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The force on a magneto-spherical particle oscillating in
a viscous fluid perpendicular to an impermeable planar

wall with slippage
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Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

Abstract. The effect of a magnetic field and slip on the motion of a solid sphere moving per-
pendicular to an unbounded rigid wall in an unlimited viscous fluid is investigated. As the sphere
vibrates perpendicularly to the rigid wall, its center line is accompanied by a low amplitude vi-
bration. A slip condition is applied to the sphere surface, while a no-slip dynamic condition is
applied to the wall. Additionally, a semi-analytical method and a numerical scheme using colloca-
tion are presented. Furthermore, we calculate the amplitude of the non-dimensional coefficients of
drag force acting on the solid sphere using various values of frequency, separation, and magnetic
parameters. In addition, streamlines are plotted. The results of the magnitude normalized drag
force are compared with those in previous literature.
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1. Introduction

Among the well-known fields in which the MHD field has a significant influence are
magnetospheres, planetary celestials, chemical engineering, and electronic engineering,
which play an important role in chemical, mechanical, biological, and medical fields.
Cramer and Pai [1] studied the effects of a magnetic field upon a Stokes flow and their
theory has been applied to a variety of geophysical, astrophysical, and engineering issues.
According to Sellier and Aydin [2] axisymmetric magnetohydrodynamic movements can
be produced in a conducting Newtonian flux region surrounded by a flat wall by classify-
ing either radial or axial points forces on a circular ring established parallel with the wall
and perpendicular to a uniform magnetic field. Corrugated curved channels are used for
MHD flow [3]. Many researchers work about magnetic fields with normal convection in
a permeable medium that has various implementations in energy, thermal geology, petrol
extraction such as Qian and Bau [4] proved that MHD flows due to the oscillating plate.
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Shreen and Noura [5] investigated the impacts of the magnetic field over two unequal
rigid spheres of slip condition on the surfaces involved in a permeable medium under
Stokes assumptions. In their analysis of magnetohydrodynamic flow over an unlimited
vertical oscillating plate in a permeable medium, Chaudhary and Jain [6] analyzed the
magneto-hydrodynamic flow over an unlimited vertical oscillating plate within a perme-
able medium, getting account of the appearance of mass transfer and free convection by
using the Laplace-transform procedure. Also, Jawda et al. [7] applied MHD on Magneto-
hydrodynamic flow of nanofluid in a channel with shape effects, Takhar et al. [8] studied
MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and
free stream velocity. On the other side, Krishna et al. [9, 10] introduced hall and ion slip
effects on unsteady MHD free convective rotating flow through a saturated porous medium
over an exponential accelerated plate and hall and ion slip effects on MHD rotating flow
of elastico-viscous fluid through porous medium. In addition, MHD has been applied to
fluids flow in other ways, such as [11–15].

