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Abstract. In this paper, we study the properties of annihilator hyperideals in the class of strong
bounded dual distributive meet-hyperlattice. We show that the set of all closed hyperideals forms
a Boolean algebra. We introduce the concept of homomorphism, which preserves the annihilator
hyperideal. Suitable conditions for preserving annihilator hyperideals are obtained. Representation
and characterization theorems of annihilator hyperideals in sub-meet-hyperlattice and product
meet-hyperlattice are proved.
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1. Introduction

The approach to the theory of hyberlattices was first made by M. Konstantinidou
and J. Mittas in 1977, [12]. Modular distributive and complemented classes of hyper-
lattices were studied by M. Konstantinidou in [10] and [9]. Ideals of hyperlattices were
introduced by Rahnamai-Barghi in [15], where he considered the prime ideal theorem for
distributive hyperlattices. M. Amiri Bideshki and et al. defined the notions of hyperideals
and hyperfilters in strong meet-hyperlattices in [11]. They also introduced the concept of
annihilator hyperideals. Annihilators have been started in ring theory over many classes
of rings, as examples refer to [19] and [8]. In that sense, the annihilator of a certain set A
means the set of killer elements that make each element of A tends to zero by multiplication
operation. The mention of annihilators in lattices was first introduced by M.Mandelker in
1970, [13]. He defined the relative annihilator as a generalization of relative pseudocom-
plementation. M.Mandelker introduced the relation between prime ideal conditions and
annihilator conditions on distributive lattices. W. H. Cornish investigated the annihilator
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properties of distributive lattices in [18]. He defined the annihilator of a set A as a set
of all elements whose elements tend to zero by the meet operation. The main result-
that Cornish proved- is the normality of lattice equivalents to any two elements with zero
meeting have a comaximal annihilator of their principal ideals. Moreover, the normality
of the lattice equivalents to the annihilator of the principle ideal of the meeting of any two
elements equals the joining of annihilators of their principle ideals. In [1], B. A. Davey and
Nieminen studied the annihilators in the class of modular lattices. They proved that the
weakly atomic modular lattice has necessary and sufficient conditions for its annihilators.
As a generalization of lattices Halaš [6] studied annihilators in ordered sets. This was
followed by a lot of studies and research on the concept of annihilator in many algebraic
structures and classes, for instance: almost distributive lattices [3],0-almost distributive
lattices [4], distributive dual weakly complemented lattice [17], BCK-algebras [7], standard
QBCC algebras [14], C-algebra[16], and many other classes.

In this paper, the properties of annihilator hyperideals of strong bounded dual distribu-
tive meet-hyperlattice are investigated. Main terminologies and properties are recalled in
Section 2. Important properties of annihilator hyperideals are proved. Moreover, the
structure of the set of all closed hyperideals is investigated in Section 3. In Section 4,
the conditions of homomorphism map to preserve Annihilator hyperideals are discussed.
The proof of the preservation of annihilator hyperideals under the effects of these condi-
tions is given. Finally, in section 5, we show that annihilator hyperideals are inherited for
sub-meet-hyperlattice and product meet-hyperlattice.

2. Backgrounds

We recall here the basic terminologies and concepts of hyperlattices. The reader
must be familiar with lattice theory. For more details about lattice theory, see [2] and [5].

Definition 1. [11] Let L be a nonempty set, P∗(L) is the set of all nonempty subsets of
L, ∧̄ : L × L → P∗(L) is a hyperoperation and ∨ : L → L is a binary operation. Then
L =< L; ∧̄,∨ > is called a meet-hyperlattice if:

H1) a ∈ iai∧̄ia,ia = a ∨ a;

H2) ai∧̄ibi = ibi∧̄ia,ia ∨ ibi = ib ∨ ai;

H3) ai∧̄i(bi∧̄ic)i = i(ai∧̄ib)∧̄ic, a ∨ (b ∨ c) = (a ∨ b) ∨ c;

H4) a ∈ (ai∧̄i(a ∨ b))i ∩ i(a ∨ (ai∧̄ib)),i ifor all a, ib, ic ∈ L.

The meet-hyperlatticce L is called strong, if it satisfies that:

if a ∈ ai∧̄ib then ai ∨ ib = b , i ifor all a, ib ∈ L.

