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Abstract. In this paper, we introduce a new continuous distribution mixing exponential and
gamma distributions, called new Sushila distribution. We derive some properties of the distribution
include: probability density function, cumulative distribution function, expected value, moments
about the origin, coefficient of variation (C.V.), coefficient of skewness, coefficient of kurtosis,
moment generating function, and reliability measures. The distribution includes, a special cases,
the Sushila distribution as a particular case p = 1

2 (θ = 1). The hazard rate function exhibits
increasing. The parameter estimations as the moment estimation (ME), the maximum likelihood
estimation (MLE), nonlinear least squares methods, and genetic algorithm (GA) are proposed.
The application is presented to show that model to fit for waiting time and survival time data.
Numerical results compare ME, MLE, weighted least squares (WLS), unweighted least squares
(UWLS), and GA. The results conclude that GA method is better performance than the others for
iterative methods. Although, ME is not the best estimate, ME is a fast estimate, because it is not
an iterative method. Moreover, The proposed distribution has been compared with Lindley and
Sushila distributions to a waiting time data set. The result shows that the proposed distribution
is performing better than Lindley and Sushila distribution.
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1. Introduction

Finite mixture models are a widespread tool to heterogeneous data analytic for across a
broad number of fields including agriculture, botany, bioinformatics, cell biology, genetics,
genomics, genealogy, paleontology, zoology, fisheries research, economics, machine learn-
ing, medicine, psychology, insurance, physics, engineering and chemistry, among many
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others. Because of their flexibility, finite mixture models can be used to cluster data,
classify data, estimate densities, and increasingly.

An enormous number of research have presented some approaches into finite mixture
models and many methods to fitting lifetime data for improve performance of parameters
are used. The Bayesian approach is used into [17–20, 22, 23, 25]. The Maximum Likelihood
Estimation approach is used into [7, 8, 10, 21, 23–25]. The Least Square Estimator and
Weighted Least Square Estimator are used into [7, 10, 21]. The Lagrangian multiplier
approach is used into [5] and the ARMA approach is used into [9]. There are focus on the
parameter estimation which is important to bring into the next step on application.

A continuous random variable X which is called to have an exponential distribution
with one parameter λ > 0, often called rate parameter, denoted by X ∼ Exp(λ). The
probability density function (PDF) of the distribution is given by

f(x;λ) = λe−λx, x ≥ 0,

and the cumulative distribution function (CDF), has been obtained as

F (x) = 1− e−λx, x ≥ 0.

A continuous random variable X is called to have a gamma distribution with two
parameters α > 0, often called shape parameter, and λ > 0, often called rate parameter,
denoted by X ∼ Gamma(α, λ). The PDF of the distribution is given by

f(x;α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0,

where Γ(α) is gamma function. We can see that Gamma(1, λ) = Exp(λ). Its CDF is given
by

F (x) =
1

Γ(α)
γ(α, λx), x > 0.

where γ(α, λx) is the lower incomplete gamma function.
There are studies that have used exponential, Lindley and gamma distributions to

be used for modeling lifetime data. A two-parameter Lindley distribution is proposed
by modifying the mixing weight of exponential and gamma [6, 11–16]. They proposed a
two-parameter distribution by modifying the mixing weight of Exp( θα) and Gamma(2, θ

α).
A continuous random variable X is called to have Sushila distribution (SD) [16] with

two parameters θ > 0 and α > 0, denoted by X ∼ SD(α, θ). The PDF of the distribution
is given by

f(x;α, θ) =
θ2

α(θ + 1)
(1 +

x

α
)e−

θ
α
x, x > 0.

Its CDF is given by

F (x) = 1− α(θ + 1) + θx

α(θ + 1)
e−

θ
α
x, x > 0.
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The PDF of Sushila distribution can be shown as a mixture of Exp( θα) and Gamma(2, θ
α)

as follows:

f(x, α, θ) = pf1(x) + (1− p)f2(x),

where p =
θ

θ + 1
, f1(x) =

θ

α
e−

θ
α
x, and f2(x) =

θ2

α2
xe−

θ
α
x.