On the other hand, the oscillating flows have extensive interest in various chemi-
cal methods such as absorption, extraction, and engineering implementation, for exam-
ple, floating movement of microorganisms and Brownian particle movement. Therefore,
Chang-Yi Wang [16] studied the flow field induced by oscillating by using the method of
inner and outer expansions experimentally. Rikitake [17] improved theories of magneto-
hydrodynamic oscillations of a conducting fluid sphere in a uniform magnetic field. Ac-
cordingly, Chawla [18] introduces the effect of harmonic oscillations in the magnitude of
the free stream velocity on the magnetohydrodynamic boundary layer flow past a flat plate,
in the presence of an aligned field. Also, many researchers have paid growing attention to
the use of magnetic fluid for specific tasks related to magnetic-field-controlled vibration
damping and modulation by oscillating in a magnetic fluid such as [19–23]. Moreover,
Polunin et al. [24] expanded the physical understanding of the oscillating flow of magnetic
fluid in the magnetic field by studying the effect in the thin near-wall layer under a strong
transverse magnetic field. Therefore, Ryapolov et al. [25] described a study of the vis-
coelastic parameters of the system based on an element of magnetic fluid bounded by the
surface of a horizontal plexiglass tube located in the field of an electromagnet that makes
damped oscillation. Üstündağ et al. [26] used the keyhole during high-power laser beam
welding in partial penetration mode by means of a high-speed camera where an oscillating
magnetic field was applied perpendicular to the welding direction on the root site of the
steel plate. Sherief et al. [27, 28] showed the problems of the rectilinear oscillations of two
spherical particles along the line through their centers in an axisymmetric, viscous, incom-
pressible flow at a low Reynolds number and wall interaction between a particle oscillates
with the same frequency and with different amplitudes with no-slip and without magnetic
field. Ashmawy [29] proposed the rotary oscillation of a composite sphere, consisting of
a solid core surrounded by a porous shell, in an incompressible viscous fluid bounded by
a concentric spherical cavity is investigated using the Brinkman model and applied stress
jump condition.
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Furthermore, the exploratory perception of slip occasions at frictional interfaces is
testing and just a couple of effects of two-dimensional fronts have been accounted for up
until now. Sweeney et al. [30] demonstrated to play a pivotal role in the distribution and
magnitude of polycrystal slip relative to observed crack nucleation sites in the context of
constrained cyclic microplasticity under effects of length scale. In addition, Basnayaka
et al. [31] enhanced filtration rate has been modeled by superimposing a slip velocity at
the boundary of the capillaries formed in the cake and evaluating the medium resistances
by incorporating a slip into the filtration equation which varies with the concentration of
hydrophobic reagent and the effective size of capillaries. Further, the numerical solutions
are elucidated by using the collocation method, finite difference method, and Runge-Kutta
based shooting technique. Furthermore, Sulochana et al. [32] presented the study as a
numerical investigation of the flow, heat, and mass transfer behavior of magnetohydrody-
namic flow over a vertical rotating cone through a porous medium in the presence of ther-
mal radiation, chemical reaction, and Soret effects by using Runge-Kutta based shooting
technique. Therefore, Veera Krishna et al. [33] investigated the effects of thermal radia-
tion and rotation on the unsteady MHD convective flow past an infinite vertical moving
absorbent plate and employed to migrate the governing partial differential equations in
a system of non-linear ordinary differential equations and elucidated computationally by
making use of cubic B-splines collocation method. Many researchers used a collocation
method such as [34–39].

The purpose of this study was to investigate the impact of slip effects and magnetic
fields on the interaction between an oscillating sphere in a viscous fluid moving towards a
rigid wall. The sphere oscillates rectilinearly normal to an impermeable bounding plane
wall. Numerical solutions of the amplitude drag force were obtained by using a collocation
method. Besides, the influence of non-dimensional governing parameters on normalized
drag force with different slip, separation, frequency, and magnetic parameters are deter-
mined and discussed with the help of graphs and tables.

2. Field Equations

Under the Stokesian approximation, the field equations governing an incompressible
unsteady viscous fluid flow under a uniform magnetic field are given in vector forms as:

(i) Conservation of mass
∇ · u⃗ = 0, (1)

(ii) Conservation of momentum

ρ
∂u⃗

∂t
= µ∇2u⃗−∇p+

1

c
J⃗ ∧ B⃗. (2)

where u⃗ is the volume averaged velocity parallel to the wall,p is the pore average pressure,
µ represents the kinematic viscosity, ρ is the density of the fluid, and c is the speed of
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light . Also, J⃗ = σ0
c u⃗ ∧ B⃗,∧B⃗ = µ0 ∧ H⃗, where J⃗ , B⃗ and H⃗ are the current density, the

magnetic induction, the magnetic field respectively, σ0 is the electrical conductivity and
µ0 is the magnetic permeability. The constitutive equations for the stress tensor Π can be
written as:

Π = −pI + 2µ∆, (3)

where ∆ = 1
2

(
∇u⃗+∇T u⃗

)
is the deformation tensor, and I is the unit dyadic. Here (.)T

denotes for transpose.

