EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1705-1715
ISSN 1307-5543 - ejpam.com
Published by New York Business Global


# Locating Hop Sets in a Graph 

Ethel Mae A. Pagcu ${ }^{1, *}$, Gina A. Malacas ${ }^{1,2}$, Sergio R. Canoy, Jr. ${ }^{1,2}$<br>${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Tibanga, Iligan City, Philippines<br>${ }^{2}$ Center for Graph Theory, Algebra, and Analysis, Premier Research Institute in Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Tibanga, Iligan City, Philippines


#### Abstract

Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The open hop neighborhood of vertex $v \in V(G)$ is the set $N_{G}(v, 2)=\left\{w \in V(G): d_{G}(v, w)=2\right\}$, where $d_{G}(v, w)$ denotes the distance between $v$ and $w$. A non-empty set $S \subseteq V(G)$ is a locating hop set of $G$ if $N_{G}(u, 2) \cap S \neq N_{G}(v, 2) \cap S$ for every pair of distinct vertices $u, v \in V(G) \backslash S$. The smallest cardinality of a locating hop set of $G$, denoted by $\operatorname{lhn}(G)$ is called the locating hop number of $G$. This study focuses mainly on the concept of locating hop set in graphs. Characterizations of locating hop sets in the join and corona of two graphs are given and bounds for the corresponding locating hop numbers of these graphs are determined.


2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Locating hop set, strictly locating hop set, join, corona

## 1. Introduction

Let $G=(V(G), E(G))$ be a simple graph and $v \in V(G)$. The set of neighbors of a vertex $u$ in $G$, denoted by $N_{G}(u)$, is called the open neighborhood of $u$ in $G$. The closed neighborhood of $u$ in $G$ is the set $N_{G}[u]=N_{G}(u) \cup\{u\}$. The degree of a vertex $v$ in a graph $G$, denoted by $\operatorname{deg}_{G}(v)$, is the number of edges incident with $v$ in $G$ and the minimum degree $\delta(G)$ of the vertices of $G$ is the minimum degree of $G$. The open hop neighborhood of vertex $v$ is the set $N_{G}(v, 2)=\left\{w \in V(G): d_{G}(v, w)=2\right\}$, where $d_{G}(v, w)$ denotes the distance between $v$ and $w$. The closed hop neighborhood of vertex $v$ is the set $N_{G}[v, 2]=N_{G}(v, 2) \cup\{v\}$. The concept of hop neighborhood was used in [10] to define and investigate the concept of hop domination. Hop domination and some of its variants had been studied also in [6], [7], [9], [12], and [13].

[^0]The concept of locating set was first introduced by Slater (for which a protection device can determine the distance to an intruder) in 1975 (see [16]). Omega and Canoy in [11] studied the locating sets in graphs and characterized the locating sets in the join and corona of graphs where they also determined the locating numbers of these graphs. A set $S \subseteq V(G)$ is a locating set if for every two distinct vertices $u, v \in V(G) \backslash S, N_{G}(u) \cap S \neq$ $N_{G}(v) \cap S$. A set $S \subseteq V(G)$ is strictly locating if it is locating and $N_{G}(u) \cap S \neq S$ for all $u \in V(G) \backslash S$. The minimum cardinality of a locating set in $G$, denoted by $\ln (G)$, is called the locating number of $G$. The minimum cardinality of a strictly locating set in $G$, denoted by $\operatorname{sln}(G)$, is the strict locating number of $G$. Any locating (resp. strictly locating) set with cardinality equal to $\ln (G)$ (resp. $\operatorname{sln}(G)$ ), is called a minimum locating set or $l n$-set (resp. minimum strictly locating set or $s l n$-set).

In 1987, Slater in [17] further investigated locating set with another concept called domination. A set $D \subseteq V(G)$ is a dominating set of $G$ if $\cup_{x \in D} N[x]=V(G)$. The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. Eventually, the concept of locating dominating set was introduced and is one of the widely studied topics nowadays (see [14], [15]). A locating subset $S \subseteq V(G)$ which is also a dominating set is called locating-dominating set (LD-set) in a graph $G$. A strictly locating subset $S$ of $V(G)$ which is also a dominating set is called strictly locating-dominating set (SLD-set) in a graph $G$. The locating-domination number or L-domination number of $G$, denoted by $\gamma_{L}(G)$, is the minimum cardinality of a locating-dominating set. The minimum cardinality of a strictly locating-dominating set of $G$, denoted by $\gamma_{S L}(G)$, is called the $S L$ domination number of $G$. A locating-dominating (resp. strictly locating-dominating) set with cardinality equal to $\gamma_{L}(G)$ (resp. $\gamma_{S L}(G)$ )is called a minimum locating-dominating set or $\gamma_{L}$-set (minimum strictly locating-dominating set or $\gamma_{S L}$-set). Canoy et al. [8] characterized the locating dominating sets in the corona and composition of graphs. They also determined the locating-domination number of these graphs. There are other studies involving the concept of locating set and locating dominating set (see [4], [5], [8], [10], and [11]).

