T(s, t))$ is a hyponormal operator, then $\Delta^{n}(T(s, t))$ is a hyponormal operator for $n \geq m$. It follows from Lemma 12 that there exists a bounded function f : $\mathbb{C} \longrightarrow \mathcal{H}$ such that $\left(\Delta^{n}\left(T_{1}(s, t)\right)^{*}-\lambda\right) f(\lambda) \equiv x$, for every $x \in\left(\Delta^{n}\left(T_{1}(s, t)\right)^{*} \Delta^{n}\left(T_{1}(s, t)-\right.\right.$ $\Delta^{n}\left(T_{1}(s, t)\left(\Delta^{n}\left(T_{1}(s, t)\right)^{*}\right)^{\frac{1}{2}} \mathcal{H}\right.$. Hence

$$
\begin{aligned}
W_{n}^{*} x & =W_{n}^{*}\left(\Delta^{n}\left(T_{1}(s, t)\right)^{*}-\lambda\right) f(\lambda) \\
& =\left(S_{1}^{*}-\lambda\right) W_{n}^{*} f(\lambda) \in \operatorname{ran}\left(S_{1}^{*}-\lambda\right) \text { for all } \lambda \in \mathbb{C} .
\end{aligned}
$$

By Lemma 11, we have $W_{n}^{*} x=0$, and hence $x=0$ because W_{n}^{*} is injective. This implies that $\Delta^{n}\left(T_{1}(s, t)\right.$ is normal. By Corollary $1, T_{1}$ is normal and therefore $T=T_{1} \oplus 0$ is also normal.

Theorem 8. Let T and S^{*} be class $p-w A(s, t)$ operators with $0<s, t, s+t=1$ and $0<p \leq 1$ such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and $\operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$. If there exist a quasiaffinity X such that $T X=X S$, then T and S are unitarily equivalent normal operators.

Proof. First decompose T and S^{*} into their normal and pure parts by $T=T_{1} \oplus T_{2}$ on $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and $S^{*}=S_{1}^{*} \oplus S_{2}^{*}$ on $\mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2}$, where T_{1}, S_{1} are normal and T_{2}, S_{2}^{*} are pure. Let $X=\left[X_{i j}\right]_{i, j=1}^{2}$. Then $T X=X S$ implies that $T_{2} X_{21}=X_{21} S_{1}$ and $T_{2} X_{22}=X_{22} S_{2}$. Let $T_{2}=U_{2}\left|T_{2}\right|, S_{2}^{*}=V_{2}^{*}\left|S_{2}^{*}\right|$ be the polar decompositions of T_{2} and S_{2}^{*}, respectively and

$$
T_{2}(s, t)=\left|T_{2}\right|^{s} U_{2}\left|T_{2}\right|^{t}, S_{2}^{*}(s, t)=\left|S_{2}^{*}\right|^{s} V_{2}^{*}\left|S_{2}^{*}\right|^{t}, W=\left|T_{2}\right|^{s} X_{22}\left|S_{2}^{*}\right|^{s} .
$$

Then

$$
\begin{aligned}
T_{2}(s, t) W & =\left|T_{2}\right|^{s} T_{2} X_{22}\left|S_{2}^{*}\right|^{s} \\
& =\left|T_{2}\right|^{s} X_{22} S_{2}\left|S_{2}^{*}\right|^{s} \\
& =W\left(S_{2}^{*}(s, t)\right)^{*} .
\end{aligned}
$$

Since $\overline{\operatorname{ran}(W)}$ reduces $T_{2}(s, t)$ and $\operatorname{ker}(W)^{\perp}$ reduces $S_{2}^{*}(s, t)$ and $\left.T_{2}(s, t)\right|_{\text {ran }(W)}$ and $\left.S_{2}^{*}(s, t)\right|_{\operatorname{ker}(W)^{\perp}}$ are unitarily equivalent normal operators, and since T_{2}, S_{2}^{*} are injective class $p-w A(s, t)$ operators, we have $\left.T_{2}\right|_{\overline{\mathrm{ran}(W)}}=\left.T_{2}(s, t)\right|_{\overline{\mathrm{ran}(W)}}$ and $\left.S_{2}^{*}\right|_{\operatorname{ker}(W)^{\perp}}=\left.S_{2}^{*}(s, t)\right|_{\mathrm{ker}(W)^{\perp}}$ by Lemma 9. Since T_{2}, S_{2}^{*} are pure, it implies $W=\left|T_{2}\right|^{s} X_{22}\left|S_{2}^{*}\right|^{s}=0$. Hence $X_{22}=0$. Similarly $X_{12}=0, X_{21}=0$. Hence $X=X_{11}$ and S, T are unitarily equivalent normal operators.

The following lemma is due to Williams [32, Lemma 1.1]
Lemma 13. Let $N_{1} \in \mathcal{B}(\mathcal{H})$ and $N_{2} \in \mathcal{B}(\mathcal{K})$ be normal. If $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ are injective such that $N_{1} X=X N_{2}$ and $Y N_{1}=N_{2} Y$, then N_{1} and N_{2} are unitarily equivalent.

Stampfli and Wadhwa [28] proved that the normal parts of quasisimilar dominant operators are unitarily equivalent. This result was generalized to classes of p -hyponormal operators in [12]. We prove that theses results hold for class $p-w A(s, t)$ operators.