2.1. General Slip-Boundary Conditions

At a surface of the sphere, we shall assume slip and use the most likely hypothesis
[5, 15], In our case this hypothesis takes the form:(

u⃗− Ue⃗z
)
= β

(
I − n⃗n⃗

)
·
(
n⃗ ·Π) (4)

where

(i) This coefficient β, is a measure of the degree of tangential slip existing between the
fluid and the solid at its surface.

(ii) It is assumed to depend only on the nature of the fluid and solid surface.

(iii) In the limiting case of β → ∞, there is a perfect slip at the particle surface and
the particle acts like a spherical gas bubble, while the standard no-slip boundary
condition for solids is obtained by letting β → 0.

(iv) Experimentally, the slip has been measured for liquids under various physical and
geometrical circumferences. Therefore, some authors have used a different parame-
terization for the slip e.g. (Happel and Brenner 1983, Saad 2012, Lee and Keh 2013,
Faltas and Shreen 2019).

3. Mathematical Formulation

Consider a solid spherical particle that is oscillating and traveling axisymmetrically
while immersed in an unbounded magnetic viscous fluid. The distance of the sphere center
to the wall is b. In order to conveniently describe the surfaces of the sphere and plane, we
choose the sphere center as the origin and use both the spherical polar coordinates system
(r, θ, ϕ) and the cylindrical coordinates (ρ, ϕ, z), The relations between the two coordinate
systems are:

r2 = ρ2 + z2, θ = cos−1

(
z

r

)
(5)
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Figure 1: Diagram of a magnetic sphere oscillating perpendicular to a plane wall.

The flow generated is axially symmetric and all the flow functions are independent of
ϕ. We can choose the velocity vector, the pressure, and the stream function as:

u⃗ = u(r, θ) eiϑt, p = p(r, θ) eiϑt, Ψ = Ψ(r, θ) eiϑt, (6)

where ϑ, is the frequency of oscillation. Using equation (1), we write the velocity compo-
nents in terms of the stream function Ψ in the cylindrical coordinates as:

uρ = −1

ρ

∂Ψ

∂z
, uz =

1

ρ

∂Ψ

∂ρ
. (7)

Introducing the non – dimensional quantities and assume that ϑ−1 is the typical time:

r∗ =
r

a
, ρ∗ =

ρ

a
, z∗ =

z

a
, τ∗ = τa, ζ∗ = ζa,Ψ∗ =

Ψ

Ua2
,Π∗ =

aΠ

µU
, P ∗ =

ap

µa
. (8)

We normalize all lengths with respect to the characteristic radius of the sphere, a and
since the velocity of fluid is not perpendicular to magnetic induction vector, we will use
Lorentz’s average force over all directions of magnetic induction, keeping the symmetry of
the flow,B⃗ = B0e⃗ϕ , B0 is a constant used by (Yadav [40] and El-Sapa [39]). Substituting
from equation (8) into equation (2) we get:

ReSt
∂u⃗

∂t
= ∇2u⃗−∇p− a2σ0B

2
0

µc2
u⃗, (9)

where

• Re =
Ua
ν is the magnetic Reynolds number.

• a is a characteristic length.
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• St =
ϑa
U is the Strouhal number.

• B0 is the magnetic induction.

Physically, Re must be small and the Strouhal number, St must be large or U
ϑa << 1 im-

plies that the amplitude of the oscillation is small compared with a. Since the speed Ue⃗z
is supposed to be small, therefore the assumption of the Stokesian flow may be used (a)
The magnetic Reynolds number is small, so that the induced magnetic field is negligible
in comparison with the imposed magnetic field and (b) The electric field is zero, because
no applied or polarization voltages exist (Mayer, 1958).

