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Abstract. In this article, we study the global stability and the asymptotic properties of the nonnegative

solutions of the nonlinear difference equation

xn+1 = Axn + Bxn−k +
�

pxn + xn−k

�
/
�
q+ xn−k

�
, n= 0,1,2, .....

where the parameters A, B, p,q and the initial conditions x−k,..., x−1, x0 are arbitrary nonnegative real

numbers, while k is a positive integer number. Some numerical examples will be given to illustrate our

results.
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1. Introduction

The qualitative study of difference equations is a fertile research area and increasingly

attracts many mathematicians. This topic draws its importance from the fact that many real

life phenomena are modeled using difference equations. Examples from economy, biology, etc.

can be found in [2,16,19,29] . It is known that nonlinear difference equations are capable of

producing a complicated behavior regardless its order. This can be easily seen from the family

xn+1 = gµ
�

xn

�
, µ > 0, n≥ 0. This behavior is ranging according to the value of µ, from the

existence of a bounded number of periodic solutions to chaos.

There has been a great interest in studying the global attractivity, the boundedness char-

acter and the periodicity nature of nonlinear difference equations. For example, in the articles

[1,7-14,21–31] closely related global convergence results were obtained which can be applied

to nonlinear difference equations in proving that every solution of these equations converges
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to a period two solution. For other closely related results, (see [3-7,10,17,18]) and the refer-

ences cited therein. The study of these equations is challenging and rewarding and is still in

its infancy. We believe that the nonlinear rational difference equations are of paramount im-

portance in their own right. Furthermore the results about such equations offer prototypes for

the development of the basic theory of the global behavior of nonlinear difference equations.

Our goal in this article is to investigate some qualitative behavior of the solutions of the

nonlinear difference equation

xn+1 = Axn+ Bxn−k +
pxn+ xn−k

q+ xn−k

, n = 0,1,2, .. . . . (1)

where the parameters A, B, p,q and the initial conditions x−k,. . . x−1, x0 are arbitrary nonneg-

ative real numbers, while k is a positive integer number. The global stability of Eq.(1) for

A= B = 0 has been investigated in [29]. Kulenvic et al.[22] studied Eq.(1) when A= B = 0

and k = 1.

Our interest now is to study the behavior of solutions of Eq.(1) in the general case where

A 6= 0, B 6= 0 and k is a positive integer number. For the related work see [32-45]. The

study of these equations is challenging and rewarding and is still in its infancy. We believe

that the nonlinear rational difference equations are of paramount importance in their own

right. Furthermore the results about such equations offer prototypes for the development of

the basic theory of the global behavior of nonlinear difference equations. Let us now recall

some well know results [15] which will be useful in the sequel.

Definition 1. A difference equation of order (k+ 1) is of the form

xn+1 = F(xn, xn−k), n= 0,1,2, ..... (2)

where F is a continuous function which maps some set J k+1 into J where J is a set of real

numbers. An equilibrium point ex of this equation is a point that satisfies the condition ex =
F (ex , ex). That is, the constant sequence

�
xn

	∞
n=−k with xn = ex for all n ≥ −k is a solution of

that equation.

Definition 2. Let ex ∈ (0,∞) be an equilibrium point of the difference equation (2). Then

(i) An equilibrium point ex of the difference equation (2) is called locally stable if for every

ǫ > 0 there exists δ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with
��x−k − ex
��+ . . . +��x−1− ex

��+
��x0 − ex
�� < δ, then
��xn− ex
��< ǫ for all n≥ −k.

(ii) An equilibrium point ex of the difference equation (2) is called locally asymptotically stable

if it is locally stable and there exists γ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with��x−k − ex
��+ ...+
��x−1− ex
��+
��x0 − ex
�� < γ, then

lim
n→∞

xn = ex .

(iii) An equilibrium point ex of the difference equation (2) is called a global attractor if for every

x−k, . . . , x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = ex .
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(iv) An equilibrium point ex of the equation (2) is called globally asymptotically stable if it is

locally stable and a global attractor.

(v) An equilibrium point ex of the difference equation (2) is called unstable if it is not locally

stable.

Definition 3. A sequence
�

xn

	∞
n=−k is said to be periodic with period p if xn+p = xn for all

n ≥ −k. A sequence
�

xn

	∞
n=−k is said to be periodic with prime period p if p is the smallest

positive integer having this property.