Consider an order relation ≤ on L as: a ≤ b iff a ∨ b = b, for all a, b ∈ L. Accordingly,
meet-hyperlattice L is bounded if there exist two elements 0, 1 ∈ L such that 0 ≤ a ≤ 1,
for all a ∈ L.
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For subsets A,B ⊆ L:

Ai∧̄iB = ∪{ai∧̄ib : ia ∈ A, ib ∈ B},

Ai ∨ iB = {ai ∨ ib : ia ∈ A, ib ∈ B}.

Proposition 1. [11] Let L be a boundedistrong meet-hyperlattice. Then theifollowing
conditions hold:

(i) If a, b ̸= 1 iandiai ∨ ib = 1, ithen ia, b /∈ ai∧̄ib;

(ii) If ai∧̄ib = L or a, b ∈ ai∧̄ib, then a = b;

(iii) For all a ∈ L: a ∈ ai∧̄i1 and 0 ∈ ai∧̄i0.

The meet-hyperlattice L is distributive, if ai ∨ i(bi∧̄ic) = (ai ∨ ib)i∧̄i(ai ∨ ic), for all
a, b, c ∈ L. Dually, L is dual distributive if ai∧̄i(b ∨ ic) = (ai∧̄ib)i ∨ i(ai∧̄ic).

Definition 2. [11] Let I be a nonempty subset of a strong meet-hyperlattice L. I is called
a hyperideal if:

i) If a, ib ∈ I, theniai ∨ ib ∈ I;

ii) Ifia ∈ Iiand b ∈ L, such that b ≤ a, then b ∈ I.

The set of all hyperideals of strong bounded meet-hyperlattice L is denoted by I(L).
The meet operation on hyprideals is the usual sets intersection ∩ and the join operation
is defined as Ii∨iJ = {x ∈ L : x ≤ ai ∨ ib, a ∈ I, b ∈ J}. Then, we get the following
theorem:

Theorem 1. [11] The structure (I(L);∩,∨, 0, L) forms a bounded distributive lattice.

Definition 3. [11] Let L = (L, ∧̄,∨) be aistrong bounded dualidistributive meet-hyperlatticei
and A ⊆ L. Then the hyperideal

Ar = {x ∈ L : 0 ∈ x∧̄a, forall a ∈ A},

is called annihilator hyperideal or for brevity (annihilator).

When A is a singleton subset {a} of L, its annihilator is defined as:

ar = {x ∈ L : 0 ∈ a∧̄x}.

Proposition 2. [11]
Let L = (L, ∧̄,∨) be a strong bounded dualidistributive meet-hyperlattice. Then:

(i) 0r = L;

(ii) If a, b ∈ L and a ≤ b,ithen br ⊆ ar;
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(iii) Ar = ∩{ar : a ∈ A};

(iv) Ar ∩Br = (A ∪B)r.

Notice that (ii) can be generalized to any subsets A and B of L as:

If A,B ⊆ L and A ⊆ B then Br ⊆ Ar.

In all of the following, the meet-hyperlattice L =< L; ∧̄,∨, 0, 1 > is considered that
strong bounded and dual distributive.

3. Annihilator Hyperideals

The core of this section is that we prove the main theory, which states that the set
of all closed hyperideals forms a Boolean algebra.

Theorem 2. Let I, J be subsets of meet-hyperlattice L. Then

(i) I ⊆ Irr;

(ii) Irrr = Ir;

(iii) I ∩ J ⊆ (Ir ∨ Jr)r;

(iv) Ir ∩ Jr = (I ∨ J)r;

(v) (I ∩ J)rr ⊆ Irr ∩ Jrr;

(vi) 1r ⊆ Ir for all I ⊆ L;

(vii) Ir ∩ Irr = 1r;

(viii) If I ⊆ Jr then I ∩ Jrr = 1r;

(ix) 1rr = L.

Proof.

(i) Since

I ∩ Irr = I ∩ {x ∈ L : 0 ∈ x∧̄i for all i ∈ Ir}
= {x ∈ I : 0 ∈ x∧̄i for all i ∈ Ir}
= I.

Then, I ⊆ Irr.

(ii) From (i) we have I ⊆ Irr and Ir ⊆ Irrr. On the other side, we have Irrr ⊆ Ir from
Proposition 2. Hence the equality is satisfied.
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(iii) Let x ∈ I ∩ J and y ∈ Ir ∨ Jr. Then y ≤ i ∨ j for some i ∈ Ir and j ∈ Jr such that

x∧̄y ⊆ x∧̄(i ∨ j)

= (x∧̄i) ∨ (x∧̄j).