The problem is then governed by the following equations:

∂p

∂r
− k2

r2 sin θ

∂Ψ

∂θ
+

1

r2 sin θ

∂

∂θ
(E2Ψ) = 0, (10)

1

r

∂p

∂θ
+

k2

r sin θ

∂Ψ

∂r
− 1

r sin θ

∂

∂r
(E2Ψ) = 0, (11)

Elimination the pressure from equations (10) and (11) gives a fourth-order linear partial
differential equation satisfied by the stream function:

E2(E2 − k2)Ψ = 0, (12)

where k =
√

iχ2 + α2, χ =
√

ϑ2a2

ν , α =
√

a2σ0B2
0

µc2
are the frequency parameter and the

magnetic parameter while the Stokesian operator is: E2 = ∂2

∂r2
+ 1−ξ2

r2
∂2

∂ξ2
and ξ = cos θ.

3.1. Boundary Conditions to the Problem

(i) The boundary condition of relative normal velocity at r = a:

uρ = β trθ cos θ, (13)

(ii) The dynamical boundary condition at r = a (Basset, 1961 Happel and Brenner,
1983, Sherief et al., 2019):

uz = U − β trθ sin θ, (14)

(iii) The no-slip boundary conditions along the wall z = b are given by:

uρ = 0, uz = 0, (15)

(iv) Moreover, at large distances from the spherical particles r → ∞, the velocity com-
ponents tend to zero, that is:

uρ → 0, uz → 0 = 0, (16)
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4. Method of solution

The solution of equation (12) can be expressed in the form:

Ψ = Ψs +Ψw, (17)

where
E2Ψs = 0, E2

(
E2 − k2

)
Ψw = 0, (18)

where the part Ψs represents the general solution of the Stokes equation in the spherical
coordinates. It can be expressed as an infinite series containing all the simply separable
solutions in spherical coordinates which give a vanishing fluid velocity as r → ∞ by Happel
and Brenner [41] and the regular solution of part Ψs from equation (18) is given as:

Ψs(r, θ) =

∞∑
n=2

(
Anr

−n+1 +Bnr
1
2Kn− 1

2
(kr)

)
ℑn(ξ), (19)

where An and Bn are the unknown constants which will be determined using the boundary
conditions and ℑn(.) is the Gegenbauer function of the first kind of order n and degree
(-½) and Kn(.) is the modified Bessel function of the second kind of order n. The part Ψw

from equation (18) represents the regular solution of the Stokes equation in the cylindrical
coordinates is given by the Fourier-Bessel integral as:

Ψw(ρ, z) =

∫ ∞

0

(
A(τ) e−τz +B(τ) e−ξz

)
ρJ1(ρτ)dτ, (20)

where A(τ) and B(τ) are unknown functions of the separation variable τ and J1(ρτ) is
the Bessel function of the first kind of order unity. The general solution is:

Ψ =
∞∑
n=2

(
Anr

−n+1 +Bnr
1
2Kn− 1

2
(kr)

)
ℑn(ξ)

+

∫ ∞

0

(
A(τ) e−τz +B(τ) e−ξz

)
ρJ1(ρτ)dτ, (21)

where ξ =
√
τ2 + k2. By using the equations (7) and (21) with the properties of Gegen-

bauer and Legendre functions and the chain rule we get the radial, axial velocity compo-
nents and stress of the flow field in cylindrical coordinates are obtained:

a2uρ =
∞∑
n=2

(
AnA1n(ρ, z) +BnB1n(ρ, z)

)
ℑn(ξ) +

∫ ∞

0
τL(τ, z)J1(ρτ)dτ, (22)

a2uz =

∞∑
n=2

(
AnA2n(ρ, z) +BnB2n(ρ, z)

)
ℑn(ξ) +

∫ ∞

0
τM(τ, z)J1(ρτ)dτ, (23)

atrθ

µ
=

∞∑
n=2

(
AnA3n(ρ, z) + BnB3n(ρ, z)