Definition 4. A positive semi-cycle of
�

xn

	∞
n=−k consists of "a string" of terms

�
x l , x l+1, . . . xm

	

all greater than or equal to ex , with l ≥ −k and m≤∞ such that

either l = −k or + l > −k and x l−1 < ex ,

and

either m=∞ or +m <∞and xm−1 < ex ,

A negative semi-cycle of
�

xn

	∞
n=−k consists of "a string" of terms

�
x l , x l+1, . . . xm

	
all less than ex

, with l ≥ −k and m ≤∞ such that

either l = −k or + l > −k and x l−1 ≥ ex ,

and

either m=∞ or +m <∞and xm−1 ≥ ex ,

Definition 5. Eq.(2) is said to be permanent if there exist positive real numbers m and M such

that for every solution
�

xn

	∞
n=−k of Eq.(2) there exists a positive integer N ≥ −k which depends

on the initial conditions, such that

m ≤ xn ≤ M , for all n≥ N .

The linearized equation of the difference equation (2) about the equilibrium point ex is the

linear difference equation

zn+1 =
∂ F (ex , ex)
∂ xn

zn+
∂ F (ex , ex)
∂ xn−k

zn−k, (3)

The characteristic equation associated with Eq.(3) is

p (λ) = λk+1− p0λ
k − p1 = 0, (4)

where

p0 =
∂ F (ex , ex)
∂ xn

, p1 =
∂ F (ex , ex)
∂ xn−k

.

Theorem 1. ([15]). The linearized stability theorem. Suppose F is a continuously differentiable

function defined on an open neighbourhood of the equilibrium ex . Then the following statements

are true.
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(i) If all the roots of the characteristic equation (4) of the linearized equation (3) have absolute

value less than one, then the equilibrium point ex of Eq.(2) is locally asymptotically stable.

(ii) If at least one root of Eq.(4) has absolute value greater than one, then the equilibrium

point ex of Eq.(2)

(iii) If all the roots of Eq.(4) have absolute value greater than one, then the equilibrium point

ex of Eq.(2) is a source.

1.1. Equilibrium Points

In this section, we examine the nonnegative equilibrium points ex of Eq.(1) and their local

asymptotic behavior. The equilibrium points of Eq.(1) are the nonnegative solutions of the

equation

ex = (A+ B) ex +
�

p+ 1
�
ex

q+ ex . (5)

So, ex = 0 is always an equilibrium point of Eq.(1). If 0< A+B < 1, p−q > −
�

1+ q (A+ B)
�

and p > q then the positive equilibrium point is

ex =
�

p− q
�
+
�

1+ q (A+ B)
�

[1− (A+ B)]
. (6)

Lemma 1. If p > q and 0 < A+ B < 1, then the positive equilibrium point (6 satisfies the

inequality ex > q

p
.

Proof. From (6 we deduce that

ex =
p+ 1

1− (A+ B)
− q >

q+ 1

1− (A+ B)
− q =

1+ q (A+ B)

1− (A+ B)

=
�

1+ q (A+ B)
��

1+ (A+ B) + (A+ B)2 + ......
�

> 1>
q

p
.

The proof of Lemma 1 is now completed.

1.2. Linearization

In this section, we derive the linearized equation of Eq.(1). To this end, we introduce a

continuous function F : (0,∞)2→ (0,∞) which is defined by

F(u0,u1) = Au0 + Bu1 +
pu0 + u1

q+ u1

. (7)

Therefore, 



∂ F(u0 ,u1)

∂ u0
= A+

p

q+u1
,

∂ F(u0,u1)

∂ u1
= B+

q−pu0

(q+u1)
2 .

(8)
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From (6 and (8) we have





∂ F(ex ,ex)
∂ u0

= A+
p[1−(A+B)]

p+1
= ρ0,

∂ F(ex ,ex)
∂ u1

= B −
[1−(A+B)][(p−q)+q(A+B)]

p+1
= ρ1.

(9)

The linearized equation of Eq.(1) about the zero equilibrium point ex = 0 is

zn+1 −
�

A+
p

q

�
zn −
�

B+
1

q

�
zn−k = 0, (10)

and the linearized equation of Eq.(1) about the positive equilibrium point ex is

zn+1 −ρ0 zn−ρ1 zn−k = 0, (11)

where ρ0 and ρ1 are given by (9).

Theorem 2. [20] Assume that ρ0,ρ1 ∈ R and k ∈ {1,2, ...}. Then

��ρ0

��+
��ρ1

��< 1, (12)

is a sufficient condition for the asymptotic stability of the difference equation (2). Suppose in

addition that one of the following two cases holds:

(i) k is an odd integer and ρ1 > 0.