A non-empty set $S \subseteq V(G)$ is a locating hop set of $G$ if $N_{G}(u, 2) \cap S \neq N_{G}(v, 2) \cap S$ for every pair of distinct vertices $u, v \in V(G) \backslash S$. A locating hop set is a strictly locating hop set if $N_{G}(v, 2) \cap S \neq S$ for every $v \in V(G) \backslash S$. The smallest cardinality of a locating hop set (resp. strictly locating hop set) of $G$, denoted by $\operatorname{lhn}(G)$ (resp. $\operatorname{slhn}(G)$ ) is called the locating hop (resp. strictly locating hop) number of $G$. Any locating hop set (resp. strictly locating hop set) with cardinality equal to $\operatorname{lhn}(G)($ resp. $\operatorname{slhn}(G))$ is called a minimum locating hop set or $l$ lhn-set (resp. minimum strictly locating hop set or shln-set). In this paper, we investigate the concept of locating hop set in the join and corona of two graphs. Investigation of several parameters in graphs under some binary operations had been done in many studies (see [1], [2], [3]).

A point determining graph is defined in [18] as a graph in which distinct non-adjacent vertices have distinct neighborhoods.

## 2. Preliminary Results

Proposition 1. For any graph G of order $n \geq 2,1 \leq \operatorname{lhn}(G) \leq n-1$.
Proof: Let $G$ be a connected non-trivial graph. By the definition of the locating hop set, $\operatorname{lhn}(G) \geq 1$. Let $v \in V(G)$ and set $S=V(G) \backslash\{v\}$. Then $S$ is a locating hop set of $G$. Hence, $\operatorname{lhn}(G) \leq|S|=n-1$.

Lemma 1. Let $G$ be a graph with $n$ vertices. If $S$ is a locating hop set of $G$, then $n \leq|S|+2^{|S|}$. In particular, $n \leq \operatorname{lhn}(G)+2^{\operatorname{lnn}(G)}$.
Proof: Let $G$ be a graph of order $n$ and $S$ is a locating hop set in $G$. By definition of locating hop set, the collection $\left\{N_{G}(a, 2) \cap S: a \in V(G) \backslash S\right\}$ contains exactly $|V(G) \backslash S|$ distinct subsets of $S$. Hence, $|V(G) \backslash S|=n-|S| \leq 2^{|S|}$, i.e., $n \leq|S|+2^{|S|}$. In particular, if $S$ is an $l h n$-set of $G$, then $n \leq \operatorname{lhn}(G)+2^{\operatorname{lhn}(G)}$.

Theorem 1. Let $G$ be a non-trivial graph. Then $\operatorname{lhn}(G)=n-1$ if and only if every component of $G$ is complete.
Proof: Suppose that $\operatorname{lhn}(G)=n-1$ and suppose further that $G$ has a component $H$ which is not complete. Then there exist $x, y \in V(H)$ such that $d_{H}(x, y)=d_{G}(x, y)=2$. Let $z \in N_{G}(x) \cap N_{G}(y)$ and $S=V(G) \backslash\{x, z\}$. Since $y \in N_{G}(x, 2) \backslash N_{G}(z, 2)$, it follows that $N_{G}(x, 2) \cap S \neq N_{G}(z, 2) \cap S$. Thus, $S$ is a locating hop set and $\operatorname{lhn}(G) \leq|S|=n-2$, contrary to the assumption $\operatorname{lhn}(G)=n-1$. Therefore, every component of $G$ is complete.