)
ℑn(ξ)
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+

∫ ∞

0
τ
(
R(ρ, z)J1(ρτ) + S(ρ, z)J0(ρτ)

)
dτ, (24)

where the definitions of the functions A1n, B1n, A2n, B2n, A3n, B3n and also R(ρ, z) and
S(ρ, z) are listed in Appendix A. Moreover, we obtained two linear algebraic equations
which can be solved simultaneously to give the unknown functions A(τ) and B(τ) as
follows:

A(τ) = −e−τb(τ − ξ)−1
(
τL(τ,−b)− ξM(τ,−b)

)
, (25)

B(τ) = −τe−τb(τ − ξ)−1
(
M(τ,−b)− L(τ,−b)

)
, (26)

Applying the boundary conditions from equations (15) and (16) on the wall z = −b:∫ ∞

0
τL(τ,−b)J1(ρτ)dτ = −

∞∑
n=2

(
AnA1n +BnB1n

)
,

∫ ∞

0
τM(τ,−b)J1(ρτ)dτ = −

∞∑
n=2

(
AnA2n +BnB2n

)
.

 (27)

The expressions (27) can be easily inverted and integration can be performed using results
of Hankel transforms:

L(τ,−b) = −
∫ ∞

0
t

∞∑
n=2

(
AnA1n +BnB1n

)
J1(tτ) dt, (28)

M(τ,−b) = −
∫ ∞

0
t

∞∑
n=2

(
AnA2n +BnB2n

)
J1(tτ) dt. (29)

The expressions can be now rewritten as:

A(τ) = −e−τb(τ − ξ)−1
∞∑
n=2

[(
τe1n(τ,−b)− ξe2n(τ,−b)

)
An

+
(
τf1n(τ,−b)− ξf2n(τ,−b)

)
Bn

]
, (30)

B(τ) = τe−ξb(τ − ξ)−1
∞∑
n=2

[(
e1n(τ,−b)− e2n(τ,−b)

)
An

+
(
f1n(τ,−b)− f2n(τ,−b)

)
Bn

]
. (31)

The integrals required in equations (30) and (31) are performed analytically as follows,
Using the polynomial representations of the Gegenbauer and Legendre functions together
with the result given by Erdelyi et al. [42]:

∫ ∞

0

xν+
1
2

(x2 + a2)µ+1
Jν(xy)(xy)

1
2dx =

aν−µyµ+
1
2

2µΓ(µ+ 1)
Kν−µ(ay),
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ℜ{a} > 0, y > 0, − 1 < ℜ{ν} < 2ℜ{µ}+ 1 (32)

∫ ∞

0

xν+
1
2Kµ(a(x

2 + y2)
1
2 )

(x2 + β2)
µ
2

Jν(xy)(xy)
1
2dx =

βν−µ+1yµ+
1
2

aµ
(y2 + a2)µ−ν−1 ×

Kµ−ν−1(β(y
2 + a2)

1
2 ),ℜ{a} > 0, ℜ{β} > 0, (33)

where Kν , is the modified Bessel function of the second kind, one can show by induction
that: ∫ ∞

0

1

(t2 + b2)
n
2

ℑn+1

(
−b

(t2 + b2)
1
2

)
J1(tτ)dt =

(−1)n−1τn−1

(n+ 1)!
e−αb (34)

∫ ∞

0
(t2 + b2)

−1
4

(
− αbKn− 3

2
(α
√
ρ2 + b2)ℑn(−b/

√
ρ2 + b2)×

+(n+ 1)Kn− 1
2
(α
√
ρ2 + b2)ℑn+1(−b/

√
ρ2 + b2)

)
J1(tτ)dt

= (−1)n
√

πα

2τ2
e−bξℑn(

ξ

α
) (35)