(ii) k is an even integer and ρ0ρ1 > 0.

Then (12) is also a necessary condition for the asymptotic stability of Eq.(2).

Theorem 3. [15] Consider the difference equation (2) where the function F ∈ C
�

Ik+1,R
�

and

I is an open interval of real numbers. Let ex ∈ I be an equilibrium point of Eq.(2). Suppose also

that

(i) F is a nondecreasing function in each of its arguments.

(ii) The function F satisfies the negative feedback property

[F (x , x)− x] (x − ex)< 0 for all x ∈ I − {ex} .

Then the equilibrium point ex of Eq.(2) is a global attractor for all solutions of Eq.(2) .
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2. Semi-Cycle Analysis

Theorem 4. Assume that F : (0,∞)2 → (0,∞) is a continuous function such that F(x , y)

is increasing in x for fixed y, and F(x , y) is increasing in y for fixed x . Let ex be a positive

equilibrium of Eq.(1). Then, except possibly for the first semi-cycle, every oscillatory solution of

Eq.(1) has semi-cycle of length at least k.

Proof. We just give the proof of the theorem 4 for k = 2. The proof of the theorem 4

for k ≥ 3, is similar and omitted here. Let
�

xn

	
be a solution of Eq.(1) with at least three

semi-cycles. Then, there exists N ≥ 0 such that either

xN+1 ≥ xN−1 ≥ ex ,

or

xN−1 ≥ xN+1 ≥ ex .

We first assume that

xN+1 ≥ xN−1 ≥ ex .

Since the function F(x , y) given by (7) is increasing in x for fixed y and increasing in y for

fixed x , then we get

xN+2 = F(xN+1, xN−1) = AxN+1+ BxN−1 +
pxN+1+ xN−1

q+ xN−1

≥ Aex + BxN−1 +
pex + xN−1

q+ xN−1

= F(ex , xN−1)≥ F(ex , ex) = ex ,

and

xN+3 = F(xN+2, xN )> F(ex , xN )> F(ex , ex) = ex f or xN > ex .

Similarly, we can prove the theorem if xN−1 ≥ xN+1 ≥ ex which is omitted. Now, the proof of

Theorem 4 is completed.

3. Local Stability

In this section, we investigate the local stability of the positive solutions of Eq.(1). By

using Theorems 1 and 3, we have the following result.

Theorem 5. The zero equilibrium point ex = 0 is locally asymptotically stable if p − q <

−
�

1+ q (A+ B)
�

. In particular, if p− q ≥ −
�

1+ q (A+ B)
�

, then ex = 0 is unstable.

Proof. First, suppose that p− q < −
�

1+ q (A+ B)
�

. Then, from Eq.(10) we deduce that

����A+
p

q

����+
����B+

1

q

���� = (A+ B) +
p+ 1

q
< (A+ B) +

q [1− (A+ B)]

q
= 1.
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Thus ex = 0 is locally asymptotically stable. In particular, assume p− q ≥ −
�

1+ q (A+ B)
�

,

then we have
����A+

p

q

����+
����B+

1

q

���� = (A+ B) +
p+ 1

q
≥ (A+ B) +

q [1− (A+ B)]

q
= 1.

Thus ex = 0 is unstable. The proof of Theorem 6 is now completed.

Theorem 6. If
�

p− q
�
> −
�

1+ q (A+ B)
�

, 0< A+ B < 1, p > q and

B >
[1− (A+ B)]
��

p− q
�
+ q (A+ B)
�

�
p+ 1
��

q+ 1
� .

Then, the positive equilibrium point ex is locally asymptotically stable. Furthermore, the condition

(12) can be considered as a necessary and sufficient condition for the asymptotically stability of

Eq.(1).

Proof. Under these assumptions we deduce from (9) that

��ρ0

��+
��ρ1

�� =
����A+

p [1− (A+ B)]

p+ 1

����+
����B−

[1− (A+ B)]
��

p− q
�
+ q (A+ B)
�

p+ 1

����

= A+
p [1− (A+ B)]

p+ 1
+ B −

[1− (A+ B)]
��

p− q
�
+ q (A+ B)
�

p+ 1

<
(A+ B)
�

p+ 1
�
+
�

p+ 1
�
[1− (A+ B)]

p+ 1
= 1.

This proves that the positive equilibrium point ex of Eq.(1) is locally asymptotically stable.