In this paper, we focus on the Sushila distribution. The distribution is mixed by
exponential and gamma distributions. Sushila distribution therefore pays attention to the
weight value for exponential distribution. Notice that the gamma distribution has two
parameters that provide a flexible model to fit the reliability data. For this reason, we pay
attention to the weight value for gamma distribution. The main aim of this paper is to
study a two-parameter (θ > 0 and α > 0) continuous distribution is introduced as follows:

f(x, α, θ) = (1− p)f1(x) + pf2(x).

Its CDF, expected value, first four moments, and some of the related measures have been
proposed.

The paper is organized as follows. We define new Sushila distribution and its properties
in Section 2. The moments, generating function, and related measures are derived in
Section 3. The reliability measures, like survival function, hazard function, and mean
residual life function for new Sushila distribution in Section 4. Five methods of estimation
are discussed in Section 5. The numerical simulation and comparison are given to the
proposed methods in Section 6. Conclusion is discussed in Section 7.

2. Definition and Properties of the new Sushila Distribution

In this section, we introduce a continuous distribution with two parameters α and θ,
called new Sushila distribution. The PDF of new Sushila distribution can be shown as a
mixture of Exp ( θα) and Gamma(2, θ

α) distributions as follows:

f(x;α, θ) = (1− p)f1(x) + pf2(x), (1)

where p =
θ

θ + 1
, f1(x) =

θ

α
e−

θ
α
x, and f2(x) =

(
θ

α

)2

xe−
θ
α
x.

Definition 1. A continuous random variable X is said to be a new Sushila distribution
random variable with two parameters α and θ, its PDF is given by

f(x;α, θ) =
θ(α+ θ2x)e−

θ
α
x

α2(θ + 1)
, for all x > 0, α > 0, θ > 0. (2)

Probability plots of new Sushila distribution are given in Figure 1 for particular values
of α and θ. From Figure 1, we can see that new Sushila distribution is a light-tailed
distribution and the tail approaches to zero at a faster rate for lower values of α. It is
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Figure 1: Plots of the PDF of new Sushila distribution for various parameter values.

evident from the density plots of new Sushila distribution that the distribution is most
likely to appropriately model those data sets where the observations of lower magnitude
appear more frequently than that of the higher magnitude values. Such data sets are
waiting time, claim and lifetime.

The first derivative of Equation (2) with respect to x is obtained as

d

dx
f(x;α, θ) =

θ2(αθ − α− θ2x)e−
θ
α
x

α3(θ + 1)
. (3)

Now, based on Equation (3), we obtain,

1. f ′(x) = 0 gives x =
α(θ − 1)

θ2
as the critical point. For θ > 1, x0 =

α(θ − 1)

θ2
is the

unique critical point at which f(x) is maximum.
2. for θ < 1, f ′(x) ≤ 0 i.e. f(x) is decreasing in x.
Therefore, the mode of the distribution (2) is given by

Mode =


α(θ − 1)

θ2
if θ > 1,

0 otherwise.

Next, we obtain the cumulative distribution function of new Sushila distribution as follows.

Theorem 1. The cumulative distribution function (CDF) of new Sushila distribution is
given by

F (x) = 1− (αθ + α+ θ2x)e−
θ
α
x

α(θ + 1)
, x > 0, θ > 0, α > 0. (4)
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Proof. For all x > 0, α > 0 and θ > 0,
consider

F (x) = P (X ≤ x)

= 1− P (X ≥ x)

= 1−
∫ ∞

x

θ(α+ θ2t)e−
θ
α
t

α2(θ + 1)
dt

= 1− (αθ + α+ θ2x)e−
θ
α
x

α(θ + 1)
.

The CDF plots of new Sushila distribution are given in Figure 2 for particular values
of α and θ.

Figure 2: Plots of the CDF of new Sushila distribution for various parameter values.

3. Moments, Generating function and Related Measures

In this section, we derive the rth moment about origin, moment generating function,
the coefficient of variation, coefficient of skewness, and coefficient of kurtosis.

Theorem 2. The rth moment about the origin of new Sushila distribution is defined by,

µ′
r =

r!αr[(r + 1)θ + 1]

θr(θ + 1)
, r = 1, 2, 3, . . . .