Theorem 9. Suppose that $0<s, t, s+t=1$ and $)<p \leq 1$. For each $i=1,2$, let $T_{i} \in \mathcal{B}\left(\mathcal{H}_{i}\right)$ be class $p-w A(s, t)$ operators such that $\operatorname{ker}\left(T_{j}\right) \subset \operatorname{ker}\left(T_{j}^{*}\right)$ and let $T_{i}=N_{i} \oplus V_{i}$ on $\mathcal{H}_{i}=\mathcal{H}_{i 1} \oplus \mathcal{H}_{i 2}$, where N_{i} and V_{i} are the normal and pure parts, respectively of T_{i}. If T_{1} and T_{2} are quasisimilar, then N_{1} and N_{2} are unitarily equivalent and there exist $X_{*} \in \mathcal{B}\left(\mathcal{H}_{22}, \mathcal{H}_{12}\right)$ and $Y_{*} \in \mathcal{B}\left(\mathcal{H}_{12}, \mathcal{H}_{22}\right)$ having dense range such that $V_{1} X_{*}=X_{*} V_{2}$ and $Y_{*} V_{1}=V_{2} Y_{*}$.

Proof. By hypothesis there exist quasiaffinities $X \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ and $Y \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ such that $T_{1} X=X T_{2}$ and $Y T_{1}=T_{2} Y$. Let

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right) \text { and } Y=\left(\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right)
$$

with respect to $\mathcal{H}_{2}=\mathcal{H}_{21} \oplus \mathcal{H}_{22}$ and $\mathcal{H}_{1}=\mathcal{H}_{11} \oplus \mathcal{H}_{12}$, respectively. A simple matrix calculation shows that

$$
V_{1} X_{3}=X_{3} N_{2} \text { and } V_{2} Y_{3}=Y_{3} N_{1} .
$$

We claim that $X_{3}=Y_{3}=0$. Let $\mathcal{M}=\overline{\operatorname{ran}\left(X_{3}\right)}$. Then \mathcal{M} is a non-trivial invariant subspace of V_{1}. Since $V_{1}^{*} X_{3}=X_{3} N_{2}^{*}$ by Proposition $2, \mathcal{M}$ is an invariant subspace of V_{1}^{*}. Hence \mathcal{M} reduces $V_{1}, \sigma\left(\left.V_{1}\right|_{\mathcal{M}}\right) \subset \sigma\left(V_{1}\right)$ and $\left.V_{1}\right|_{\mathcal{M}}$ is invertible. Let $V_{1}^{\prime}=\left.V_{1}\right|_{\mathcal{M}}$ and define an operator $X_{3}^{\prime}: \mathcal{H}_{12} \longrightarrow \mathcal{M}$ by $X_{3}^{\prime} x=X_{3} x$ for each $x \in \mathcal{H}_{12}$. Then V_{1}^{\prime} is class $p-w A(s, t)$ by Lemma 6 , so that X_{3}^{\prime} has dense range and satisfies $V_{1}^{\prime} X_{3}^{\prime}=X_{3}^{\prime} N_{2}$. Hence V_{1}^{\prime} is normal by Propsition 2. Since V_{1} is pure, this implies that $\mathcal{M}=\{0\}$ and $X_{3}=0$. Similarly, we have $Y_{3}=0$. Hence X_{1} and Y_{1} are injective.

SInce $N_{1} X_{1}=X_{1} N_{2}$ and $Y_{1} N_{1}=N_{2} Y_{1}, N_{1}$ and N_{2} are unitarily equivalent, by Lemma 13. Also, X_{4} and Y_{4} have dense ranges. Hence $V_{1} X_{4}=X_{4} V_{2}$ and $Y_{4} V_{1}=V_{2} Y_{4}$, so the proof is complete.

Corollary 3. Let $T_{1} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ and $T_{2} \in \mathcal{B}\left(\mathcal{H}_{2}\right)$ be quasisimilar class $p-w A(s, t)$ operators for $0<s, t, s+t=1$ and $0<p \leq 1$. If T_{1} is pure, then T_{2} is also pure.

Corollary 4. Let $T_{1} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ be class $p-w A(s, t)$ operators for $0<s, t, s+t=1$ and $0<p \leq 1$ and $T_{2} \in \mathcal{B}\left(\mathcal{H}_{2}\right)$ be normal. If T_{1} and T_{2} are quasisimilar, then T_{1} and T_{2} are unitarily equivalent normal operators.

4. The Fuglede-Putnam Theorem

We offer various results related to the Fuglede-Putnam theorem in this section. If $T^{*} X=X S^{*}$ whenever $T X=X S$ for every $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, a pair (T, S) is said to have the Fuglede-Putnam property. In operator theory, the Fuglede-Putnam theorem is wellknown. It claims that the pair (T, S) possesses the Fuglede-Putnam property for any normal operators T and S. There are several generalizations of this theorem, the majority of which loosen the normality of T and S; see, for example, [22-24, 27, 28], and some references therein and for more details (see [3],[5],[4]). The Fuglede-Putnam theorem is the subject of the next lemma, which we will require in the future.

Lemma 14. ([29]) Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$. Then the following assertions equivalent.
(i) The pair (T, S) has the Fuglede-Putnam property.
(ii) If $T X=X S$, then $\overline{\operatorname{ran}(X)}$ reduces T, $\operatorname{ker}(X)^{\perp}$ reduces S, and $\left.T\right|_{\overline{\operatorname{ran}(X)}},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators.