∫ ∞

0

t

(t2 + b2)−
n+1
2

Pn

(
−b

(t2 + b2)
1
2

)
J0(tτ)dt =

(−1)nτn−1

(n)!
e−τb (36)

∫ ∞

0
t(t2 + b2)

−3
4

(
− α

√
t2 + b2 Kn− 3

2
(α
√
t2 + b2) ℑn(−b/

√
t2 + b2)×

+Kn− 1
2
(α
√
t2 + b2) Pn(−b/

√
t2 + b2)

)
J0(tτ)dt

= (−1)n−1

√
πα

2ξ2
e−bξ ℑn(

ξ

α
) (37)

To determine the unknown An,Bn we apply the boundary conditions on the sphere
r = a:

∞∑
2

{
An

(
γ
(1)
1n (1, θ)− β cos θ γ∗1n(1, θ)

)
+Bn

(
γ
(1)
2n (1, θ)− β cos θ γ∗2n(1, θ)

)}
= 0, (38)

∞∑
2

{
An

(
γ
(2)
1n (1, θ)− β sin θ γ∗1n(1, θ)

)
+Bn

(
γ
(2)
2n (1, θ)− β sin θ γ∗2n(1, θ)

)}
= U. (39)

Accordingly, following the procedure developed by Chadwick, Z. Liao [43], Happel and
Brenner [41] or by Sherief et al [39] or by Shreen and Faltas [28], the force exerted by the
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micropolar fluid on the body in the positive z− direction, in the presence of a transverse
magnetic field [44] and [45], is given by:

Fz = πµ

∫
C
ρ3

∂

∂n

[E 2Ψ

ρ2
− ik

ν
ρΨ
]
ds, (40)

where ds is an arc length of a meridian curve C on the surface of the body. If the medium
is unbounded, we may obtain a simpler formula for the drag force. Following a procedure
similar that used by Lawrence and Weinbaum [45], we obtain Fz in the form

Fz = k2
[
V + 4π lim

r→∞

r3Ψ

ρ2

]
, (41)

where V is the volume of the body and ρ = r sin θ . Formula (41) is applied under the
condition of no fluid motion at infinity. Aside from the restriction to axisymmetric flow,
no assumption is made about the shape of the body, see Fig.1. The result may then be
used for flows involving porous bodies, droplets, non spherical bodies, interactions among
bodies and interact between bodies and surfaces. This formula is applied also regardless
of the boundary conditions satisfied at the surface of the body. Note that this formula is
singular as k → 0 by [46] and does not reduce to the corresponding formula in the absence
of the transverse magnetic field.
Therefore, (41) reduces to:

Fz = 2πµk2
(
2

3
a3U − 2A2

)
e−iϑt (42)

where the hydrodynamic drag force F∞ over an oscillating solid sphere a moves through
unbounded viscous fluid in the absent of the plane wall with no-slip surface . It is given
by Happel and Brenner [41]:

F∞ = −6πµUa

(
1 + k +

1

9
k2
)
e−iϑt (43)

From equations (41) and (42), the normalized drag, F can be put in the form:

Fz

F∞
= K + iK

′
, (44)

where the magnitude normalized drag force and the phase angle are obtained as:∣∣∣ Fz

F∞

∣∣∣ =√K2 +K ′2, Θ = tan−1

(
K

′

K

)
(45)

where K and K
′
are real force coefficients. Physically, they are the in phase and out-of-

phase force oscillations, respectively and the phase angle is Θ.
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5. Results and Numerical Discussions