Proof. By definition, for r = 1, 2, . . ., the moment about origin, µ′
r is obtained as,

µ′
r = E[Xr] =

∫ ∞

0
xr

θ(α+ θ2x)e−
θ
α
x

α2(θ + 1)
dx
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=
θ

α2(θ + 1)

[∫ ∞

0
αxre−

θ
α
x dx+ θ3

∫ ∞

0
xr+1e−

θ
α
x dx

]
=

θ

α2(θ + 1)

[
α

∫ ∞

0

(
xθ

α

)r (α
θ

)r
e−

θ
α
x dx+ θ3

∫ ∞

0

(
xθ

α

)r+1 (α
θ

)
e−

θ
α
x dx

]

=
1

α(θ + 1)

(
αr+1

θr
Γ(r + 1) +

αr+1

θr−2
Γ(r + 2)

)
=

αr+1

α(θ + 1)

(
r!

θr
+

1

θr−2
(r + 1)!

)
=

r!αr[(r + 1)θ + 1]

θr(θ + 1)
.

The first four moments about origin of new Sushila distribution can be obtained as:

µ′
1 =

α(2θ + 1)

θ(θ + 1)
, µ′

2 =
2α2(3θ + 1)

θ2(θ + 1)
, µ′

3 =
6α3(4θ + 1)

θ3(θ + 1)
, µ′

4 =
24α4(5θ + 1)

θ4(θ + 1)
.

In particular, the 1st moment about origin take the form,

µ = E[X] =
α(2θ + 1)

θ(θ + 1)
.

Using the relationship between moments about mean and the moments about the origin,
we have the moment about mean as the following theorem.

Theorem 3. The first four moments about mean of new Sushila distribution is defined
by,

µ2 =
α2(2θ2 + 4θ + 1)

θ2(θ + 1)2
,

µ3 =
2α3(2θ3 + 6θ2 + 6θ + 1)

θ3(θ + 1)3
,

µ4 =
3α4(8θ4 + 32θ3 + 44θ2 + 24θ + 3)

θ4(θ + 1)4
.

Proof. For x > 0, α > 0 and θ > 0.
Consider

µ2 = E[(X − µ)2]

= E[X2]− µ2

=
2α2(3θ + 1)

θ2(θ + 1)
−
(
α(2θ + 1)

θ(θ + 1)

)2
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=
α2(2θ2 + 4θ + 1)

θ2(θ + 1)2
,

µ3 = E[X3]− 3µE[X2] + 2µ3

=
2α2(3θ + 1)

θ2(θ + 1)
− 3

α(2θ + 1)

θ(θ + 1)

[
2α2(3θ + 1)

θ2(θ + 1)

]
+ 2

[
α(2θ + 1)

θ(θ + 1)

]3
=

2α3(2θ3 + 6θ2 + 6θ + 1)

θ3(θ + 1)3
,

µ4 = E[(X − µ)4]

= E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4

=
24α4(5θ + 1)

θ4(θ + 1)
− 4

(
α(2θ + 1)

θ(θ + 1)

)(
6α3(4θ + 1)

θ3(θ + 1)

)
+ 6

(
α(2θ + 1)

θ(θ + 1)

)2(2α2(3θ + 1)

θ2(θ + 1)

)
− 3

(
α(2θ + 1)

θ(θ + 1)

)4

=
3α4(8θ4 + 32θ3 + 44θ2 + 24θ + 3)

θ4(θ + 1)4
.

In particular, the 2nd moment about the mean is variance that is,

σ2 = µ2 =
α2(2θ2 + 4θ + 1)

θ2(θ + 1)2
.

The coefficient of variation (C.V.), coefficient of skewness (
√
β1), and coefficient of

kurtosis (β2) of new Sushila are given by

C.V. =
σ

µ′
1

=

√
2θ2 + 4θ + 1

2θ + 1
,√

β1 =
µ3

µ
3/2
2

=
4θ[θ(θ + 3) + 3] + 2

θ6(θ + 1)6[2θ(θ + 2) + 1]3/2
,

β2 =
3(8θ4 + 32θ3 + 44θ2 + 24θ + 3)

(2θ2 + 4θ + 1)2
.

Now, we derive the moment generating function (MGF) of new Sushila distribution as
the following.