For the converse, suppose that every component of $G$ is complete. Let $S$ be an $l h n$-set of $G$. Since $N_{G}(u, 2) \cap S=\varnothing \forall u \in V(G), V(G) \backslash S$ cannot contain two distinct vertices. Consequently, $S=V(G) \backslash\{v\}$ for some vertex $v$ of $G$. Thus, $\operatorname{lhn}(G)=|S|=n-1$.
Corollary 1. For any positive integer $n \geq 2, \operatorname{lhn}\left(K_{n}\right)=\operatorname{lhn}\left(\bar{K}_{n}\right)=n-1$.
Proposition 2. Let $G$ be a graph on $n$ vertices. Then $\operatorname{lhn}(G)=1$ if and only if $G \in\left\{K_{1}, \bar{K}_{2}, P_{2}, P_{3}\right\}$.
Proof: Suppose $\operatorname{lhn}(G)=1$. By Lemma 1, $n \leq 3$. Clearly, $G=K_{1}$ if $n=1$ and $G=K_{2}=P_{2}$ or $G=\bar{K}_{2}$ if $n=2$. Suppose $n=3$. By Theorem $1, \operatorname{lhn}\left(K_{3}\right)=\operatorname{lhn}\left(K_{1} \cup\right.$ $\left.P_{2}\right)=\operatorname{lhn}\left(\bar{K}_{3}\right)=2$. It follows that $G=P_{3}$. Thus, $G \in\left\{K_{1}, \bar{K}_{2}, P_{2}, P_{3}\right\}$.

The converse is clear.
Proposition 3. Let $G$ be a connected graph of order $n$. If $\operatorname{lhn}(G)=2$, then $3 \leq|V(G)| \leq$ 6.

Proof: Suppose that $\operatorname{lhn}(G)=2$. By Lemma 1, $n \leq \operatorname{lhn}(G)+2^{\operatorname{lhn}(G)}=2+2^{2}=6$. By Proposition 2, it follows that $3 \leq|V(G)| \leq 6$.

Proposition 4. Let $G$ be a connected graph of order $n=4$. Then $\operatorname{lh} n(G)=2$ if and only if $G \neq K_{4}$.
Proof: Let $\operatorname{lhn}(G)=2$. Then by Corollary $1, G \neq K_{4}$.
For the converse, suppose that $G \neq K_{4}$. Since $n=4$, by $\operatorname{Proposition~2,~} \operatorname{lhn}(G) \geq 2$. Choose any $u, v \in V(G)$ such that $d_{G}(u, v)=2$. Let $w \in N_{G}(u) \cap N_{G}(v)$ and let $s \in$ $V(G) \backslash\{u, v, w\}$. Since $u \in N_{G}(v, 2) \backslash N_{G}(w, 2)$, it follows that $S=\{u, s\}$ is a locating set of $G$. Consequently, $\operatorname{lhn}(G)=|S|=2$.
E.M. A. Pagcu, G. A. Malacas, S. R. Canoy, Jr. / Eur. J. Pure Appl. Math, 15 (4) (2022), 1705-1715 1708

Proposition 5. Let $G$ be a connected graph of order $n=5$. Then $\operatorname{lhn}(G)=2$ if and only if there exist distinct vertices $x$ and $y$ of G satisfying one of the following properties:
(i) $\left|N_{G}(x, 2) \cap N_{G}(y, 2)\right|=0$ and $\left|N_{G}(x, 2) \backslash\{y\}\right|=\left|N_{G}(y, 2) \backslash\{x\}\right|=1$.
(ii) $\left|N_{G}(x, 2) \cap N_{G}(y, 2)\right|=1$ and $\left[\left(\left|N_{G}(x, 2) \backslash\{y\}\right|=\left|N_{G}(y, 2) \backslash\{x\}\right|=2\right)\right.$ or $\left(\mid N_{G}(x, 2) \backslash\right.$ $\{y\} \mid=2$ and $\left.\left|N_{G}(y, 2) \backslash\{x\}\right|=1\right)$ or $\left(\left|N_{G}(x, 2) \backslash\{y\}\right|=1\right.$ and $\left.\left.\left|N_{G}(y, 2) \backslash\{x\}\right|=2\right)\right]$.