Thus, the condition (12) is sufficient for the asymptotic stability of Eq.(1). In addition to that

condition, we see that if k is an odd positive integer and

ρ1 = B−
[1− (A+ B)]
��

p− q
�
+ q (A+ B)
�

p+ 1
> 0,

or if k is an even positive integer and

ρ0ρ1 =

�
A+

p [1− (A+ B)]

p+ 1

��
B−
[1− (A+ B)]
��

p− q
�
+ q (A+ B)
�

p+ 1

�
> 0,

then the condition (12) is also necessary for the asymptotic stability of Eq.(1). According to

Theorem 2, the proof of Theorem 7 is now completed.

4. Periodic Solutions

In this section, we investigate the periodic character of the positive solutions of Eq.(1).
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Theorem 7. If k is an even positive integer, then Eq.(1) has no positive solutions of prime period

two for all A, B,p,q ∈ (0,∞).

Proof. Assume for the sake of contradiction that there exists distinctive positive real num-

bers Φ and Ψ, such that

. . .Φ,Ψ,Φ,Ψ, . . .

is a prime period two solution of Eq.(1). If k is even, then xn = xn−k. It follows from the

difference equation (1) that

Φ = (A+ B)Ψ+

�
p+ 1
�
Ψ

q+Ψ
and Ψ = (A+ B)Φ+

�
p+ 1
�
Φ

q+Φ
.

Consequently, we obtain

qΦ+ΦΨ = qAΨ+ AΨ2+ qBΨ+ BΨ2 + pΨ+Ψ,

and

qΨ+ΦΨ = qAΦ+ AΦ2+ qBΦ+ BΦ2 + pΦ+Φ.

By subtracting, we deduce that

(Φ−Ψ)
�
q (A+ B+ 1)+ (Φ+Ψ)(A+ B) + p+ 1

	
= 0.

This implies Φ = Ψ. This contradicts the hypothesis Φ 6= Ψ. Thus, the proof of Theorem 7 is

completed.

Theorem 8. If k is an odd positive integer then for all A, B,p,q ∈ (0,∞) Eq.(1) has no prime

period two solutions if A− B+ 1> 0.

Proof. Assume for the sake of contradiction that there exists distinctive positive real num-

bers Φ and Ψ, such that

. . .Φ,Ψ,Φ,Ψ, . . .

is a prime period two solution of Eq.(1). If k is odd, then yn+1 = yn−k. It follows from Eq.(1)

that

Φ = AΨ+ BΦ+
pΨ+Φ

q+Φ
and Ψ = AΦ+ BΨ+

pΦ+Ψ

q+Ψ
.

Consequently, we obtain

qΦ+Φ2 = qAΨ+ AΦΨ+ qBΦ+ BΦ2 + pΨ+Φ, (13)

and

qΨ+Ψ2 = qAΦ+ AΦΨ+ qBΨ+ BΨ2 + pΦ+Ψ. (14)

By subtracting (13) from (14), we deduce that

Φ+Ψ =

��
p+ q
�
−
�
q (B− A) + 1
	�

B − 1
, (15)
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while, by adding (13), (14) and using (15) we get

ΦΨ =

�
qA+ p
���

p+ q
�
−
�
q (B− A) + 1
	�

(B− 1) [B− (A+ 1)]
. (16)

From (15) and (16) we have

ΦΨ(Φ+Ψ) =
−
�
qA+ p
�

(1+ A− B)

¨�
p+ q
�
−
�

1+ q (B− A)
�

B− 1

«2
< 0. (17)

This contradicts the hypothesis that both Φ,Ψ are positive. Thus, the proof of Theorem 8 is

now completed.

5. Boundedness Character

In this section, we investigate the boundedness character of the positive solutions of

Eq.(1).

Theorem 9. Let
�

xn

	∞
n=−k be a solution of Eq.(1). Then the following statements are true:

(i) Suppose p < q and for some N ≥ 0, the initial conditions

xN−k+1, . . . xN−1, xN ∈
�

p

q
, 1

�
,

then

xn ∈
�

p

q

�
A+ B+

p+ 1

q+ 1

�
,
q

p
(A+ B+ 1)

�
, for all n≥ N .

(ii) Suppose p > q and for some N ≥ 0, the initial conditions

xN−k+1, . . . xN−1, xN ∈
�

1,
p

q

�
,

then

xn ∈
�

q

p
(A+ B+ 1) ,

p

q

�
A+ B+

p+ 1

q+ 1

� �
, for all n≥ N .