Theorem 4. The moment generating function MX(t) of new Sushila distribution is de-
fined by

MX(t) = E[etX ] =
θ(αt+ θ2 − θ)

(θ + 1)(θ − αt)2
,

θ

α
> t.
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Proof.

MX(t) = E[etX ] =
θ

α2(θ + 1)

∫ ∞

0
(α+ θ2x)e(t−

θ
α
)x dx

=
θ

α2(θ + 1)
lim
b→∞

[
α(α2t+ αθ + αθ(θ(xt− 1)− 1)) + θ3(−x)

(θ − αt)2
e(t−

θ
α
)x

]b
x=0

=
θ(αt+ θ2 − θ)

(θ + 1)(θ − αt)2
,

θ

α
> t.

4. Reliability Measures

In this section, we derive expressions for the reliability measures, like survival function,
hazard function, and mean residual life function for new Sushila distribution.

Theorem 5. For x > 0, θ > 0, α > 0. The survival function S(x), the hazard rate function
h(x), and mean residual life function m(x) of new Sushila distribution is defined by,

S(x) =
(αθ + α+ θ2x)e−

θ
α
x

α(θ + 1)
, h(x) =

θ(α+ θ2x)

α(αθ + α+ θ2x)
,

and

m(x) =
α2(θ + 1)(2αθ + α+ θ2x)

αθ + α+ θ2x
.

Proof. By definition of the survival function, we have

S(x) = 1− F (x)

=
(αθ + α+ θ2x)e−

θ
α
x

α(θ + 1)
, x > 0, θ > 0, α > 0.

By definition of the hazard rate function, we have

h(x) = lim
∆x→0

P (X < x+∆x|X > x)

∆x

=
f(x)

1− F (x)

=
θ(α+ θ2x)

α(αθ + α+ θ2x)
.

By definition of the mean residual life function, we have

m(x) = E[X − x|X > x]
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=
1

1− F (x)

∫ ∞

x
(1− F (t)) dt

=
α2(θ + 1)(2αθ + α+ θ2x)

αθ + α+ θ2x
.

It can be easily verified that h(0) =
θα

θ + α2
= f(0) and m(0) = µ′

1. The derivative

h′(x) > 0 for all x, so h(x) is an increasing function of x, α and θ, whereas m(x) is a
decreasing function of x, α and θ.

5. Estimation of Parameters

In this section, we proposed five methods for estimating parameters. The first two
methods are the moment estimation (ME), the maximum likelihood estimates (MLE).
These methods are widely used for estimation because they are simple. The next two
methods are the weighted and unweighted least squares methods via the CDF. These
methods are more complicated than the first two methods, but the least squares are
better than in some situations. The last method is the genetic algorithm which is a
heuristic search that mimics the process of natural evolution. This method is an efficient
and effective technique.

5.1. The Moment Estimation (ME)

The new Sushila distribution has two parameters to be estimated. Using the first
moment about origin, we have

E[X] =
α(2θ + 1)

θ(θ + 1)
,

E[X] = X̄.

We obtain,

X̄ =
α(2θ + 1)

θ(θ + 1)
.

So

α̂ =
θ(θ + 1)X̄

(2θ + 1)
.

Using the second moment about mean, we have

µ2 = E[X2]− µ2 =
α2(2θ2 + 4θ + 1)

θ2(θ + 1)2
,
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and

E[X2]− µ2 =
1

n

n∑
i=1

x2i − X̄2,

so

1

n

n∑
i=1

x2i − X̄2 =
α2(2θ2 + 4θ + 1)

θ2(θ + 1)2
,

1

n

n∑
i=1

x2i − X̄2 =

(
θ(θ + 1)X̄

(2θ + 1)

)2
(2θ2 + 4θ + 1)

θ2(θ + 1)2
.

Solving this equation for θ, we get

θ̂ =

(
2X̄2 − 1

n

n∑
i=1

x2i

)
±

√√√√X̄2

(
X̄2 − 1

2n

n∑
i=1

x2i

)
2

n

n∑
i=1

x2i − 3X̄2

,
2

n

n∑
i=1

x2i − 3X̄2 ̸= 0,

where α̂, θ̂ are the estimators of the parameter θ and α, respectively. This method will be
referred to as Method 1.

