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Abstract. Let G be a connected graph. An ordered set of vertices {vy,...,v;} is a 2-resolving
set for G if, for any distinct vertices u,w € V(G), the lists of distances (dg(u,v1), ..., dg(u,v;))
and (dg(w,v1),...,dg(w,v;)) differ in at least 2 positions. A 2-resolving set S C V(G) which is
dominating is called a 2-resolving dominating set or simply 2R-dominating set in G. The minimum
cardinality of a 2-resolving dominating set in G, denoted by v2r(G), is called the 2R-domination
number of G. Any 2R-dominating set of cardinality vor(G) is then referred to as a ~yap-set in
G. This study deals with the concept of 2-resolving dominating set of a graph. It characterizes
the 2-resolving dominating set in the join, corona and lexicographic product of two graphs and
determine the bounds or exact values of the 2-resolving dominating number of these graphs.
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1. Introduction

The problem of uniquely determining the location of an intruder in a network was the
principal motivation of introducing the concept of metric dimension in graphs by Slater
[7], where the metric generators were called locating sets. The concept of metric dimension
of a graph was also introduced independently by Harary and Melter in [3] where metric
generators were called resolving sets.

Bailey and Yero in [6] demonstrated a construction of error-correcting codes from
graphs by means of k-resolving sets, and present a decoding algorithm which makes use
of covering designs.
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The distance between two vertices u and v of a graph is the length of a shortest path
between u and v, and we denote this by dg(u, v). In recent years, much attention has been
paid to the metric dimension of graphs: this is the smallest size of a subset of vertices
(called a resolving set) with the property that the list of distances from any vertex to
those in the set uniquely identifies that vertex and is denoted by dim(G).

According to the paper of Saenpholphat et al. [8], for an ordered set of vertices
W = {wy,ws, .., wr} C V(G) and a vertex v in G, the k-vector (ordered k-tuple)

r(v/W) = (dg(v,w1),dg(v, ws), ..., dg (v, wg))

is referred to as the (metric) representation of v with respect to W. The set W is called
a resolving set for G if distinct vertices have distinct representation with respect to W.
Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set
{r(v/W):v e V(G)} consists of n distinct k-vectors. A resolving set of minimum cardi-
nality is called a minimum resolving set or a basis, and the cardinality of a basis for G is
the dimension dim(G) of G.

In the paper of Rara and Cabaro [4], an ordered set of vertices W = {wq,...,w;} is a
2-resolving set for G if, for any distinct vertices u,v € V(G), the (metric) representations
r(u/W) and r(v/W) of u and v, respectively differ in at least 2 positions. Then W is said
to be a 2-resolving set for G. If G has a 2-resolving set, the minimum cardinality dims(G)
is called the 2-metric dimension of G. If k = 2 is the largest integer for which G has a
2-resolving set, then we say that G is a 2-metric dimensional graph.

In this paper, the concept of 2-resolving dominating set in the join, corona and lexi-
cographic product of two graphs is discussed.

2. Preliminary Results

In this study, we consider finite, simple and connected undirected graphs. For basic
graph-theoretic concepts, we refer readers to [5].

Theorem 1. [2] Let G and H be two nontrivial graphs such that G is connected. Then
the following assertions hold for any a,c € V(G) and b,d € V(H) such that a # c.

(i) Nepmy(a,b) = ({a} x Ng {b}) U{Ng {a} x V(H)}

(i) dgim((a,b), (c,d)) = da(a,c)
(idi) dG[H] (a,0), (a,d) = min{dy (b, d), 2}.
Proposition 1. [1] Let G be a connected graph of order n > 2. Then dimy(G) = 2 if and
only if G = P,.

Proposition 2. dimy(K,) = n for n > 2.
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Remark 1. For any connected graph G of order n > 2,

1 < yr(G) <n.
Remark 2. For any connected graph G of order n > 2, dimy(G) < yar(G).
Remark 3. For n > 2, vor(K,) = n.

Theorem 2. Let G be a nontrivial connected graph of order n > 2. Then vyr(G) = 2 if
and only if G =2 P, for 2 <n < 4.

Proof. Suppose that v2r(G) = 2. Let S = {z,y} be a y3r-set in G. By Remark 2
and Proposition 1, G =2 P,. Moreover, x and y are the end vertices in G. Since S is a
dominating set in G, 2 < n < 4.