Proof. First of all, if for some N ≥ 0 and
p

q
≤ xN ≤ 1 and p < q, then

xn+1 = Axn+ Bxn−k +
pxn + xn−k

q+ xn−k

≤ Axn+ Bxn−k +
qxn+ xn−k

q+ xn−k

≤ A+ B + 1≤
q

p
(A+ B + 1) ,

and

xn+1 = Axn+ Bxn−k +
pxn + xn−k

q+ xn−k

≥
p

q

�
A+ B+

p+ 1

q+ 1

�
.
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Thus, the proof of part (i) is completed. Secondly, if for some N ≥ 0 and 1 ≤ xN ≤
p

q
and

p > q, then

xn+1 = Axn+ Bxn−k +
pxn + xn−k

q+ xn−k

≤
p

q

�
A+ B+

p+ 1

q+ 1

�
,

and

xn+1 = Axn+ Bxn−k +
pxn + xn−k

q+ xn−k

≥ Axn+ Bxn−k +
qxn+ xn−k

q+ xn−k

≥ A+ B+ 1

≥
q

p
(A+ B+ 1) .

Thus, the proof of part (ii) is completed. The proof of Theorem 9 is now finished.

6. Global Stability

In this section, we investigate the global stability of the positive solutions of Eq.(1).

Theorem 10. If p− q < −
�

1+ q (A+ B)
�

, then, the zero equilibrium point ex = 0 of Eq.(1) is

globally asymptotically stable.

Proof. Under this condition, we have shown in Theorem 5 that ex = 0 is locally asymptoti-

cally stable. It remains to prove that ex = 0 is a global attractor. To this end, we consider the

function

F(x , y) = Ax + B y +
px + y

q+ y
. (18)

We note that the function (18) is continuous and satisfying the following conditions:

(i) F(x , y) is nondecreasing in x ∈ [ q

p
,∞) for fixed y > −q.

(ii) F(x , y) satisfies the inequality

[F(x , x)− x][x − ex]< 0 for ex = 0.

Let us now prove (ii) as follows:

[F(x , x)− x] [x − 0] =

�
(A+ B) x +

�
p+ 1
�

x

q+ x
− x

�
x .

Since x ∈ [ q

p
,∞), then

p+1

q+x
<

p

q
and we have

[F(x , x)− x][x − 0] <

�
(A+ B)q+
�

p− q
�

q

�
x2

<

�
(A+ B)q−
�
1+ q (A+ B)
	

q

�
x2 = −

x2

q
< 0.
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According to Theorem 4, the zero equilibrium point ex = 0 is a global attractor. The proof of

Theorem 11 is now completed.

Theorem 11. Assume that p − q > −
�

1+ q (A+ B)
�

, p > q, 0 < A + B < 1 and B >
[1−(A+B)][(p−q)+q(A+B)]

p+1
, then, the positive equilibrium point ex of Eq.(1) is globally asymptot-

ically stable.

Proof. Under these assumptions, we have shown in Theorem 6 that the positive equilib-

rium point ex of Eq.(1) is locally asymptotically stable. It remains to prove that the positive

equilibrium point ex is a global attractor. To this end, we consider the function F
�

x , y
�

given

by (18) which satisfies the following conditions:

(i) F(x , y) is nondecreasing in x ∈ [ q

p
,∞) for fixed y > −q.

(ii) F(x , y) satisfies the inequality

[F(x , x)− x][x − ex]< 0,

where ex given by (6. Let us now prove the inequality (ii) using Lemma 1 as follows:

[F(x , x)− x][x − ex] =
�
(A+ B) +

�
p+ 1
�

q+ x
− 1

��
x2− xex
�

<

�
(A+ B) +

�
p− q
�

q

��
q2

p2
−

q

p
ex
�

=
− q

p

�
(A+ B) +

�
p− q
�

q

��
ex −

q

p

�
< 0.

According to Theorem 3, the positive equilibrium point ex is a global attractor. The proof of

Theorem 11 is now completed.

7. Numerical Examples

In order to illustrate the results of the previous sections and to support our theoretical

discussions, we consider several interesting numerical examples in this section. These exam-

ples represent different types of qualitative behavior of solutions to the nonlinear difference

equation (1).
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Example 1. Figure 1 shows that the solution of Eq.(1) is global stability if k = 1, x−1 = 1,

x0 = 2, A= 0.25, B = 0.3, p = 2, q = 1, (p > q).
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Figure 1: xn+1 = 0.25xn + 0.3xn−1+
2xn+xn−1

1+xn−1

Example 2. Figure 2 shows that the solution of Eq.(1) is global stability if k = 2, x−2 = 1,

x−1 = 2, x0 = 3, A= 0.25, B = 0.3, p = 20, q = 5, (p > q).
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