5.2. The Maximum Likelihood Estimates (MLE)

Let x1, x2, . . . , xn be a random sample of size n from new Sushila distribution and let
fx be the observed frequency in the sample corresponding to X = x (x = 1, 2, ..., k) such
that

∑k
x=1 fx = n, where k is the largest observed value having non-zero frequency. The

likelihood function, L of new Sushila distribution is given by

L =

(
θ

α2(θ + 1)

)n k∏
x=1

(
α+ θ2x

)fx
e−

θ
α
(nx̄),

and so the log likelihood function is obtained as

logL = n log θ − 2n logα− n log(θ + 1) +

k∑
x=1

fx log(α+ θ2x)− nθx̄

α
. (5)

By differentiating Equation (5) with respect to θ and α, is obtained by:

∂ logL

∂θ
= 0,

∂ logL

∂α
= 0. (6)
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The equation (6) do not seem to be solved directly. However, the Fisher’s scoring method
can be applied to solve these equations. The following equations for θ̂ and α̂ can be solved

∂2 logL

∂θ2
∂2 logL

∂θ∂α

∂2 logL

∂α∂θ

∂2 logL

∂α2


 θ̂ − θ0

α̂− α0

 =


∂ logL

∂θ

∂ logL

∂α

 ,

where θ0 and α0 are the initial values of θ and α respectively. These equations are solved
iteratively till sufficiently close estimates of θ̂ and α̂ are obtained. This method will be
referred to as Method 2.

5.3. The Unweighted Least Squares (UWLS) Method via the CDF

Let X1, X2, . . . , Xn be n independent random variables having the new Sushila distri-
bution with parameters α and θ. Without loss of generality, suppose that X1 < X2 <
· · · < Xn are the order statistics and by taking the natural logarithm on the both sides of
Equation (4), we obtain that

log(F (x)) = log

(
1− (αθ + α+ θ2x)e−

θx
α

α(θ + 1)

)
, x, α, θ > 0

= log

(
(θ + 1)− (θ + 1 +

θ2x

α
)e−

θx
α

)
− log(θ + 1).

Let 0 < x1 < x2 < · · · < xn be n orders observations, then

log(F (xi)) = log

(
(θ + 1)− (θ + 1 +

θ2xi
α

)e−
θxi
α

)
− log(θ + 1), x, α, θ > 0.

Let the empirical distribution function of X be denoted by Fn(x), By reference [4], the
estimator of F (xi) can be considered

Fn(xi) =
i− d

n− 2d+ 1
, i = 1, 2, . . . , n, (7)

for some real number d, 0 ≤ d ≤ 1. So, we choose four popular expressions (see also [1])
that are often used as estimators of F (xi)

uik =



i
n+1 , k = 1

i−0.3
n+0.4 , k = 2

i−0.375
n+0.25 , k = 3

i−r
n , k = 4,
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i = 1, 2, 3, . . . , n and for some real number r ∈ (0, 1).
We estimate α and θ by the unweighted least squares method, by using minimizing function

Ek(α, θ) =

n∑
i=1

(
log(uik)− log

(
(θ + 1)− (θ + 1 +

θ2xi
α

)e−
θxi
α

)
+ log(θ + 1)

)2

, (8)

k = 1, 2, 3, 4. By solving

∂

∂α
Ek(α, θ) = 0

∂

∂θ
Ek(α, θ) = 0,

k = 1, 2, 3, 4.
We denoted by

A(xi, α, θ) = xi(α+ θ2xi) log

(
−e−

θxi
α (

θ2xi
α

+ θ + 1) + θ + 1

)
,

Bk(xi, α, θ) = xi(α+ θ2xi) log(uik),

C(xi, α, θ) = α(θ + 1)(e
θxi
α − 1)− θ2xi,

Dk(xi, α, θ) =
xi[log(uik) + log(θ + 1)− log(−e−

θxi
α (

θ2xi
α

+ θ + 1) + θ + 1)]

(θ + 1)[α(θ + 1)(e
θxi
α − 1)− θ2xi

,

where α̂ is the estimator of the parameter α with this method. Using some algebraic
manipulations, θ̂ satisfies the following equation:

θ̂ = exp


∑n

i=1

A(xi, α, θ)

Ck(xi, α, θ)
−
∑n

i=1

Bk(xi, α, θ)

C(xi, α, θ)∑n
i=1

xi(α+ θ2xi)

C(xi, α, θ)

− 1,

and

α̂ =
n∑

i=1

(θ + 1)θ2xiDk(xi, α, θ)

Dk(xi, α, θ)
,

for k = 1, 2, 3, 4. These four UWLS methods via uik, k = 1, 2, 3, 4, will be referred to as
Methods 3 through 6, respectively.