Remark 1. A necessary condition for the pair $\left(T, T^{*}\right)$ to satisfy Fuglede-Putnam's theorem is $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. Since for a class $p-w A(s, t)$ operator this is not always true, class $p-w A(s, t)$ operator do not Fuglede-Putnam's theorem. For example, if P is the orthogonal projection onto $\operatorname{ker}(T)$, with T is class $p-w A(s, t)$, then $T P=P T^{*}$ but $T^{*} P \neq P T$. The following result (Corollary 6) prove that if T^{*}, S are p-class $A(s, t)$ operators for $0<s, t, s+t=1$ and $0<p \leq 1$ such that $\operatorname{ker}\left(T^{*}\right)$ reduces T^{*} and $\operatorname{ker}(S)$ reduces S, then the pair (T, S) satisfy Fuglede-Putnam's theorem.

Theorem 10. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ operator for $0<s, t, s+t=1$ and $0<p \leq 1$ and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. If L is self-adjoint and $T L=L T^{*}$, then $T^{*} L=L T$.

Proof. Since $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and $T L=L T^{*}, \operatorname{ker}(T)$ reduces T and L. Hence

$$
T=T_{1} \oplus 0, L=L_{1} \oplus L_{2} \text { on } \mathcal{H}=\overline{\operatorname{ran}\left(T^{*}\right)} \oplus \operatorname{ker}(T)
$$

$T_{1} L_{1}=L_{1} T^{*}$ and $\{0\}=\operatorname{ker}\left(T_{1}\right) \subset \operatorname{ker}\left(T_{1}^{*}\right)$. Since $\overline{\operatorname{ran}\left(L_{1}\right)}$ is invariant under T_{1} and reduces L_{1},

$$
T=\left(\begin{array}{cc}
T_{11} & S \\
0 & T_{22}
\end{array}\right), L_{1}=L_{11} \oplus 0 \text { on } \mathcal{H}=\overline{\operatorname{ran}\left(T^{*}\right)}=\overline{\operatorname{ran}\left(L_{1}\right)} \oplus \operatorname{ker}\left(L_{1}\right)
$$

T_{11} is an injective class $p-w A(s, t)$ operator by Lemma 6 and L_{11} is an injective self-adjoint operator (hence it has dense range) such that $T_{11} L_{11}=L_{11} T_{11}^{*}$. Let $T_{11}=V_{11}\left|T_{11}\right|$ be the polar decomposition of T_{11} and $T_{11}(s, t)=\left|T_{11}\right|^{s} V_{11}\left|T_{11}\right|^{t}, W=\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{s}$. Then

$$
\begin{aligned}
T_{11}(s, t) W & =\left|T_{11}\right|^{s} V_{11}\left|T_{11}\right|^{t}\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{s} \\
& =\left|T_{11}\right|^{s} T_{11} L_{11}\left|T_{11}\right|^{s} \\
& =\left|T_{11}\right|^{s} L_{11} T_{11}^{*}\left|T_{11}\right|^{s} \\
& =\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{s}\left|T_{11}\right|^{t} V_{11}^{*}\left|T_{11}\right|^{s} \\
& =W\left(T_{11}(s, t)\right)^{*} .
\end{aligned}
$$

Since $T_{11}(s, t)$ is $\min \{s p, t p\}$-hyponormal and $\operatorname{ran}(W)$ is dense (because $\operatorname{ker}(W)=\{0\}$), $T_{11}(s, t)$ is normal by [12, Theorem 7]. Hence T_{11} is normal and $T_{11}=T_{11}(s, t)$ by Corollary 1. Then $\overline{\operatorname{ran}\left(L_{1}\right)}$ reduces T_{1} by Lemma 7 and $T_{11}^{*} L_{11}=L_{11} T_{11}$ by Lemma 14. Hence

$$
\begin{aligned}
T & =T_{11} \oplus T_{22} \oplus 0 \\
L & =L_{11} \oplus 0 \oplus L_{2}
\end{aligned}
$$

and

$$
T^{*} L=T_{11}^{*} L_{11} \oplus 0 \oplus 0=L_{11} T_{11} \oplus 0 \oplus 0=L T
$$

Example 2. Let $\mathcal{H}=\bigoplus_{n=0}^{\infty} \mathbb{C}^{2}$ and define an operator R on \mathcal{H} by

$$
R\left(\cdots \oplus x_{-2} \oplus x_{-1} \oplus x_{0}^{(0)} \oplus x_{1} \oplus \cdots\right)=\cdots \oplus A x_{-2} \oplus A x_{-1}^{(0)} \oplus B x_{0} \oplus B x_{1} \oplus \cdots
$$

where

$$
A=\frac{1}{4}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad \text { and } B=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Then R is a class $p-w A(s, t)$. Moreover, $\operatorname{ran}(E)=\operatorname{ker}(R), E$ is not a self-adjoint and $\operatorname{ker}(R) \neq \operatorname{ker}\left(R^{*}\right)$, where E is the Riesz idempotent with respect to 0, see [31, Example 13]. Let $T=R$ and $L=P$ be the orthogonal projection onto $\operatorname{ker}(T)$. Then T is a class $p-w A(s, t)$ operator and $T L=0=L T^{*}$, but $T^{*} L \neq L T$. Hence the kernel condition $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ is necessary for Theorem 10.