Since x ∈ I, x ∈ J then 0 ∈ (x∧̄i) and 0 ∈ (x∧̄j). Then 0 ∈ x∧̄(i ∨ j). From
Proposition 2, we get 0 ∈ (x∧̄y) .Therefore x ∈ (Ir ∨ Jr)r.

(iv) Since I, J ⊆ I ∨ J , then Ir, Jr ⊇ (I ∨ J)r. So, (I ∨ J)r ⊆ Ir ∩ Jr. Conversely, let
y ∈ Ir ∩ Jr, thus 0 ∈ y∧̄i for all i ∈ I and 0 ∈ y∧̄j for all j ∈ I which indicates that

0 ∈ (y∧̄i) ∨ (y∧̄j) = y∧̄(i ∨ j).

So for all a ≤ i ∨ j meeting each side by y to get y∧̄a ⊆ y∧̄(i ∨ j). It impliesithat
0 ∈ y∧̄a and then y ∈ (I ∨ J)r. Therefore Ir ∩ Jr ⊆ (I ∨ J)r.

(v) Since
I ∩ J ⊆ I and I ∩ J ⊆ J

then
(I ∩ J)rr ⊆ Irr and (I ∩ J)rr ⊆ Jrr.

Thus
(I ∩ J)rr ⊆ Irr ∩ Jrr.

(vi) Suppose x ∈ 1r and I is a nonemptyisubset of L, then 0 ∈ x∧̄1. From Proposition
2, we get 0 ∈ x∧̄y for all y ∈ I. Therefore x ∈ Ir.

(vii) From (iv) in Proposition 2, we get Ir ∩ Irr = (I ∪ Ir)r. Since a ≤ 1 for all a ∈ I ∪ Ir,
then 1r ⊆ ar. It implies that 1r ⊆ ∩{ar : a ∈ I ∪ Ir}. Consequently, 1r ⊆
(I∪Ir)r = Ir∩Irr. The opposite direction is taken immediately from (vi).Therefore,
Ir ∩ Irr = 1r.

(viii) Let I ⊆ Jr. Intersect both sides by Jrr, we get I ∩ Jrr ⊆ Jr ∩ Jrr = 1r. But, from
(vi) we have 1r ⊆ I ∩ Jrr.

(ix)

1rr = {x ∈ L : 0 ∈ x∧̄a, a ∈ 1r}
= {x ∈ L : 0 ∈ x∧̄a, 0 ∈ a∧̄1}
= {x ∈ L : 0 ∈ x∧̄a, 0 ∈ a∧̄y, for all y ∈ L}.

Definition 4. A hyperideal I of meet-hyperlattice L is called closed if I = Irr.

We denotei the set of all closed hyperideals of ∧- hyperlattice L by H(L).
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Lemma 1. Let I, Jand K be closed hyperideals of meet-hyperlattice. Then:

(i) (Ir ∨ Jr)r = I ∩ J ;

(ii) (I ∩ J)rr = Irr ∩ Jrr;

(iii) If I ∩ Jrr = 1r then I ⊆ Jr;

(iv) K ∩ (Ir ∩ Jr)r ⊆
(
Ir ∩ (J ∩K)r

)r
.

Proof.

(i) Since Ir, Jr ⊆ Ir ∨ Jr then, from Proposition 2, we have

(Ir ∨ Jr)r ⊆ Irr = I,

and
(Ir ∨ Jr)r ⊆ Jrr = J,

Thus
(Ir ∨ Jr)r ⊆ I ∩ J.

The equalty is obtained from (iii) in Theorem 2.

(ii) Irr∩Jrr = I ∩J ⊆ (I ∩J)rr. On the other side, from (v) in Theorem 2. the equality
is satisfied.

(iii) Let I ∩ Jrr = I ∩ J = 1r. Then I ⊆ Jr (from (vii) in Theorem 2).

(iv) It is clear that
K ∩ Ir ∩ (J ∩K)r ⊆ Ir. (1)

Consequently

J ∩K ∩
(
Ir ∩ (J ∩K)r

)
= Ir ∩ [(J ∩K) ∩ (J ∩K)r]

= Ir ∩ [(Jrr ∩Krr) ∩ (J ∩K)r]

= Ir ∩ [(J ∩K)rr ∩ (J ∩K)r], (From ii))

= Ir ∩ 1r (From vii) in Theorem 2.)