Proof: Suppose that $\operatorname{lhn}(G)=2$. Then there exist distinct vertices $x, y \in V(G)$ such that $S=\{x, y\}$ is a minimum locating hop set of $G$. Hence, $\left|N_{G}(x, 2) \cap N_{G}(y, 2)\right| \leq 1$. Suppose $\left|N_{G}(x, 2) \cap N_{G}(y, 2)\right|=0$. Since $S$ is a locating hop set, $\left|N_{G}(x, 2) \backslash\{y\}\right| \leq 1$. Suppose $\left|N_{G}(x, 2) \backslash\{y\}\right|=0$. Then $\left|N_{G}(y, 2) \backslash\{x\}\right|=1$ since $S$ is a locating hop set. This implies that there exist at least two vertices say $z$ and $w$ such that $z, w \notin N_{G}(x, 2) \cup N_{G}(y, 2)$. Consequently, $N_{G}(z, 2)=N_{G}(w, 2)=\varnothing$, contrary to our assumption that $S$ is a locating hop set. Thus, $\left|N_{G}(x, 2) \backslash\{y\}\right|=1$. Similarly, $\left|N_{G}(y, 2) \backslash\{x\}\right|=1$. Hence, $(i)$ holds.

Suppose that $\left|N_{G}(x, 2) \cap N_{G}(y, 2)\right|=1 . \quad$ Let $a \in V(G)$ such that $d_{G}(x, a)=2$ and $d_{G}(y, a)=2$ and let $b, c \in V(G) \backslash\{x, y, a\}$. Then $b, c \notin N_{G}(x, 2) \cap$ $N_{G}(y, 2)$. Since the subset of $S$ are $\varnothing,\{x, y\},\{x\},\{y\}$ and since $N_{G}(a, 2) \cap S$ is $\{x, y\}$, the remaining two sets $N_{G}(b, 2) \cap S$ and $N_{G}(c, 2) \cap S$ are $\{x\}$ and $\{y\}$ or $\{x\}$ and $\varnothing$ or $\{y\}$ and $\varnothing$, respectively. Thus, $\left|N_{G}(x, 2) \backslash\{y\}\right|=\left|N_{G}(y, 2) \backslash\{x\}\right|=2$ or $\left|N_{G}(x, 2) \backslash\{y\}\right|=2$ and $\left|N_{G}(y, 2) \backslash\{x\}\right|=1$ or $\left|N_{G}(x, 2) \backslash\{y\}\right|=1$ and $\left|N_{G}(y, 2) \backslash\{x\}\right|=2$. Therefore, (ii) holds.

For the converse, suppose there exist distinct vertices $x, y \in V(G)$ satisfying $(i)$ or (ii). Let $S=\{x, y\}$. Then $S$ is a minimum locating hop set in $G$. Therefore, $\operatorname{lh} n(G)=2$.

Proposition 6. Let $G$ be a connected graph of order $n \geq 3$. If $\operatorname{lhn}(G)<\operatorname{slh} n(G)$, then $1+\operatorname{lhn}(G)=\operatorname{slh} n(G)$.
Proof: Let $S$ be a minimum locating hop set in $G$. Then $S$ is not a strictly locating hop set in $G$. Hence, there exists a vertex $u \in V(G) \backslash S$ such that $N_{G}(u, 2) \cap S=S$. Let $S^{*}=S \cup\{u\}$ and let $z \in V(G) \backslash S^{*}$. Then $z \neq u$. Since $S$ is a locating hop set and $N_{G}(u, 2) \cap S=S$, $N_{G}(z, 2) \cap S \neq S$. This implies that there exists $w \in S$ such that $w \notin N_{G}(z, 2)$. Since $u \notin S, w \neq u$. Thus, $N_{G}(z, 2) \cap S^{*} \neq S^{*}$. This implies that $S^{*}$ is a strictly locating hop set in $G$. Hence, $\operatorname{slhn}(G) \leq 1+\operatorname{lh} n(G)$. Since $\operatorname{lhn}(G)<\operatorname{slh} n(G), 1+\operatorname{lhn}(G) \leq \operatorname{slhn}(G)$. Hence, $1+\operatorname{lh} n(G)=\operatorname{slh} n(G)$.

## 3. Locating Hop Sets in the Join of Graphs

The join of two graphs $G$ and $H$, denoted by $G+H$, is the graph with vertex-set $V(G+H)=V(G) \cup V(H)$ and edge-set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in$ $V(H)\}$.

Theorem 2. Let $G$ and $H$ be connected non-trivial graphs. A set $S \subseteq V(G+H)$ is a locating hop set in $G+H$ if and only if $S_{1}=V(G) \cap S$ and $S_{2}=V(H) \cap S$ are locating sets in $G$ and $H$, respectively, and $S_{1}$ or $S_{2}$ is a strictly locating set.