Corollary 5. Let $T \in \mathcal{B}(\mathcal{H})$ be a class $p-w A(s, t)$ operator for $0<s, t, s+t=1$ and $0<p \leq 1$ and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. If $T X=X T^{*}$ for some $X \in \mathcal{B}(\mathcal{H})$ then $T^{*} X=X T$.

Proof. Let $X=L+i J$ be the Cartesian decomposition of X. Then we have $T L=L T^{*}$ and $T J=J T^{*}$ by the assumption. By Theorem 10 , we have $T^{*} L=L T$ and $T^{*} J=J T$. This implies that $T^{*} X=X T$.

If we use the 2×2 matrix trick, we easily deduce the following result.
Corollary 6. Suppose that $0<s, t, s+t=1$ and $0<p \leq 1$. Let $T^{*} \in \mathcal{B}(\mathcal{H})$ be a class $p-w A(s, t)$ operator and $S \in \mathcal{B}(\mathcal{K})$ be a class $p-w A(s, t)$ operator with $\operatorname{ker}\left(T^{*}\right) \subset \operatorname{ker}(T)$ and $\operatorname{ker}(S) \subset \operatorname{ker}\left(S^{*}\right)$. If $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $X T=S X$, then $X T^{*}=S^{*} X$.

Proof. Put $A=\left(\begin{array}{cc}T^{*} & 0 \\ 0 & S\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ X & 0\end{array}\right)$ on $\mathcal{H} \oplus \mathcal{K}$. Then A is a class $p-w A(s, t)$ operator on $\mathcal{H} \oplus \mathcal{K}$ that satisfies $B A^{*}=A B$ and $\operatorname{ker}(A) \subset \operatorname{ker}\left(A^{*}\right)$. Hence we have $B A=A^{*} B$, by Corollary 5 , and so $X T^{*}=S^{*} X$.

Example 3. Let $S=T^{*}=R$ as in Example 2 and $X=P$ be the orthogonal projection onto $\operatorname{ker}(S)$. Then $S X=0=X T$, but $S^{*} X \neq X T^{*}$. Hence the kernel condition is necessary for Corollary 6.

As an application of Corollary 6, we establish the following result.
Corollary 7. Suppose that $0<s, t, s+t=1$. Let $T \in \mathcal{B}(\mathcal{H})$ and $S^{*} \in \mathcal{B}(\mathcal{K})$ be class $p-w A(s, t)$ and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right), \operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$. Let $T X=X S$ for some operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$. Then $\overline{\operatorname{ran}(X)}$ reduces $T, \operatorname{ker}(S)^{\perp}$ reduces S and $\left.T\right|_{\overline{\operatorname{ran}(X)}},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators.

Proof. By Corollary $6, T^{*} X=X S^{*}$. Therefore $T^{*} T X=X S^{*} S$ and so $|T| X=X|S|$. Let $T=U|T|, S=V|S|$ be the polar decomposition. Then $U X|S|=U|T| X=T X=$ $X S=X V|S|$. Let $x \in \operatorname{ker}(|S|)$. Then $V x=0$ and $T X x=X S x=0$. Hence $X x \in$ $\operatorname{ker}(T)=\operatorname{ker}(U)$ and $U X x=0$. Hence $U X=X V$. Since $\operatorname{ker}(U)=\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)=$ $\operatorname{ker}\left(U^{*}\right), U U^{*} \leq U^{*} U$. Hence $U^{*} U U=U^{*} U U U^{*} U=U U^{*} U=U$. This implies U and V^{*} are quasinormal. Hence $U^{*} X=X V^{*}, \overline{\operatorname{ran}(X)}$ reduces $U,|T|$, $\operatorname{ker}(X)^{\perp}$ reduces $V,|S|$. We may assume $t<s$. Then T, S^{*} are class $p-w A(s, s)$ operators with reducing kernels.

Let $T(s, s)=|T|^{s} U|T|^{s}, S(s, s)=|S|^{s} V|S|^{s}$. Then $T(s, s), S^{*}(s, s)=\left|S^{*}\right|^{s} V^{*}\left|S^{*}\right|^{s}=$ $V S(s, s)^{*} V^{*}$ are $\frac{p}{2}$-hyponormal. Also, since

$$
\left|S(s, s)^{*}\right|-|S(s, s)|=V^{*}\left(\left|S^{*}(s, s)\right|-\left|S^{*}(s, s)^{*}\right|\right) V \geq 0,
$$

$S(s, s)^{*}$ is $\frac{p}{2}$-hyponormal, too. Then

$$
\begin{aligned}
T(s, s) X & =|T|^{s} U|T|^{s} X=|T|^{s} U X|S|^{s} \\
& =|T|^{s} X V|S|^{s}=X S(s, s),
\end{aligned}
$$

hence $T(s, s)^{*} X=X S(s, s)^{*}, \overline{\operatorname{ran}(X)}$ reduces $T(s, s), \operatorname{ker}(X)^{\perp}$ reduces $S(s, s)$ and

$$
\left.T\right|_{\overline{\operatorname{ran}(X)}}(s, s)=\left.\left.T(s, s)\right|_{\operatorname{ran}(X)} \simeq S(s, s)\right|_{\operatorname{ker}(X)^{\perp}}=\left.S\right|_{\operatorname{ker}(X)^{\perp}}(s, s)
$$

are unitarily equivalent normal operators. Hence $\left.T\right|_{\overline{\operatorname{ran}(X)}},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are normal by Corollary 1 , and that they are unitarily equivalent follows from the fact that if $N=U|N|$ and $M=W|M|$ are normal operators, then for a unitary operator $V, N=V^{*} M V$ if and only if $U=V^{*} W V$ and $|N|^{s}=V^{*}|M|^{s} V$ for any $s>0$.