The proposed semi-analytical method (collocation method) scheme can be used for
solving the problem. Interactions between the sphere and the rigid wall under the uniform
magnetic field are obtained. The results for the magnitude of the normalized drag are
presented in Figs. 2-10 and Table 1 for different parameters, frequency, χ separation, λ =
b/a magnetic, α and the slip on the sphere, η = µ

aβ. The results converge to at least the
significant figures shown in the table and the number of collocation points needed,N = 60
for each case listed in the table. Consequently, there are two (high-frequency and low-
frequency) oscillation regimes that attenuate with constant time. An important benefit
of fluctuations between values of the frequency and magnetic field is damping torsional
oscillation. As expected, the plots show that as λ → 0 (i.e., increasing gap thickness
between the sphere and the plate), |F/F∞| → 1 where a further increase in amplitude
caused the spheres to detach from each other and oscillate separately. Furthermore, Fig.2
shows that the magnitude of drag force decreases with increases of both the separation
parameter for values λ = 0.001, 0.1, 0.25, 0.5 and the corresponding magnetic parameter
α = 1, 10 at a certain value of the frequency λ = 1 and also decreases with monotonically
increases of the slip to be stable after η = 2 for perfect slip. As the liquid amplitude was
increased under conditions of constant frequency, lateral oscillation of the sphere began
to occur.

Figure 2: Magnitude normalized drag force versus slip at different magnetic and separation parameters with
frequency χ = 1.0.
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Figure 3: Magnitude normalized drag force versus slip at different frequency and separation parameters with
magnetic parameter α = 0.01.
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Figure 4: Magnitude normalized drag force versus slip at different frequency and magnetic parameters with
separation λ = 0.3.

Therefore, Fig. 3 displays that the magnitude of drag force decreases with increases
of the frequency for low or high values of frequency for various values of the separation
parameter, λ = 0.01, 0.25 and decreases with the slip increases at constant magnetic
parameter α = 0.01. This figure shows that for a large distance between the sphere and
the rigid wall the curves start from the same point at |F/F∞| → 1 but for another value of
the separation parameter at the starting point are dispersed. Moreover, in Fig.4 exposits
for increases of the magnetic parameter,α = 0, 1.0, 4.0, 10.0 the magnitude of drag force
decreases at separation parameter, λ = 0.3.
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Figure 5: Magnitude normalized drag force versus frequency at different slip and magnetic parameters with
separation λ = 0.01.
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Figure 6: Magnitude normalized drag force versus frequency at different magnetic and slip parameters with
separation λ = 0.01.
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(a) (b)

(c) (d)

Figure 7: Streamlines distribution with various parameters

(a),(b) η = 0.0, χ = 10.0, α = 4.0 and (c),(d) η = 10.0, λ = 0.25, α = 1.0.
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(a) (b)

(c) (d)

Figure 8: Streamlines distribution with various parameters

(a),(b) λ = 0.25, χ = 1.0, α = 5.0 and (c),(d) χ = 1.0, λ = 0.1, α = 1.0.
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(a) (b)

(c) (d)

Figure 9: Streamlines distribution with various parameters

(a),(b) λ = 0.9, χ = 1.0, α = 10.0 and (c),(d) λ = 0.9, χ = 1.0, α = 1.0.
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Figure 10: Phase angle for various parameters of the frequency and slip.

Furthermore, Fig. 5 shows that for increases of the slip for values, η = 0, 1, 4, 10 the
magnitude of drag force decreases at λ = 0.01. It is obvious that for no slip it gives the
limiting case, |F/F∞| → 1 as known in the literature. Moreover, Fig.6 exhibits that the
magnitude of drag force decreases with increases of the slip it raises for a high level at
zero magnetic fields which is represented by the solid line and then intersected with the
other curves at the point (1.8, 0.48) for low frequency and again decay for high frequency
for increasing of values of the magnetic parameter at λ = 0.01 .