5.4. The Weighted Least Squares (WLS) Method via the CDF

Using the same weight for all datum can be erroneous [2], therefore, we weigh the
values in Equation (8) via a weighting factor. To find one of these factors we may use a
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variance stabilizing transformation. This approach, proposed by Bickel and Doksum [3]
relates the variance of log(uik), denoted by V ar(log(uik)), to the uncertainty of uik and
that we denote by V ar(uik). We obtain that

V ar(log(uik)) =

(
∂ log(uik)

∂uik

)2

V ar(uik),

which gives

V ar(log(uik)) =

(
1

∂uik

)2

V ar(uik).

Therefore, we use wik as a weighting factor, denoted by wik = u2ik and minimizing function

Ek(α, θ) =
n∑

i=1

wik

(
log(uik)− log

(
(θ + 1)− (θ + 1 +

θ2xi
α

)e−
θxi
α

)
+ log(θ + 1)

)2

,

k = 1, 2, 3, 4. By solving

∂

∂α
Ek(α, θ) = 0

∂

∂θ
Ek(α, θ) = 0.

k = 1, 2, 3, 4.
We denoted by

A(xi, α, θ) = xi(α+ θ2xi) log

(
−e−

θxi
α (

θ2xi
α

+ θ + 1) + θ + 1

)
,

Bk(xi, α, θ) = xi(α+ θ2xi) log(uik),

C(xi, α, θ) = α(θ + 1)(e
θxi
α − 1)− θ2xi,

Dk(xi, α, θ) =
xi[log(uik) + log(θ + 1)− log(−e−

θxi
α (

θ2xi
α

+ θ + 1) + θ + 1)]

(θ + 1)[α(θ + 1)(e
θxi
α − 1)− θ2xi

,

where α̂ is the estimator of the parameter α with this method. Using some algebraic
manipulations, θ̂ satisfies the following equation:

θ̂ = exp


∑n

i=1wik
A(xi, α, θ)

Ck(xi, α, θ)
−
∑n

i=1wik
Bk(xi, α, θ)

C(xi, α, θ)∑n
i=1wik

xi(α+ θ2xi)

C(xi, α, θ)

− 1,

and

α̂ =

n∑
i=1

(θ + 1)θ2xiwikDk(xi, α, θ)

wikDk(xi, α, θ)
,

for k = 1, 2, 3, 4. These four WLS methods via uik, k = 1, 2, 3, 4 and weighting factors
wik, will be referred to as Methods 7 through 10 respectively.
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5.5. Genetic algorithm

In the genetic algorithm process is as follows:

Step 1. Determine the number of chromosomes, generation, and mutation rate and crossover
rate value. The number of chromosomes is 2 (α and θ), the number of generations
is 10000, and the mutation rate is 0.3.

Step 2. Generate chromosome-chromosome number of the population, and the initialization
value of the genes chromosome-chromosome with a random value

Step 3. Process steps 4-7 until the number of generations is met

Step 4. Evaluation of fitness value of chromosomes by calculating objective function. The
fitness values is defined by:

fi =
1

i
,

where i is current chromosomes.

Step 5. Chromosomes selection. We used the roulette wheel selection. The probability of
choosing individual i is equal to

pi =
fi∑N
i=1 fi

where fi is the fitness value of i and N is the size of the current generation.

Step 6. Crossover. A point on both parents’ chromosomes is picked by chromosome 2.

Step 7. Mutation. The chromosome i for i = 1, 2 are mutated as follows: we random
ui ∈ (0, 1), if ui < Mutation rate, then we mutated the chromosome i.

Step 8. Solution (Best Chromosomes)

This method will be referred to as Method 11.