Theorem 11. Suppose that $0<s, t, s+t=1$. Let $T \in \mathcal{B}(\mathcal{H})$ be class $p-w A(s, t)$ and N a normal operator. Let $T X=X N$. Then the following assertions hold
(i) If the range $\operatorname{ran}(X)$ is dense, then T is normal.
(ii) If $\operatorname{ker}\left(X^{*}\right) \subset \operatorname{ker}\left(T^{*}\right)$, then T is quasinormal.

Proof. Let $Z=|T|^{s} X$. Then

$$
\begin{aligned}
T(s, t) Z & =|T|^{s} U|T|^{t}|T|^{s} X=|T|^{s} T X \\
& =|T|^{s} X N=Z N .
\end{aligned}
$$

Since $T(s, t)$ is $\min \{s p, t p\}$-hyponormal, we have

$$
T(s, t)^{*} Z=Z N^{*}
$$

by [30]. Hence

$$
\begin{aligned}
\left(T(s, t)^{*} T(s, t)-T(s, t) T(s, t)^{*}\right)|T|^{s} X & =T(s, t)^{*} T(s, t) Z-T(s, t) T(s, t)^{*} Z \\
& =T(s, t)^{*} Z N-T(s, t) Z N^{*}=Z N^{*} N-Z N N^{*}=0 .
\end{aligned}
$$

(i) If $\overline{\operatorname{ran}(X)}$ is dense, then

$$
\left(T(s, t)^{*} T(s, t)-T(s, t) T(s, t)^{*}\right)|T|^{s}=0 .
$$

Since

$$
\operatorname{ker}\left(|T|^{s}\right) \subset \operatorname{ker}(T(s, t)) \cap \operatorname{ker}\left(T(s, t)^{*}\right),
$$

this implies $T(s, t)$ is normal. Hence T is normal by Corollary 1.
(ii) Let $X^{*}|T|^{s} x=0$. Then $|T|^{s} x \in \operatorname{ker}\left(X^{*}\right) \subset \operatorname{ker}\left(T^{*}\right)=\operatorname{ker}\left(U^{*}\right)$ and $T(s, t)^{*} x=$ $|T|^{t} U^{*}|T|^{s} x=0$. Hence $\operatorname{ker}\left(X^{*}|T|^{s}\right) \subset \operatorname{ker}\left(T(s, t)^{*}\right)$ and $\overline{\operatorname{ran}(T(s, t))} \subset \overline{\operatorname{ran}\left(|T|^{s} X\right)}$. Hence

$$
\left(T(s, t)^{*} T(s, t)-T(s, t) T(s, t)^{*}\right) T(s, t)=0
$$

by (i). This implies $T(s, t)$ is quasinormal, and T is quasinormal by Theorem 1.

Theorem 12. Suppose that $0<s, t, s+t=1$ and $0<q \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be such that T^{*} is p-hyponormal or log-hyponormal. Let $S \in \mathcal{B}(\mathcal{K})$ be class $q-w A(s, t)$ with $\operatorname{ker}(S) \subset \operatorname{ker}\left(S^{*}\right)$. If $X T=S X$, for some $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $X T^{*}=S^{*} X$.

Proof. Let T^{*} be a p-hyponormal operator for $p \geq \frac{1}{2}$ and let $T=U|T|$ be the polar decomposition of T. Then the generalized Aluthge transform $T^{*}(s, t)$ of T^{*} is hyponormal and satisfies

$$
\begin{gather*}
\left|T^{*}(s, t)\right|^{2} \geq|T|^{2} \geq\left|\left(T^{*}(s, t)\right)^{*}\right|^{2} \tag{12}\\
X^{\prime} T(s, t)=S X^{\prime} \tag{13}
\end{gather*}
$$

where $X^{\prime}=X U|T|^{t}$. Using the decompositions $\mathcal{H}=\operatorname{ker}\left(X^{\prime}\right)^{\perp} \oplus \operatorname{ker}\left(X^{\prime}\right)$ and $\mathcal{K}=\overline{\operatorname{ran}\left(X^{\prime}\right)} \oplus$ $\operatorname{ran}\left(X^{\prime}\right)^{\perp}$, we see that $T(s, t), S$ and X^{\prime} are of the form

$$
T^{*}(s, t)=\left(\begin{array}{cc}
T_{1} & 0 \\
T_{2} & T_{3}
\end{array}\right), S=\left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right), X^{\prime}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right)
$$

where T_{1}^{*} is hyponormal, S_{1} is class $q-w A(s, t)$ with $\operatorname{ker}\left(S_{1}\right) \subset \operatorname{ker}\left(S_{1}^{*}\right)$ and X_{1} is a one-one operator with dense range. Since $X^{\prime} T(s, t)=S X^{\prime}$, we have