Proof: Suppose that $S$ is a locating hop set in $G+H$. Let $S_{1} \subseteq V(G)$ and $S_{2} \subseteq V(H)$. Suppose $S_{1}=\varnothing$. Then for any two distinct vertices $x, y \in V(G), N_{G+H}(x, 2) \cap S=$ $N_{G+H}(y, 2) \cap S=\varnothing$, contrary to our assumption that $S$ is a locating hop set. Thus, $S_{1} \neq \varnothing$. Similarly, $S_{2} \neq \varnothing$.

Next, suppose $S_{1}$ or $S_{2}$, say $S_{1}$ is not a locating set. Then there exist $u, v \in V(G)$ such that $N_{G}(u) \cap S_{1}=N_{G}(v) \cap S_{1}$. Thus, $x \in\left[V(G) \backslash N_{G}(u)\right] \cap S_{1}$ if and only if $x \in\left[V(G) \backslash N_{G}(v)\right] \cap S_{1}$. This implies that $\left[V(G) \backslash N_{G}(u)\right] \cap S_{1}=\left[V(G) \backslash N_{G}(v)\right] \cap S_{1}$. Since $S_{2} \cap N_{G+H}(u, 2)=\varnothing$ and $S_{2} \cap N_{G+H}(v, 2)=\varnothing$, it follows that

$$
\begin{aligned}
N_{G+H}(u, 2) \cap S & =N_{G+H}(u, 2) \cap S_{1} \\
& =\left[V(G) \backslash N_{G}(u)\right] \cap S_{1}=\left[V(G) \backslash N_{G}(v)\right] \cap S_{1} \\
& =N_{G+H}(v, 2) \cap S_{1}=N_{G+H}(v, 2) \cap S .
\end{aligned}
$$

Thus, $S$ is not a locating hop set in $G+H$, contrary to our assumption. Therefore, $S_{1}$ and $S_{2}$ are locating sets in $G$ and $H$, respectively. Now, suppose that both are not strictly locating sets. Then there exist $p \in V(G) \backslash S_{1}$ and $q \in V(H) \backslash S_{2}$ such that $N_{G}(p) \cap S_{1}=S_{1}$ and $N_{H}(q) \cap S_{2}=S_{2}$. Consequently, $N_{G}(p, 2) \cap S_{1}=\varnothing$ and $N_{H}(q, 2) \cap S_{2}=\varnothing$. This implies that $N_{G+H}(p, 2) \cap S=N_{G+H}(q, 2) \cap S=\varnothing$, contrary to our assumption that $S$ is a locating hop set. Therefore, $S_{1}$ is a strictly locating set in $G$ or $S_{2}$ is a strictly locating set in $H$.

For the converse, suppose that $S_{1}$ and $S_{2}$ are locating sets in $G$ and $H$, respectively, and $S_{1}$ or $S_{2}$ is a strictly locating set. Let $x, y \in V(G+H) \backslash S$ with $x \neq y$. If $x, y \in V(G)$, then $N_{G}(x) \cap S_{1} \neq N_{G}(y) \cap S_{1}$. Moreover, $N_{G+H}(x, 2) \cap S=\left[V(G) \backslash N_{G}(x)\right] \cap S_{1} \neq$ $\left[V(G) \backslash N_{G}(y)\right] \cap S_{1}=N_{G+H}(y, 2) \cap S$. Similarly, if $x, y \in V(H)$, then $N_{G+H}(x, 2) \cap S \neq$ $N_{G+H}(y, 2) \cap S$. Suppose that $x \in V(G)$ and $y \in V(H)$ and suppose that $S_{1}$ is a strictly locating set in $G$. Then $N_{G}(x) \cap S_{1} \neq S_{1}$. It follows that $\left[V(G) \backslash N_{G}(x)\right] \cap S_{1}=N_{G+H}(x) \cap$ $S \neq \varnothing$. Since $S_{1} \cap N_{G+H}(y, 2)=\varnothing, N_{G+H}(x, 2) \cap S \neq N_{G+H}(y, 2) \cap S$. Therefore, $S$ is a locating hop set in $G+H$.