= 1r,

which implies that
K ∩ Ir ∩ (J ∩K)r ⊆ Jr (2)

Thus, from (1), (2) we get

K ∩ Ir ∩ (J ∩K)r ⊆ Ir ∩ Jr.

Hence (
K ∩ Ir ∩ (J ∩K)r

)
∩ (Ir ∩ Jr)r = 1r,
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which equivalent,
Ir ∩ (J ∩K)r ∩

(
K ∩ (Ir ∩ Jr)r

)
= 1r.

As a result, we get
K ∩ (Ir ∩ Jr)r ⊆

(
Ir ∩ (J ∩K)r

)r
.

For I, J ∈ H(L), we define two binary operations I ∧J = I ∩J and I ⊻J = (Ir ∩Jr)r.
We get

(I ∩ J)rr = Irr ∩ Jrr = I ∩ J ∈ H(L),

and,
I ⊻ J = (Ir ∩ Jr)r ∈ H(L).

Theorem 3. Let L =< L; ∧̄,∨ > be a meet-hyperlattice. Then < H(L);∩,⊻,r , 1r, L >
forms a Boolean algebra.

Proof. To demonstrate that (H(L),∧,⊻) forms a lattice, only associative and absorp-
tion identities are required, as idempotent and commutative identities are trivial.
Let I, J,K ⊆ H(L). Then we have

(Ii ⊻ iJ) ⊻ iK = (Iri ∩ iJr)ri ⊻ iK

=
(
(Iri ∩ iJr)rri ∩ iKr

)r
=

(
(Iri ∩ iJr)i ∩ iKr

)r
=

(
Iri ∩ i(Jri ∩ iKr)

)r
=

(
Iri ∩ i(Jri ∩ iKr)rr

)r
= Ii ⊻ i(Jri ∩ iKr)r

= Ii ⊻ i(Ji ⊻ iK).

It is easy to prove the second associative identity, (I ∩ J) ∩K = I ∩ (J ∩K).
Now we are going to show the absorption identities. Since Ir ⊆ (I ∩ J)r, then

Ii ⊻ i(I ∩ J) =
(
Ir ∩ (I ∩ J)r

)r
= Irr = I.

Similarly, since Ir ∩ Jr ⊆ Ir,ithen I = Irr ⊆
(
Ir ∩ Jr

)r
. Therefore

I ∩ (Ii ⊻ iJ) = I ∩ (Ir ∩ Jr)r = I.

Notice that I ⊆ 0r = L and 1r ⊆ I ∈ H(L), consequently (H(L),∧,⊻) is a bounded lattice.

Clearly, Ir is the complement of I, because I∩Ir = 1r and I⊻Ir = (Ir∩Irr)r = 1rr = L.

By using (iv) in Lemma 1, we get that:

K ∩ (I ⊻ J) ⊆ I ⊻ (J ∩K) (3)

Then the distributivity condition is proved by replacing K in (3) by I ⊻K to get:
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(Ii ⊻ iK) ∩ (I ⊻ J) ⊆ Ii ⊻ i
(
J ∩ (I ⊻K)

)
⊆ Ii ⊻ i

(
Ii ⊻ i(K ∩ J)

)
(by replacing K in

(3) by J)
= Ii ⊻ i(K ∩ J).

On the other hand, J ∩ K ⊆ (Ii ⊻ iJ) ∩ (Ii ⊻ iK) and I ⊆ (Ii ⊻ iJ) ∩ (Ii ⊻ iK), which
implies that

Ii ⊻ i(J ∩K) ⊆ (Ii ⊻ iJ) ∩ (Ii ⊻ iK). (4)

Therefore Ii ⊻ i(J ∩K) = (Ii ⊻ iJ) ∩ (Ii ⊻ iK) from (3) and (4).

Example 1. Tables 1 and 2 represent the hyperoperation ∧̄ and operation ∨ of meet-
hyberlattice L = {0, α, β, γ, δ, 1}. Figure 1 shows Boolean algebra H(L) of closed hyperide-
als of L.