$$
\begin{equation*}
X_{1} T_{1}=S_{1} X_{1} \tag{14}
\end{equation*}
$$

Hence T_{1} and S_{1} are normal by Corollary 6 , so that $T_{2}=0$, by Lemma 12 of [30] and $S_{2}=0$ by Lemma 7. Then $|T|=\left|T_{1}\right| \oplus P$, for some positive operator P, by (12) and $U=\left(\begin{array}{cc}U_{1} & U_{2} \\ 0 & U_{3}\end{array}\right)$ by Lemma 13 of [30]. Let $X=\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$ be a 2×2 matrix representation of X with respect to the decomposition $\mathcal{H}=\operatorname{ker}\left(X^{\prime}\right)^{\perp} \oplus \operatorname{ker}\left(X^{\prime}\right)$ and $\mathcal{K}=\overline{\operatorname{ran}\left(X^{\prime}\right)} \oplus \operatorname{ran}\left(X^{\prime}\right)^{\perp}$. Then $X^{\prime}=X U|T|^{t}$ implies that $X_{1}=X_{11} U_{1}\left|T_{1}\right|^{t}$ and hence $\operatorname{ker}\left(T_{1}\right) \subset \operatorname{ker}\left(X_{1}\right)=\{0\}$. This shows that T_{1} is one-one and hence it has dense range, so that $U_{2}=0$ and $T=T_{1} \oplus T_{4}$ for some hyponormal operator T_{4}^{*} by [30, Lemma 13]. Since

$$
\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right)=X^{\prime}=X U|T|^{t}=\left(\begin{array}{cc}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)\left(\begin{array}{cc}
U_{1}\left|T_{1}\right|^{t} & 0 \\
0 & U_{3}\left|T_{4}\right|^{t}
\end{array}\right)
$$

we deduce the following assertions.

$$
X_{12} U_{2}\left|T_{4}\right|^{t}=0 ; \text { hence } X_{12} T_{3}=0 \text { because } T_{4}=U_{3}\left|T_{4}\right|
$$

$$
\begin{aligned}
& X_{21} U_{1}\left|T_{1}\right|^{t} ; \text { hence } X_{12}=0 \text { because } U_{1}\left|T_{1}\right|^{\frac{1}{2}} \text { has dense range. } \\
& \qquad X_{22} U_{3}\left|T_{4}\right|^{t}=0 ; \text { hence } X_{22} T_{3}=0
\end{aligned}
$$

The assumption $X T=S X$ tell us that,

$$
\begin{aligned}
& X_{11} T_{1}=S_{1} X_{11} \\
& X_{12} T_{4}=S_{1} X_{12}=0 \\
& X_{22} T_{4}=S_{3} X_{22}=0
\end{aligned}
$$

Since T_{1} and S_{1} are normal, we have $X_{11} T_{1}^{*}=S_{1}^{*} X_{11}$, by Fuglede-Putnam theorem. The p-hyponormality of T_{4}^{*} shows that $\overline{\operatorname{ran}\left(T_{4}^{*}\right)} \subset \overline{\operatorname{ran}\left(T_{4}\right)}$. Also, we have $\operatorname{ker}\left(S_{3}\right) \subset \operatorname{ker}\left(S_{3}^{*}\right)$. Hence, we also have $X_{12} T_{4}^{*}=S_{1}^{*} X_{12}=0$ and $X_{22} T_{4}^{*} S_{3}^{*} X_{22}=0$. This implies that $X T^{*}=$ $X_{11} T_{1}^{*} \oplus 0=S_{1}^{*} X_{11} \oplus 0=S^{*} X$ 。

Next, we prove the case where T^{*} is p-hyponormal for $0<p \leq \frac{1}{2}$. Let X^{\prime} be as above. Then $T^{*}(s, t)$ is $\left(p+\frac{1}{2}\right)$-hyponormal and satisfies $X^{\prime} T(s, t)=S X^{\prime}$. Use the same argument as above. We obtain $T(s, t)=T_{1} \oplus T_{3}$ on $\mathcal{H}=\operatorname{ker}\left(X^{\prime}\right)^{\perp} \oplus \operatorname{ker}\left(X^{\prime}\right)$ and $S=S_{1} \oplus S_{3}$, where T_{1} is an injective normal operator and S_{1} is also normal. Hence we have $T=T_{1} \oplus T_{4}$ for some p-hyponormal T_{4}^{*}, by Lemma 13 of [30]. Again using the same argument as above, we obtain $X_{21}=0, X_{11} T_{1}^{*}=S_{1}^{*} X_{11}, X_{12} T_{4}^{*}=S_{1}^{*} X_{12}=0$ and $X_{22} T_{4}^{*}=S_{3}^{*} X_{22}=0$. Hence we have $X T^{*}=S^{*} X$.

