Outer-Connected Semitotal Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4461Abstract
In this paper, we introduce and initiate the study of outer-connected semitotal domination in graphs. Given a graph G without isolated vertices, a set S of vertices of G is a semitotal dominating set if every vertex outside of S is adjacent to a vertex in S and every vertex in S is of distance at most 2 units from another vertex in S. A semitotal dominating set S of G is an outer-connected semitotal dominating set if either S = V (G) or S ̸= V (G) satisfying the property that the subgraph induced by V (G) \ S is connected. The smallest cardinality ̃γt2(G) of an outer-connected semitotal dominating set is the outer-connected semitotal domination number of
G. First, we determine the specific values of ̃γt2(G) for some special graphs and characterize graphs G for specific (small) values of ̃γt2(G). Finally, we investigate the outer-connected semitotal dominating sets in the join, corona, and composition of graphs and, as a consequence, we determine their corresponding outer-connected semitotal domination numbers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.