The converse follows immediately from Proposition 1. O

Theorem 3. Let G be a connected graph of order n > 2. If
G € {Ky, F3, P+ P3, Ky ,—m }, where m > 2, then yr(G) = n.

Example 1. The sets S1 = {b,e,g} and So = {a,d,e,g} in Figure 1 are 2-resolving
dominating sets in G. Moreover, Sy is a yop-set in G. Thus, yor(G) = 3.

Cb

7 f

Figure 1: A graph G with yr(G) =3

Example 2. Consider the graph G in Figure 2. The ordered set of vertices
W = {uj,uz,us} is a 2-resolving set for the graph G since the representations
Tg(ul/Wg) = (0, 1,2), Tg(UQ,W3> = (1,0, 1), T(;<’U,3/W3) = (2, 1,0), Tg('LL4/W3) = (2,2, 1),
ra(us/Ws) = (1,2,2) and rg(us/Ws) = (3,3,2) differ in at least 2 positions. But W is
not a dominating set of G.

3. 2-Resolving Dominating Sets in the Join of Graphs

Definition 1. Let G be any nontrivial connected graph and S C V(G). A set S C V(G)
is a 2-locating set of G if it satisfies the following conditions:

(i) |(Ng(z)ANg(y)) NS| > 2, for all z,y € V(G)\S with x # y



J. Cabaro, H. Rara / Eur. J. Pure Appl. Math, 15 (3) (2022), 1417-1425 1420

Uus

U2
Uq

Uy

Us

Figure 2: A graph G with dims(G) =3

(ii) (Ng(v)\Ng(w)) NS # @ or (Ng(w)\Ng[v]\S # @, for all v € S and
for all w € v(G)\S.

The 2-locating number of G, denoted by Ina(G), is the smallest cardinality of a 2-locating
set of G. A 2-locating set of G of cardinality Ina(G) is referred to as an Ina-set of G.

Definition 2. Let G be any nontrivial connected graph and S C V(G). S is a (2,2)-
locating ((2,1)-locating, respectively) set in G if S is 2-locating and |Ng(y) N S| < |S| — 2
(INa(y)N S| < |S|—1, respectively), for all y € V(G). The (2,2)-locating ( (2,1)-locating,
respectively) number of G, denoted by In 2)(G) (In,1)(G), respectively), is the smallest
cardinality of a (2,2)-locating ((2,1)-locating, respectively) set in G. A (2,2)-locating
((2,1)-locating, respectively) set in G of cardinality In(s9)(G) (In(2,1)(G), respectively) is
referred to as an Inygy-set (In(o,1)-set, respectively) in G.

Theorem 4. [4] Let G be a connected graph of order greater than 3 and let
Ky = {v}. Then § C V(K; + G) is a 2-resolving set of Kj + G if and only if either
v ¢ S and Sis a (2,2)-locating set in G or S = {v} UT, where T is a (2,1)-locating set
in G.

Theorem 5. [4] Let G and H be nontrivial connected graphs. A proper subset S of
V(G + H) is a 2-resolving set in G + H if and only if S¢ = V(G)NS and Sy =V(H)NS
are 2-locating sets in G and H, respectively, where Sg or S is a (2, 2)-locating set or S¢
and Sy are (2,1)-locating sets.

Theorem 6. Let G be a connected non-trivial graph and let K; = {v}. Then
S C V(K1 + G) is a 2-resolving dominating set in K7 + G if and only if it is a 2-resolving
set in K1 + G.

Proof. Let S C V(K + G) be a 2-resolving dominating set in K7 + G. Then, S is a
2-resolving set in K7 + G by the definition of 2-resolving dominating set.

Conversely, if S is a 2-resolving set in Ky + G, then by Theorem 4, S is a 2-locating
set. Hence, S is a dominating set in K7 + G. Thus, S is a 2-resolving dominating set in
K +G. ]

Corollary 1. yr(K; + G) = dima(K; + G).
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Theorem 7. Let G and H be nontrivial connected graphs. A proper subset S of V(G+H)
is a 2-resolving dominating set in G + H if and only if it is a 2-resolving set in G + H.

Proof. Let S C V(G + H) be a 2-resolving dominating set in G + H. Then, S is a
2-resolving set in G + H.