Finally, we assume that T^{*} is log-hyponormal. Let $T(s, t)$ and X^{\prime} be as above. Then $X^{\prime} T(s, t)=S X^{\prime}$ and $T^{*}(s, t)$ is semi-hyponormal and satisfies

$$
\left|T^{*}(s, t)\right| \geq\left|T^{*}\right| \geq \mid\left(T^{*}(s, t)^{*} \mid\right.
$$

By the same argument as above, we have $T(s, t)=T_{1} \oplus T_{3}$ on $\mathcal{H}=\operatorname{ker}\left(X^{\prime}\right)^{\perp} \oplus \operatorname{ker}\left(X^{\prime}\right)$ and $S=S_{1} \oplus S_{3}$ on $\mathcal{K}=\overline{\operatorname{ran}\left(X^{\prime}\right)} \oplus \operatorname{ran}\left(X^{\prime}\right)^{\perp}$, where T_{1} is an injective normal operator, S_{1} is normal, T_{3}^{*} is invertible semi-hyponormal and S_{3} is class $q-w A(s, t)$ with $\operatorname{ker}\left(S_{3}\right) \subset \operatorname{ker}\left(S_{3}^{*}\right)$. By Lemma 13 of [30], we have that T is of the form $T=T_{1} \oplus T_{4}$, for some log-hyponormal T_{4}^{*}. Let $X=\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$. Then $X^{\prime}=X U|T|^{t}$ implies that $X_{12}=0, X_{21}=0$ and $X_{22}=$ 0. The assumption $X T=S X$ implies that $X_{11} T_{1}=S_{1} X_{11}$, hence $X_{11} T_{1}^{*} \oplus 0=S_{1}^{*} X_{11}$ by Fuglede-Putnam theorem. Thus we have $X T^{*}=X_{11} T_{1}^{*} \oplus 0=S_{1}^{*} X_{11} \oplus 0=S^{*} X$. Therefore, the proof of the theorem is achieved.

Example 4. Let R be an operator such that $\operatorname{ker}(R)$ does not reduce R and let P be the orthogonal projection onto $\operatorname{ker}(R)$. Then P does not commute with T; otherwise $\operatorname{ran}(R)=$ $\operatorname{ker}(R)$ reduce T. Hence $P R \neq 0=R P$. It is easy to see that $R P=P R^{*}=0$ but $R^{*} P \neq P R(\neq 0)$ because $\operatorname{ran}\left(R^{*} P\right) \subset \operatorname{ran}\left(R^{*}\right) \subset \operatorname{ker}\left(R^{\perp}\right)=I-P$. If we put $T=R$, then the assertion of Theorem 10 does not hold for such T. Also, if we put $T=R^{*}, S=I-P$ and $X=P$, then $X T=P R^{*}=0=(I-P) P=S X$. However, $X T^{*}=P R \neq 0=$ $(I-P) P=S^{*} X$. Hence the assertion of Theorem 12 does not hold for such T.

Theorem 13. Let $T \in \mathcal{B}(\mathcal{H})$ be such that T^{*} is an injective class $p-w A(s, t)$ for $0<$ $s, t, s+t=$ and $0<p \leq 1$. Let $S \in \mathcal{B}(\mathcal{K})$ be dominant. If $X T=S X$, for some $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $X T^{*}=S^{*} X$.

Proof. Assume that T^{*} is an injective p-w-hyponormal and let $T=U|T|$ be the polar decomposition of T. Let $T(s, t)$ be the aluthge transform of T and $X^{\prime}=X U|T|^{t}$. Then $X^{\prime} T(s, t)=S X^{\prime}$ and $T^{*}(s, t)$ is $r p$-hyponormal and satisfies

$$
\left|T^{*}(s, t)\right|^{2 r p} \geq\left|T^{*}\right|^{2 r p} \geq\left|\left(T^{*}(s, t)\right)^{*}\right|^{2 r p}
$$

for $r \in \min \{s, t\}$. By the same argument in the proof of Theorem 12, we conclude that $T^{*}(s, t)=T_{1} \oplus T_{3}$ on $\mathcal{H}=\operatorname{ker}\left(X^{\prime}\right)^{\perp} \oplus \operatorname{ker}\left(X^{\prime}\right)$ and $S=S_{1} \oplus S_{3}$, where T_{1} is an injective normal operator and S_{1} is also normal, T_{3}^{*} is invertible class $p-w A(s, t)$ and S_{3} is dominant. Hence by Lemma 7, we have that T is of the form $T=T_{1} \oplus T_{4}$ for some class $p-w A(s, t)$ T_{4}^{*}. Let

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

Then $X^{\prime}=X U|T|^{t}$ implies that $X_{12}=0, X_{21}=0$ and $X_{22}=0$. The assumption $X T=S X$ implies that $X_{11} T_{1}=S_{1} X_{11}$, hence $X_{11} T_{1}^{*}=S_{1}^{*} X_{11}$ by Fuglede-Putnam theorem. Thus we have $X T^{*}=X_{11} T_{1}^{*} \oplus 0=S_{1}^{*} X_{11} \oplus 0=S^{*} X$. Therefore, the proof of the theorem is achieved.

Example 5. Let $T^{*}=R$ as in Example 2. Let $X=P$ be the orthogonal projection onto $\operatorname{ker}\left(T^{*}\right)$ and $S=I-P$. Then $S X=0=X T^{*}$, but $0=S^{*} X \neq X T^{*}$. Hence the injectivity condition is necessary for Theorem 13.