∧̄ 0 α β γ δ 1
0 {0} {0} {0} {0} {0} {0}
α {0} {0, α} {0} {0, α} {0, α} {0, α}
β {0} {0} {β} {β} {0} {β}
γ {0} {0, α} {β} {γ} {0, α} {γ}
δ {0} {0, α} {0} {0, α} {δ} {δ}
1 {0} {0, α} {β} {γ} {δ} {1}

∨ 0 α β γ δ 1
0 0 α β γ δ 1
α α α γ γ δ 1
β β γ β γ 1 1
γ γ γ γ γ 1 1
δ δ 0 1 1 δ 1
1 1 1 1 1 1 1

Table 1: Represents the hyperoperation Table 2: Represents operation
∧̄ of the meet-hyberlattice L ∨ of the meet-hyberlattice L

L

{0, α, β, γ} {0, α, δ}

1r = {0, α}

Figure1:Boolean Algebra < H(L);∩,⊻,r , 1r, L >

4. Homomorphic Images of Annihilator Hyperideals

In this section, we define the homomorphism that is annihilator hyperideal preserv-
ing. Many properties related to the homomorphism of annihilator hyperideals are proven.
Moreover, we show that homomorphic images and preimages of annihilator hyperideals
are annihilator hyperideals.

Definition 5. Let L and L′ be two meet-hyperlattices. Then the map ϕ : L → L′ is called
homomorphism if the following conditions hold:

ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b), iϕ(a∧̄b) = ϕ(a)∧̄ϕ(b).
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Since for any a ∈ L: ϕ(a∨ 0) = ϕ(a)∨ ϕ(0) = ϕ(a), then ϕ(0) = 0′, where 0 and 0′ are
the zero elements of L and L′ respectively. Obviously, if a ≤ b then ϕ(a) ≤ ϕ(b).

The kernal of the homomorphism ϕ is given by ker(ϕ) = {a ∈ L : ϕ(a) = 0′}. It is
clearithat ker(ϕ) is a hyperideal of L′. The set of images of ϕ is denoted by Im(ϕ). It forms
sub-meet-hyperlattice of L′. If ϕ is one-to-one and onto, then L and L′ are isomorphic
and denoted by L ∼= L′.

Example 2. Tables 3 and 4 represent the hyperoperation ∧̄ and operation ∨ of meet-
hyberlattice L′ = {0′, x, y, z, 1′}.

∧̄ 0′ x y z 1′

0′ {0′} {0′} {0′} {0′} {0′}
x {0′} {x} {0′} {x} {x}
y {0′} {0′} {y} {y} {y}
z {0′} {x} {y} {z} {z}
1′ {0′} {x} {y} {z} {1′}

∨ 0′ x y z 1′

0′ 0′ x y z 1′

x x x z z 1′

y y z y z 1′

z z z z z 1′

1′ 1′ 1′ 1′ 1′ 1′

Table 3: Represents the hyperoperation Table 4: Represents the operation
∧̄ of meet-hyberlattice L′ ∨ of the meet-hyberlattice L′

Consider the meet-hyperlattice L in Example 1 and the meet-hyperlattic L′. Define a
homomorphism f : L → L′ as:

f(0) = 0′, f(β) = x, f(α) = y, f(γ) = z and f(δ) = f(1) = 1′.

Proposition 3. Let ϕ : L → L′ be a homomorphism between meet-hyperlattices. Then:

(i) If ϕ is onto and I is aihyperideal of L, then ϕ(I) is a hyperideal of L′;

(ii) If J is aihyperideal of L′, theniϕ−1(J) is a hyperideal of L containing ker(ϕ);

(iii) If A is ainonempty subset of L, then ϕ(Ar) ⊆ (ϕ(A))r.

Proof.

(i) Let x, y ∈ ϕ(I) then there exist a, b ∈ I such that x = ϕ(a) and y = ϕ(b). Then
ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) = x ∨ y ⊆ ϕ(I). Now, suppose x, y ∈ L′, x ∈ ϕ(I) and y ≤ x.
Hence y = ϕ(b) ∈ ϕ(a)∧̄ϕ(b) = ϕ(a∧̄b), which indicates that b ∈ a∧̄b and b ≤ a.
Thus b ∈ I and y = ϕ(b) ∈ ϕ(I). Consequently ϕ(I) is a hyperideal.