6. A simulated Study

In this section. We use two data sets to find the good parameter estimation. The data
are waiting time (in minutes) of 100 bank customers [16] as Table 1, and (in days) of 72
guinea pigs infected with virulent tubercle bacilli [14] as Table 2. The comparison of new
Sushila distribution with Lindley and Sushila distribution is proposed in Table 5.

It can be observed from Table 3 that the estimates obtained via UWLS (Method
3-6) are very same, also the estimates obtained via WLS (Method 7-10), although the
estimates obtained via ME (Method 1) is not the best estimates, this method is good
estimate, directly calculate. Moreover, it is not an iterative method like the others. The
best estimate can be obtained using GA (Method 11).
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Table 1: Waiting time (in minutes) of 100 bank customers.

Waiting time (minutes) Observed frequency

0 - 4.9 30
5 - 9.9 32
10 - 14.9 19
15 - 19.9 10
20 - 24.9 5
25 - 29.9 1
30 - 34.9 2
35 - 39.9 1

Total 100

Table 2: Data of survival time (in days) of 72 guinea pigs infected with virulent tubercle bacilli.

Survival time (days) Observed frequency

0 - 79 8
80 - 159 30
160 - 239 18
240 - 319 8
320 - 399 4
400 - 479 3
480 - 559 1

Total 72

It can be observed from Table 4 that the estimates obtained via UWLS (Method 3-6)
and WLS (Method 7-10) are very same, although the estimates obtained via ME (Method
1) have the largest χ2, this estimates is directly calculated and it is not an iterative
method like the others. MLE can not calculate the parameters. The best performance
can be obtained using GA (Method 11).

Table 5 shows comparison parameter estimation for the waiting time data set. The
estimator of the Lindley distribution has been obtained by the moment estimation (ME).
The estimators of the Sushila distribution have been obtained by the moment estimation
(ME) and the maximum likelihood estimates (MLE). The estimator of new Sushila dis-
tribution has been obtained by the genetic algorithm (GA). The results show that new
Sushila distribution gives better performance than the Lindley and Sushila distributions
for waiting time data set.

The survival time data set in Table 2, the estimator of the Sushila distribution is
obtained by the moment estimation (ME). We found that the parameter θ̂ < 0, the θ̂ does
not satisfy the definition of Sushila distribution. Therefore we can not find the estimators
for Sushila distribution. However, the new Sushila distibution can find the estimators for
this data as the following Table 4.
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Table 3: ME, MLE, UWLS, WLS, and GA estimators of α and θ for waiting time

Method α θ χ2

1 28.099565 5.366360 2.317336
2 0.000398 0.000032 10.140794
3 2.977747 0.408350 7.017687
4 5.230973 0.772538 4.996613
5 3.334206 0.437684 6.528164
6 5.470875 0.796321 4.878338
7 4.055956 0.644292 7.033345
8 10.583034 1.606832 3.627089
9 2.576107 0.303251 7.314763
10 1.670607 0.187810 7.806489
11 22 4 2.083757

Table 4: ME, MLE, UWLS, WLS, and GA estimators of α and θ for survival time

Method α θ χ2

1 389.388353 0.267269 27.842259
2 - - -
3 319.472049 3.114969 14.267841
4 322.349246 3.125277 14.271553
5 321.338306 3.121736 14.269368
6 318.985074 3.113425 14.267277
7 318.245084 3.110803 14.267468
8 316.905403 3.106044 14.268873
9 315.503637 3.101055 14.271810
10 318.441567 3.111500 14.267377
11 9438.901726 103 7.936444

7. Conclusion

A two-parameter continuous distribution, called new Sushila distribution has been
presented. Some properties of the distribution such as CDF, expected value, the rth

moment, and estimation of parameters by nonlinear least squares methods, the maximum
likelihood estimation (MLE), the moment estimation (ME), and genetic algorithm (GA)
have been discussed. We found that the distribution contains the Sushila distribution as
a particular case p = 1

2 (θ = 1).
Finally, the two popular methods to estimate the parameters of a probability distri-

bution are maximum likelihood (MLE) and the method of moments (ME), and the other
method of least squares (UWLS and WLS) with various uik and genetic algorithm (GA).
We compare the 11 methods to estimate the parameters of the new Sushila distribution. In
experiment, we observed that the best parameter estimation is obtained via GA. Besides,
if we want a fast method to estimate the parameters, we introduce ME for estimating
parameters; moreover, we present an application of new Sushila distribution for fitting the
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Table 5: Comparing the estimation for waiting time