References

[1] A. Uchiyama, K. Tanahashi and J. I. Lee. Spectrum of class $A(s, t)$ operators. Acta Sci. Math. (Szeged), 70:279-287, 2004.
[2] A. Aluthge. On p-hyponormal operators for $0<p<1$. Integral Equations Operator Theory, 13:307-315, 1990.
[3] Ž. Mijajlovič et al. Nestandardna Analiza. Univesity of Belgrade, Faculty of Mathematics, Belgrade, 2014.
[4] V. Todorčevič. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer Nature, Switzerland AG, 2019.
[5] V. Todorčevič. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys., 9:1211-1225, 2019.
[6] M. Chō and T. Huruya. p-hyponormal operator for $0<p<\frac{1}{2}$. Commentations Mthematicae, 33:23-29, 1993.
[7] M. Chō and K. Tanahashi. Isolated point of spectrum of p-hyponormal, loghyponormal operators. Integral Equations Operator Theory, 43:379-384, 2002.
[8] M. Chō and K. Yamazaki. An operator transform from class A to the class of hyponormal operators and its application. Integral Equations Operator Theory, 53:497-508, 2005.
[9] C.R.Putnam. Ranges of normal and subnormal operators. Michigan Math. J., 18:3336, 1971.
[10] C.R.Putnam. Hyponormal contractions and strong power convergence. Integral Equations Operator Theory, 57:531-538, 1975.
[11] R. G. Douglas. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17:413-415, 1966.
[12] B. P. Duggal. Quasi-similar p-hyponormal operators. Integral Equations Operator Theory, 26:338-345, 1996.
[13] M. Fujii, D. Jung, S. H. Lee., M. Y. Lee., and R. Nakamoto. Some classes of operators related to paranormal and log-hyponormal operators. Math. Japon., 51:395-402, 2000.
[14] T. Furuta. $A \geq B \geq O$ assures $\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq B^{\frac{p+2 r}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq(p+2 r)$. Proc. Amer. Math. Soc., 101:85-88, 1987.
[15] Li Haiying. Powers of an invertible (s, p)-w-hyponormal operator. Acta Math. Scientia, 28B(2):282-288, 2008.
[16] F. Hansen. An equality. Math. Ann., 246:249-250, 1980.
[17] F. Hansen and G. K. Pedersen. Jensen's inequality for operators and L owner's theorem. Math. Ann., 258:229-241, 1982.
[18] M. Ito. Some classes of operators with generalised Aluthege transformations. SUT J. Math., 35:149-165, 1999.
[19] M. Ito and T. Yamazaki. Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{P+r}} \geq B^{r}$ and $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{r}{P+r}}$ and their applications. Integral Equations Operator Theory, 44:442-450, 2002.
[20] I. H. Jeon and B. P. Duggal. p-Hyponormal operators and quasisimilarity. Integral Equations Operator Theory, 49(3):397—403, 2004.
[21] M. Chō, M.H.M Rashid, K. Tanahashi and A. Uchiyama. Spectrum Of Class p$w A(s, t)$ Operators. Acta Sci. Math. (Szeged), 82(3-4):641-649, 2016.
[22] M.H.M.Rashid. An Extension of Fuglede-Putnam Theorem for w-hyponormal Operators. Afr. Diaspora J. Math. (N.S.), 14(1):106—118, 2012.
[23] M.H.M.Rashid. Class $w A(s, t)$ operators and quasisimilarity. Port. Math., 69(4):305320, 2012.
[24] M.H.M.Rashid. Fuglede-Putnam type theorems via the generalized Aluthge transform. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 108(2):1021—1034, 2014.
[25] M.H.M.Rashid. A note on class $p-w A(s, t)$ operators. Filomat, 36(5):1675—1684, 2022.
[26] T. Prasad and K. Tanahashi. On class $p-w A(s, t)$ operators. Functional Analysis, Approximation Computation, 6(2):39-42, 2014.
[27] S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida. Quasinormality and Fuglede-Putnam theorem for class $A(s, t)$ operators. Nihonkai Math. J., 17:49-67, 2006.
[28] J. G. Stampfli and B. L. Wadhwa. An asymmetric Putnam-Fuglede theorem for dominant operators. Indiana Univ. Math., 25(4):359-365, 1976.
[29] K. Takahashi. On the converse of Putnam-Fuglede theorem. Acta Sci. Math.(Szeged), 43:123-125, 1981.
[30] A. Uchiyama and K. Tanahashi. Fuglede-Putnam theorem for p-hyponormal or loghyponormal operators. Glasg. Math. J., 44:397-410, 2002.
[31] A. Uchiyama and K. Tanahashi. On the Riesz idempotent of class A operators. Math. Ineq. Appl., 5(2):291-298, 2002.
[32] L. R. Williams. Quasi-similarity and hyponormal operators. Integral Equations Operator Theory, 5:678-686, 1981.
[33] M. Yanagida. Powers of class $w A(s, t)$ operators with generalised Aluthge transformation. J. Inequal. Appl., 7:143-168, 2002.
[34] C. Yang and J. Yuan. On class $w F(p, r, q)$ operators. Acta. Math. Sci., 27:769-780, 2007.
[35] J. Yuan and C. Yang. Spectrum of class $w F(p, r, q)$ operators for $p+r \leq 1$ and $q \geq 1$. Acta Sci. Math. (Szeged), 71:767-779, 2005.
[36] J. Yuan and C. Yang. Powers of class $w F(p, r, q)$ operators. Journal Inequalities in Pure and Applied Math., 7(1):article 32, 2006.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4412