(ii) Let x, y ∈ J . Then thereiexist a, b ∈ L′ such that ϕ−1(x) = a and ϕ−1(y) = b.
It implies a ∨ b = ϕ−1(x) ∨ ϕ−1(y). By using the effect of ϕ on both sides we get
ϕ(a ∨ b) = ϕ

(
ϕ−1(x) ∨ ϕ−1(y)

)
= ϕ

(
ϕ−1(x)

)
∨ ϕ

(
ϕ−1(y)

)
= x ∨ y. Thus ϕ−1

(
ϕ(a ∨

b)
)
= a ∨ b = ϕ−1(x ∨ y) ∈ ϕ−1(J). Let x ∈ J, ϕ−1(x) = a and y ∈ L such that

y ≤ a = ϕ−1(x). Then y ∨ a = a which implies ϕ(y) ∨ ϕ(a) = ϕ(y ∨ a) = ϕ(a). Thus
ϕ(y) ≤ ϕ(a) = ϕ

(
ϕ−1(x)

)
= x. Therefore ϕ(y) ∈ J and y ∈ ϕ−1(J). Clearly, 0′ ∈ J

which means ker(ϕ) = ϕ−1(0′) ⊆ ϕ−1(J).
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(iii) Let x ∈ Ar and ϕ(x) = b. Then 0′ = ϕ(0) ∈ ϕ(x ∧ a) = ϕ(x)∧̄ϕ(a) for all a ∈ A.
It means that 0′ ∈ ϕ(x)∧̄ϕ(a) for all ϕ(a) ∈ ϕ(A) i.e., ϕ(x) ∈

(
ϕ(a)

)r
. Therefore

ϕ(Ar) ⊆
(
ϕ(A)

)r
.

Definition 6. Let ϕ : L → L′ be a homomorphism. Then ϕ is called annihilator hyperideal
preserving if for any subset A of L: ϕ(Ar) = [ϕ(A)]r.

The homomrphism f in Example 2 is not an annihilator hyperideal preserving.

Example 3. Tables 5 and 6 represent the hyperoperation ∧̄ and operation ∨ of meet-
hyberlattice L′′ = {0, α, β, γ, δ, 1}.

∧̄ 0 α β γ δ 1
0 {0} {0} {0} {0} {0} {0}
α {0} {α} {0} {α} {α} {α}
β {0} {0} {β} {β} {0} {β}
γ {0} {α} {β} {γ} {α} {γ}
δ {0} {α} {0} {α} {δ} {δ}
1 {0} {α} {β} {γ} {δ} {1}

∨ 0 α β γ δ 1
0 0 α β γ δ 1
α α α γ γ δ 1
β β γ β γ 1 1
γ γ γ γ γ 1 1
δ δ 0 1 1 δ 1
1 1 1 1 1 1 1

Table 5: Represents the hyperoperation Table 6: Represents operation
∧̄ of the meet-hyberlattice L′′ ∨ of the meet-hyberlattice L′′

Define a homomorphism f : L′′ → L′ as:

g(0) = 0′, g(β) = g(δ) = y, g(α) = x, g(γ) = z and g(1) = 1′.

Where L′ is a meet-hyperlattice in Example 2. f is an annihilator hyperideal preserving.

Theorem 4. Let L and L′ be two meet-hyperlattice, ϕ : L → L′ be a homomorphism and
ker(ϕ) = {0}. Then:

(i) If ϕ is onto then:

(a) ϕ is annihilator hyperideal preserving;

(b) For any nonemptyisubsets A and B of L

Ar = Br if andionly if [ϕ(A)]r = [ϕ(B)]r.

(ii) ϕ−1 is annihilator hyperideal preserving.

Proof.

(i) (a) For a inonempty subset A of L, we have ϕ(Ar) ⊆ [ϕ(A)]r, from Proposition 3.
So we just need to prove that [ϕ(A)]r ⊆ ϕ(Ar). To do that, let x ∈ [ϕ(A)]r ⊆ L′

then there is a ∈ L such that ϕ(a) = x, but 0′ ∈ x∧̄ϕ(b) for all b ∈ A. Then
0 ∈ a∧̄b for all b ∈ A. Therefore a ∈ Ar and then x = ϕ(a) ∈ ϕ(Ar).
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(b) Suppose that A and B are nonemptyisubsets of L such that Ar = Br. Then
by using a) we get [ϕ(A)]r = ϕ(Ar) = ϕ(Br) = [(ϕ(B)]r. Conversely, Let
[ϕ(A)]r = [ϕ(B)]r and x ∈ Ar. Then 0 ∈ a∧̄x for all a ∈ A. So 0′ = ϕ(0) ∈
ϕ(a∧̄x) = ϕ(a)∧̄ϕ(x). It means ϕ(x) ∈ [ϕ(A)]r = [ϕ(B)]r. Therefore 0′ = ϕ(0) ∈
ϕ(x)∧̄ϕ(b) for all b ∈ B, which implies that 0 ∈ x∧̄b for all b ∈ B. Accordingly
x ∈ Br and hence Ar ⊆ Br. Similarly we can prove that Br ⊆ Ar.