Waiting time
(minutes)

Observed
frequency

Lindley
(ME)

Sushila
(ME)

Sushila
(MLE)

New Sushila
(GA)

0 -4.9 30 29.8841 29.8295 32.3716 29.7298
5-9.9 32 30.2563 30.3055 21.7393 29.2572
10-14.9 19 18.8852 18.9084 14.5916 18.7491
15-19.9 10 10.0637 10.0653 9.7891 10.3586
20-24.9 5 4.9523 4.9468 6.5642 5.3034
25-29.9 1 2.3226 2.3168 4.3997 2.5920
30-34.9 2 1.0547 1.0506 2.9477 1.2277
35-39.9 1 0.4680 0.4655 1.9740 0.5685

Total 100 97.8870 97.8884 94.3772 97.7864

Paramters θ̂ = 0.1907 θ̂ = 17.9493 θ̂ = 0.1863 θ̂ = 4
α̂ = 213.1197 α̂ = 0.9758 α̂ = 22

χ2 2.3074 2.3173 10.1382 2.0813

waiting time data and survival time. Furthermore, We compare new Sushila distribution
with Lindley and Sushila distributions for the waiting time data. The results show that
new Sushila gives better fit than both the Lindley and Suhila distribution. Besides, the
Sushila distribution cannot find the estimator for the survival time data.

In future work, we will adjust the genetic algorithm for estimating parameter. On
the other hand as there are other well established meta-heuristics, such as Bee and Ant
Colony. We can use them for a better estimation.
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Appendix

The structure of genetic algorithm is presented, where the notation is used:
Nc is the number of generation,
Np is the number of population,
Mr is the mutation rate,
Cr is crossover rate,
Gen is a number of the population,

[a
(i)
k , b

(i)
k ] is the i current chromosomes and k is the current generation,

f(X) is the objective function,
S∗ is the best chromosomes,
Pn(m, :) is the mth row of matrix Pn

Initial the parameter (Nc,Np,Mr,Cr,Gen) and Set k = 1;
While k ≤ Gen do:

Generate a random number of chromosomes X
(i)
k =

[
a
(i)
k b

(i)
k f(a

(i)
k , b

(i)
k )
]
and

calculate f(X
(i)
k ) for each i = 1, 2, . . . , Np and defined Pk at k iteration as follows:

Pk =
[
X

(1)
k X

(2)
k . . . X

(i)
k X

(Np)
k

]′
Np×3

Calculate i∗ = argimin{f(a(i)k , b
(i)
k )}.

Set g∗ = f(a
(i∗)
k , b

(i∗)
k ) and P ∗ =

[
a
(i∗)
k b

(i∗)
k f(a

(i∗)
k , b

(i∗)
k )

]
.

Calculate the fitness value f (i) = 1
i for each population i = 1, 2, . . . , Np.

Calculate the roulette wheel selection pi =
f (i)∑Np

j=1 f
(j)

for i = 1, 2, . . . , Np.

if (f(a
(i∗)
k , b

(i∗)
k ) < g∗)

g∗ = f(a
(k)
n , b

(k)
n ); k = k + 1;

end
while j ≤ Np/2
% Selection
for l = 1 : 2
generate a random number, ul ∈ (0, 1).
if (
∑m

i=1 pi < ul <
∑m+1

i=1 pi) for m = 1, 2, . . . , Np
Parent(l, :) = Pk(m, :)

end
end
%Crossover
offspring(1, :) = [Parent(1, 1) Parent(2, 2)]
offspring(2, :) = [Parent(2, 1) Parent(1, 2)]

end
Pk+1(2j − 1, :) = [offspring(1, :) f(offspring(1, :))]
Pk+1(2j, :) = [offspring(2, :) f(offspring(2 :))]
%Mutation
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while i ≤ Np do:
Perform mutation operation on Pk+1 with Mr.

Replaced the bad population with the best population X
(i∗)
k in Pk+1.

end
end