Conversely, if S is a 2-resolving set in G + H, then by Theorem 5, S is a 2-locating
set. Hence, S is a dominating set in G + H. Thus, S is a 2-resolving dominating set in
G+ H. O

Corollary 2. Let G and H be connected nontrivial graphs. Then,
vor(G+ H) = dimy(G + H).

The set consisting of the shaded vertices in Figure 3 is a 2-resolving dominating set of
the join Ps + FPs.

Figure 3: A graph P5 —|—P6 with ’)/QR(P5 —|—P6) =7

4. 2-Resolving Dominating Sets in the Corona of Graphs

Theorem 8. [4] Let G and H be nontrivial connected graphs. A set
S CV(GoH)is a 2-resolving set of Go H if and only if S = AU B, where A C V(G) and

B =J{S, : S, is a 2-resolving set of H", for all v € V(G)}.

Theorem 9. Let G and H be nontrivial connected graphs. Then

S C V(G o H) is a 2resolving dominating set in G o H if and only if

S =AU( U Sy), where A C V(G), S, is a 2-resolving set for each v € A and S,
veV(G)

is a 2-resolving dominating set for each v € V(G)\A.
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Proof. Suppose S is a 2-resolving dominating set in G o H. Let A = V(G) N S and

Sy = SNV(HY) for all v € V(G). Then S = AU ( U SU> where A C V(G) and
veV(Q)

Sy C V(H"). By Theorem 8, S, is a 2-resolving set in H" for each v € A. If v € V(G)\ A4,

then S, is a 2-resolving dominating set in G o H.

Conversely, let S = AU U SU> where A C V(@) and S, C V(H") satisfying the
veV(G)

given conditions. By Theorem 8, S is a 2-resolving set in Go H. Let 2 € V(G o H)\S

and let v € A such that z € V(v+ H"). Then zv € E(Go H). If v € V(G)\A, then there

exists y € S, such that xy € E(G o H). Therefore, S is a dominating set in G o H. Hence,

S is a 2-resolving dominating set in G o H. 0

Corollary 3. Let G and H be nontrivial connected graphs, where
|[V(G)| =n. Then yor(G o H) < min{n(1 + dima(H)),nv2r(H)}.

The set consisting of the shaded vertices in Figure 4 is a 2-resolving dominating set of
the corona Py o Cs.

Figure 4: A graph Py o C5 with yor(Pyo C5) = 12

5. 2-Resolving Dominating Sets in the Lexicographic Product of Graphs

Definition 3. A vertex z is said to be l-equidistant to y if xy € FE(G) and
dg(z,z) = dg(y,z), for all z € V(G)\{z,y} and it is 2-equidistant to y if
da(z,y) = 2 and dg(z,z) = dg(w, 2), for all z € V(G)\{z,w}. A vertex is called a
free-vertex in G if it is neither l-equidistant nor 2-equidistant to any vertex. The set
containing all 1-equidistant, 2-equidistant, and free-vertices in G are denoted by EQ1(G),
EQ2(G) and fr(G), respectively.

Theorem 10. Let G and H be non-trivial connected graphs. Then
W= U [{z} x T;], where S C V(G) and T,, C V(H) for each = € S, is a 2-resolving set
es

in G[H] if and only if
(1)) §=V(G)
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(ii) T, is a 2-locating set in H for every x € V(G);

(#1) T, and T, are (2,1)-locating sets or one of T, and T}, is a (2,2)-locating set in H
whenever z,y € EQ1(G); and

(iv) T, and Ty are (2-locating) dominating sets in H or one of T, and T, is a 2-dominating
set whenever z,y € EQ2(G).

Proof. Suppose W = |J [{m} X Tx] is a 2-resolving set in G[H]. Suppose there exists
zeS
x € V(G)\S. Pick a,b € V(H), where a # b. Then (z,a), (z,b) ¢ W and (z,a) # (z,b).
Since = ¢ S and dg (@, a), (y,p)) = daia((2,0), (y,p)) for all y € V(G)\ {x} and for all
p € V(H), rgim((z,a)/W) = rgi((z,b)/W). This implies that W is not a 2-resolving
set of G[H], a contradiction to the assumption on W. Therefore, S = V(G).