(ii) Let x ∈ [ϕ−1(B)]r which means 0 ∈ x∧̄b for all b ∈ ϕ−1(B). Then 0 ∈ x∧̄b for
all ϕ(b) ∈ B. It implies ϕ(0) = 0′ ∈ ϕ(x∧̄b) = ϕ(x)∧̄ϕ(b) for all ϕ(b) ∈ B. Hence
ϕ(x) ∈ Br, i.e., x ∈ ϕ−1(Br). As a result, [ϕ−1(B)]r ⊆ ϕ−1(Br). Conversely, let
x ∈ ϕ−1(Br) and b ∈ ϕ−1(B). Then ϕ(x) ∈ Br and ϕ(b) ∈ B. Thus ϕ(0) = 0′ ∈
ϕ(x)∧̄ϕ(b) = ϕ(x∧̄b). As a result, 0 ∈ x∧ b for all b ∈ ϕ−1(B). Hence, x ∈ [ϕ−1(B)]r

and then ϕ−1(Br) ⊆ [ϕ−1(B)]r.

Theorem 5. Let L and L′ be two meet-hyperlattice, ϕ : L → L′ be a homomorphism and
ker(ϕ) = {0}. Then:

(i) If ϕ is annihilator hyperideal preserving and onto then the homomorphiciimage ϕ(I)
of annihilator hyperideal I of L is an annihilator hyperideal of L′;

(ii) If ϕ−1 is annihilator hyperideal of L′ preserving then the preimage ϕ−1(J) of anni-
hilator hyperideal J is an annihilator hyperideal of L;

(iii) If ϕ is annihilator hyperideal preserving and onto then ker(ϕ) is an annihilator
hyperideal of L.

Proof.

(i) Let I be an annihilator hyperideal of L. Then by using i) in Proposition 3, ϕ(I) is
a hyperideal. From the assumption of ϕ is annihilator hyperideal preserving we get

[ϕ(I)]rr = ϕ(Irr) = ϕ(I).

Consequently, ϕ(I) is an annihilator ideal of L′.

(ii) Let J be an annihilator hyperideal of L′. Then by using ii) in Proposition 3, ϕ−1(I)
is a hyperideal. From the assumption of ϕ−1 is annihilator hyperideal preserving we
get

[ϕ−1(I)]rr = ϕ−1(Irr) = ϕ−1(I).

Therefore, ϕ−1(I) is an annihilator ideal of L.

(iii) We know that ker(ϕ) = ϕ−1({0′}) and {0′} = 1r is annihilator hyperideal. Then
from ii), ker(ϕ) is annihilator hyperideal.
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Corollary 1. Let L and L′ be two meet-hyperlattice, ϕ : L → L′ be an annihilator hy-
perideal preserving. Then H(L) and H(L′) are isomorphic. Symbolically writes H(L) ∼=
H(L′).

Example 4. The meet-hyperlattice L′ in Example 3 has the Boolean algebra of its closed
hyperideals which is given by Figure 2. Clearly, its isomorphic to the Boolean algebra in
Figure 3 which represents the closed hyperideals of the meet-hyperlattice in Example 2.

L′′

{0, α} {0, β}

1r = {0}

Figure2: Boolean Algebra < H(L′′);∩,⊻,r , 1r, L′′ >

L′

{0, x} {0, y}

{0′}

Figure3: Boolean Algebra < H(L′);∩,⊻,r , 1r, L′ >

5. Sub-meet-hyperlattice and Product

Representations of annihilator hyperideals in sub-meet-hyperlattice and product meet-
hyperlattice, are investigated in the following.

Definition 7. A subset S ⊆ L, of meet-hyperlattice L, is a sub-meet-hyperlattice iff it is
close under the same operations of L.

Clearly, sub-meet-hyperlattice of strong bounded dual distributive meet-hyperlattice
is also too.

Theorem 6. If I is an annihilator hyperideal of L and S is a sub-meet hyperlattice of L.
Then I ∩ S is an annihilator hyperideal of S.

Proof. Let I be an annihilator hyperideal of L and S be a sub-meet hyperlattice of L.
Then there exist a subset K of L such that I = Kr = {x ∈ L : 0 ∈ x∧̄a for all a ∈ K}.
Thus I ∩ S = {x ∈ L : 0 ∈ x∧̄a for all a ∈ K ∩ S} = (K ∩ S)r.
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Corollary 2. If I is a closed hyperideal of L and S is a sub-meet hyperlattice of L. Then
I ∩ S is a closed hyperideal of S.