Corollary 2. Let $G$ and $H$ be connected non-trivial graphs. Then

$$
\operatorname{lnn}(G+H)=\min \{\operatorname{sln}(H)+\ln (G), \operatorname{sln}(G)+\ln (H)\}
$$

Proof: Let $S$ be a minimum locating hop set in $G+H$. Let $S_{1}=V(G) \cap S$ and $S_{2}=V(H) \cap S$. By Theorem 2, $S_{1}$ and $S_{2}$ are locating sets in $G$ and $H$, respectively, where $S_{1}$ or $S_{2}$ is a strictly locating set. If $S_{1}$ is strictly locating set, then $\sin (G)+\ln (H) \leq$ $\left|S_{1}\right|+\left|S_{2}\right| \leq|S|=\operatorname{lnn}(G+H)$. If $S_{2}$ is strictly locating set, then $\operatorname{sln}(H)+\ln (G) \leq$ $\left|S_{2}\right|+\left|S_{1}\right| \leq|S|=\operatorname{lhn}(G+H)$. Thus, $\operatorname{lhn}(G+H) \geq \min \{\operatorname{sln}(H)+\ln (G), \operatorname{sln}(G)+\ln (H)\}$. Next, suppose that $\operatorname{sln}(G)+\ln (H) \leq \operatorname{sln}(H)+\ln (G)$. Let $S_{1}$ be a minimum strictly locating set in $G$ and $S_{2}$ be a minimum locating set in $H$. Then $S=S_{1} \cup S_{2}$ is a locating hop set by Theorem 2. Hence, $\operatorname{lnn}(G+H) \leq|S|=\left|S_{1}\right|+\left|S_{2}\right|=\operatorname{sln}(G)+\ln (H)$. Therefore, $\operatorname{lnn}(G+H)=\min \{\operatorname{sln}(H)+\ln (G), \operatorname{sln}(G)+\ln (H)\}$.

Theorem 3. ([5],[11]) Let $G$ be a connected graph of order $n \geq 2$. If $\ln (G)<\operatorname{sln}(G)$, then $1+\ln (G)=\operatorname{sln}(G)$.
E.M. A. Pagcu, G. A. Malacas, S. R. Canoy, Jr. / Eur. J. Pure Appl. Math, 15 (4) (2022), 1705-1715 1710

Corollary 3. Let $G$ be a connected non-trivial graph and let $K_{n}$ be a complete graph of order $n \geq 2$. Then $\operatorname{lhn}\left(G+K_{n}\right)=\operatorname{sln}(G)+n-1$.
Proof: Note that $\ln \left(K_{n}\right)=n-1$ and $\operatorname{sln}\left(K_{n}\right)=n$. By Corollary $2, \operatorname{lhn}\left(G+K_{n}\right)=$ $\min \{\operatorname{sln}(G)+n-1, \ln (G)+n\}$ and by Theorem $3, \operatorname{sln}(G)-1 \leq \ln (G)$. Therefore, $\operatorname{lnn}\left(G+K_{n}\right)=\min \{\operatorname{sln}(G)+n-1, \ln (G)+n\}=\operatorname{sln}(G)+n-1$.

Theorem 4. Let $G$ be a connected non-trivial graph and let $K_{1}=\langle v\rangle$. Then $S \subseteq$ $V\left(G+K_{1}\right)$ is a locating hop set in $G+K_{1}$ if and only if $v \notin S$ and $S$ is a strictly locating set in $G$ or $S=\{v\} \cup S_{1}$, where $S_{1}$ is a locating set in $G$.
Proof: Let $S \subseteq V\left(G+K_{1}\right)$ be a locating hop set in $G+K_{1}$. If $v \notin S$, then $S \subseteq$ $V(G)$. Let $u, s \in V(G) \backslash S$. Then $N_{G+K_{1}}(u, 2) \cap S \neq N_{G+K_{1}}(s, 2) \cap S$. It follows that $\left[V(G) \backslash N_{G}(u)\right] \cap S \neq\left[V(G) \backslash N_{G}(s)\right] \cap S$. Therefore,

$$
\begin{aligned}
N_{G}(u) \cap S & =\left[V(G) \backslash N_{G+K_{1}}(u, 2)\right] \cap S \\
& \neq\left[V(G) \backslash N_{G+K_{1}}(v, 2)\right] \cap S=N_{G}(v) \cap S,
\end{aligned}
$$

showing that $S$ is a locating set in $G$. Suppose $S$ is not a strictly locating set in $G$. Then there exists $z \in V(G) \backslash S$ such that $N_{G}(z) \cap S=S$. This implies that $N_{G}(z, 2) \cap S=$ $\varnothing=N_{G}(v, 2) \cap S$, contrary to our assumption that $S$ is a locating hop set. Hence, $S$ is a strictly locating set in $G$. Next, suppose that $S=\{v\} \cup S_{1}$, where $S_{1}=V(G) \cap S$. Then $S_{1} \neq \varnothing$ and is a locating set in $G$. For the converse, suppose $v \notin S$ and $S$ is a strictly locating set in $G$. Let $x, y \in V\left(G+K_{1}\right) \backslash S$. If $x, y \in V(G)$, then