To prove (ii), let = € V(G) and p,q € V(H) where p # q. Then
(x,p) # (x,9). If pog ¢ T, or [p € T, and ¢ ¢ 1T,|, then
(z,p), (x,q) ¢ W or [(z,p) € W and (z,q) ¢ W]. Since W is a 2-resolving set in G[H],
raa)((z,p)/W) and rgp((z, q)/W) differ in at least 2 positions. Hence, by Theorem
1(iii) and Definition 1, T} is a 2-locating set in H. Thus, (ii) follows.

To prove (ili), let = and y be adjacent vertices of G  with
dg(x,z) = dg(y, z), for all z € V(G)\{x,y}. Let a,b € V(H), a # b. Since W is
2-resolving, rqim)((w,a)/W) and rgia((y,b)/W) differ in at least 2 positions. By as-
sumption, it is not possible that Ny(a) N T, = T, and Ng(b)NT, = T,. If T, or T, is
(2, 2)-locating, then we are done. Otherwise, T, and T} are (2,1)-locating.

To prove (iv), let z,y € V(G) where dg(z,y) = 2 and
da(z,z) = daly, z), for all z € V(G)\{z,y}. Let a,b € V(H), a # b. Suppose one
of T, and T,, say T, is not a dominating set in H. Pick a € V(H)\Ny[T}] and let
b€ V(H)\T,. Since dg(g)((7,a),(z,q)) = 2, for all (z,q), it follows that [Ny (b) NTy| > 2,
i.e., T, is a 2-dominating set.

Conversely, suppose (i),(ii), (iii) and (iv) hold. Let (z,a),(y,b) € V(G[H]),
(z,a) # (y,b). Consider the following cases.

Case 1. z =y

Supppose (z,a), (y,b) ¢ W. Then a # b and a,b ¢ T, = T,. By (ii), T} is a 2-locating
set. Hence, by Theore 1(iii) and by Definition 1, rgg)((z,a)/W) and rgig)((y,b)/W)
differ in at least two positions. On the other hand, if (z,a) € W, (y,b) ¢ W, then a € T,
b ¢ T,. Using similar argument as in above, rgx)((z,a)/W) and rqm)((y, b)/W) differ in
at least 2 positions.

Case 2. = # y.
Subcase 2.1 zy € E(G).

If do(x,2) # dg(y,z) for some z € V(G)\{z,y}, then rgy((w,a)/W) and
raa)((y,b)/W) differ in at least 2 positions since H is nontrivial. Suppose
dg(z,z) = da(y, 2), for all z € V(G)\ {z,y}. Then by (iii), T, and T}, are (2, 1)-locating
sets in H or one of T, and T, is a (2,2)-locating set in H. Hence, by
Definition 1, rgg)((z,a)/W) and rgia((y, b)/W) differ in at least 2 positions.
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Subcase 2.2 zy ¢ E(G)

If dg(x,y) > 2, then it follows that rgg((z,a)/W) and rgm((y,b)/W) differ in at
least 2 positions. If dg(z,y) = 2 and dg(z, 2) # da(y, z) for some z € V(G)\ {z, y}, then
it follows that rqm((@, a)/W) and rgm)((y, b)/W) differ in at least 2 positions. Suppose
dg(z,y) =2 and dg(z, 2) = dg(y, 2), for all z € V(G)\ {z,y}. Suppose (z,a), (y,b) ¢ W.
Then a ¢ T, and y ¢ T,. If T, and T} are both dominating, then rgg)((z,a)/W) and
raia)((y,b)/W) differ in at least 2 positions. If one, say T}, is a 2-dominating set, then
raia) (v, a) /W) and g ((y,b) /W) differ in at least 2 positions. Similarly, if (x,a) € W,
(y,b) ¢ W, then rgp((z,a)/W) and rgpa ((y,b)/W) differ in at least 2 positions.

Accordingly, W is a 2-resolving set of G[H]. O

Theorem 11. Let G and H be non-trivial connected graphs. Then
W = U [{z} x T], where S C V(G) and T,, C V(H) for each = € S, is a 2-resolving
z€eS
dominating set in G[H] if and only if it is a 2-resolving set in G[H].
Proof. The proof is similar to that of Theorem 10. 0
Corollary 4. Let G and H be nontrivial connected graphs such that G is not free-

equidistant. Then,
72r(G[H]) = dimy (G[H]).

The set consisting of the shaded vertices in Figure 5 is a 2-resolving dominating set of
the lexicographic product Py[Ps].

Figure 5. A graph P4[P3] with varPy[Ps] = 8
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