Example 5. Tables 7 and 8 represent a sub-meet-hyperlattice S of meet-hyperlattice L in
Example 1. Figure 4 shows Boolean algebra H(S) of closed hyperideals of S.

∧̄ 0 α β γ
0 {0} {0} {0} {0}
α {0} {0, α} {0} {0, α}
β {0} {0} {β} {β}
γ {0} {0, α} {β} {γ}

∨ 0 α β γ
0 0 α β γ
α α α γ γ
β β γ β γ
γ γ γ γ γ

Table 7: Represents the hyperoperation Table 8: Represents operation
∧̄ of the sub-meet-hyberlattice S ∨ of the sub-meet-hyberlattice S

S

1r = {0, α}

Figure4: Boolean Algebra < H(S);∩,⊻,r , 1r, L >

Definition 8. Let L1 =< L1; ∧̄1,∨1, 01, 11 > and L2 =< L2; ∧̄2,∨2, 02, 12 > be two meet-
hyperlattices. Then the product L1 × L2 with respect to the pair-wise operations such that
for any (a, b), (a′, b′) ∈ L1 × L2:

(a, b)∧̄(a′, b′) = (a∧̄1a
′, b∧̄2b

′), and (a, b) ∨ (a′, b′) = (a ∨1 a
′, b ∨2 b

′),

forms meet-hyperlattice called the prouduct meet-hyperlattice of L1 and L2 with zero
element 0 = (01, 02), and one element1 = (11, 12).

Notice that, if L1 and L2 are strong bounded dual distributive meet-hyperlattices, then
L1 × L2 is also too.

Theorem 7. For any two hyperideals I1 and I2 of two meet-hyperlattices L1 and L2

respectively. I1 and I2 are annihilator hyperideals iff I1 × I2 is an annihilator hyperideal
of the product meet-hyperlattice L1 × L2.

Proof. Assume I1 and I2 be annihilator hyperideals of L1 and L2, respectively. It
implies that I1 = K1

r and I2 = K2
r for some two sets K1 ⊆ L1 and K2 ⊆ L2. I.e.,

Ii = {xi ∈ Li : 0i ∈ xi∧̄ai for all ai ∈ Ki}, for i = 1, 2. Accordingly I1 × I2 = {(x1, x2) ∈
L1 × L2 : (01, 02) ∈ (x1, x2)∧̄(a1, a2) for all (a1, a2) ∈ K1 × K2}. Therefore, I1 × I2
is an annihilator hyperideal of L1 × L2. Conversely, let I be an annihilator hyperideal
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of L1 × L2. It means there exist subset K ⊆ L1 × L2 such that I = Kr. We define
the projections πi : L1 × L2 → Li for i = 1, 2. Let I1 and I2 be the projections of I
on L1 and L1 respectively. In addition to K1 and K2 are the projections of K on L1

and L2. So πi(I) = Ii and πi(K) = Ki for i = 1, 2. We get I = {(x1, x2) ∈ L1 × L2 :
(01, 02) ∈ (x1, x2)∧̄(a1, a2) for all (a1, a2) ∈ K1 × K2}. Thus πi(I) = {xi ∈ L1 : 0i ∈
xi∧̄iai for all ai ∈ Ki}. Therefore I ∼= π1(I)× π2(I).

Corollary 3. For any two hyperideals I1 and I2 of two meet-hyperlattices L1 and L2

respectively. I1 and I2 are closed hyperideals iff I1×I2 is a closed hyperideal of the product
meet-hyperlattice L1 × L2.

6. Conclusion

In our work, the properties of annihilator hyperideals in the class of strong bounded
dual distributive meet-hyperlattice were studied and proved. The connection between
closed hyperideals and annihilators was discovered. In general, the set of closed hyperide-
als is a subset of the set of all annihilators. It also forms a Boolean algebra. We intro-
duce the concept of homomorphisms, which preserve the annihilator hyperideal. Suitable
conditions for preserving annihilator hyperideals are obtained. Under these conditions,
homomorphic images and preimages of annihilators are also annihilators. Accordingly,
if there exists an annihilator hyperideal preserving map between two meet-hyperlattices,
then there is a one-to-one correspondence between their Boolean algebras of closed hyper-
ideals. Representation and characterization of annihilator hyperideals under product and
sub-structure of meet-hyperlattice are shown.
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