Steady streaming flows due to the motion of an oscillating sphere in a magnetic viscous
fluid are responsible for a wide range of fluid phenomena. On the other side, Fig. 7-9
gives the streamlines for the stream function which can fully describe the variations of the
flow pattern for different values of slip, magnetic, separation, and frequency parameters.
Also, the figures describe the detailed structure of the streamline pattern. Eventually, the
comparison shows an excellent agreement with the previous work of [41]. Accordingly,
the streamlines of the flow around the oscillating sphere are very closed to the sphere and
translate separately as one sphere at λ = 0.1 . The interaction appears at the oscillating
sphere near the rigid wall at λ = 0.6. The streamlines start from no-slip, η = 0.0 close to
the sphere, and gradually close at the partial slip, η = 1.0, 10.0 to reach finally very closed
at the perfect slip, η → ∞. Fig. 10 represent the phase angle for various parameters of
the frequency and slip.
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Table 1: Magnitude normalized drag force versus at different slip, magnetic, separation and frequency parame-
ters.

χ = 1.0 χ = 4.0

α η λ = 0.001 λ = 0.1 λ = 0.25 λ = 0.001 λ = 0.1 λ = 0.25

0.0 0.0 1.00000 0.99954 0.97001 1.00000 1.00010 1.00061
2.0 0.58794 0.58769 0.57173 0.45466 0.45469 0.45394
4.0 0.56184 0.56160 0.54642 0.43682 0.43684 0.43607
6.0 0.55240 0.55217 0.53726 0.43072 0.43075 0.42997
8.0 0.54753 0.54730 0.53253 0.42765 0.42768 0.42690
10.0 0.54456 0.54433 0.52965 0.42580 0.42582 0.42504

2.0 0.0 1.00000 0.99914 0.96376 1.00000 0.99993 0.99258
2.0 0.52345 0.52306 0.50699 0.47133 0.47127 0.46649
4.0 0.50084 0.50047 0.48515 0.45401 0.45395 0.44924
6.0 0.49283 0.49246 0.47739 0.44806 0.44800 0.44332
8.0 0.48872 0.48836 0.47342 0.44505 0.44499 0.44032
10.0 0.48623 0.48586 0.47101 0.44324 0.44318 0.43851

10.0 0.0 1.00000 0.99588 0.88678 1.00000 0.99753 0.91583
2.0 0.51749 0.51548 0.45703 0.51707 0.51574 0.47014
4.0 0.50287 0.50092 0.44384 0.50352 0.50222 0.45750
6.0 0.49780 0.49586 0.43926 0.49885 0.49756 0.45313
8.0 0.49523 0.49330 0.43693 0.49649 0.49520 0.45092
10.0 0.49367 0.49175 0.43552 0.49506 0.49377 0.44958

6. Conclusion

The main physical theme has been the remarkable way in which the boundary con-
ditions extend to include the slip influence with the existence of the magnetic fields and
their effects on the magnitude of the normalized drag force and streamlines and their im-
pacts are shows their practical significance in engineering and chemical reactions. Thus,
oscillating spheres in the magnetic field have many applications for chemical reactions and
nanoparticles interactions to generate heat through various mechanisms. In this study, we
have presented a combined analytical and numerical solution procedure for the Stokes flow
caused by an oscillating sphere embedded in a magnetic viscous fluid with slip. The sphere
oscillates along an axis normal to an unbounded rigid wall. Boundary conditions are satis-
fied first at the plane wall by the Fourier–Bessel transform and then on the sphere surface
by a collocation technique. The numerical results of the magnitude of drag force acting
on the sphere by the external fluid show that the solution procedure converges rapidly.
For various values of the clearance (separation parameter), the slip, magnetic parameter,
and frequency parameter comparisons with the limiting cases available in the literature.
Besides engineering applications - the present analysis of the magnetic oscillating sphere to-
wards the plate problem possesses also geophysical and astrophysical applications; namely,
in connection with the use of such equations for a better understanding of the motion of
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electrically conducting fluids - such as [47].
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Appendix

The functions appearing in equation, (30)-(31) and (38)-(39) are defined as:

A1n(r, θ) = −r(−n−1)(n+ 1)ℑn+1(cos θ) csc θ.

B1n(r, θ) = −r
−3
2

(
krKn− 3

2
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2
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)
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