$$
\begin{aligned}
N_{G+K_{1}}(x, 2) \cap S & =\left[V(G) \backslash N_{G}(x)\right] \cap S \\
& \neq\left[V(G) \backslash N_{G}(y)\right] \cap S=N_{G+K_{1}}(y, 2) \cap S .
\end{aligned}
$$

Suppose $x \in V(G)$ and $y=v$. Then $N_{G+K_{1}}(v, 2) \cap S=\varnothing$. Since $S$ is a strictly locating set in $G, N_{G}(x) \cap S \neq S$. Then

$$
\begin{aligned}
N_{G+K_{1}}(x, 2) \cap S & =\left[V(G) \backslash N_{G}(x)\right] \cap S \\
& \neq\left[V(G) \backslash N_{G}(v)\right] \cap S=N_{G+K_{1}}(v, 2) \cap S .
\end{aligned}
$$

Therefore, $S$ is a locating hop set in $G+K_{1}$. Next, suppose that $S=\{v\} \cup S_{1}$, where $S_{1}$ is a locating set of $G$. Let $x, y \in V\left(G+K_{1}\right) \backslash S$ with $x \neq y$. Then $x, y \in V(G) \backslash S_{1}$ and $N_{G}(x) \cap S_{1} \neq N_{G}(y) \cap S_{1}$. Thus,

$$
\begin{aligned}
N_{G+K_{1}}(x, 2) \cap S & =\left[V(G) \backslash N_{G}(x)\right] \cap S_{1} \\
& \neq\left[V(G) \backslash N_{G}(y)\right] \cap S_{1}=N_{G+K_{1}}(y, 2) \cap S .
\end{aligned}
$$

Hence, $S$ is a locating hop set in $G+K_{1}$.
Corollary 4. Let $G$ be a connected non-trivial graph. Then $\operatorname{lhn}\left(G+K_{1}\right)=\operatorname{sln}(G)$.
Proof: By Theorem 4, $\operatorname{lhn}\left(G+K_{1}\right)=\min \{\operatorname{sln}(G), \ln (G)+1\}$. By Theorem 3, $\operatorname{sln}(G)-1 \leq$ $\ln (G)$. Hence, $\operatorname{sln}(G) \leq \ln (G)+1$. Therefore, $\operatorname{lnn}\left(G+K_{1}\right)=\operatorname{sln}(G)$.

## 4. Locating Hop Sets in the Corona of Graphs

The corona of two graphs $G$ and $H$, denoted by $G \circ H$, is the graph obtained by taking one copy of $G$ of order $n$ and $n$ copies of $H$, and then joining the vertex $v_{i}$ of $G$ to every vertex of the $i t h$ copy of $H$. For every $v \in V(G)$, denote by $H^{v}$ the copy of $H$ whose vertices are joined or attached to the vertex $v$. Denote by $v+H^{v}$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle\{v\}\rangle+H^{v}$.

Theorem 5. Let $G$ be a non-trivial connected graph and let $H$ be any non-trivial graph. Then $S \subseteq V(G \circ H)$ is a locating hop set of $G \circ H$ if and only if $S=A \cup\left[\cup_{v \in V(G)} D_{v}\right]$ and
(i) $A \subseteq V(G)$ such that for any two distinct vertices $v, w \in V(G) \backslash A$, $N_{G}(v) \neq N_{G}(w)$ or $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A ;$
(ii) $D_{v}$ is a locating set in $H^{v}$ for each $v \in V(G)$;
(iii) $D_{w}$ is a dominating set of $H^{w}$ for each $w \in V(G)$ such that $N_{G}(v)=\{w\}$ for some $v \in V(G) \backslash A$; and
(iv) $D_{v}$ or $D_{w}$ is a strictly locating set for each pair of distinct vertices $v$ and $w$ of $G$ with $N_{G}(v) \cap A=N_{G}(w) \cap A$.

Proof: Suppose $S$ is a locating hop set in $G \circ H$. Let $A=S \cap V(G)$ and let $D_{v}=S \cap V\left(H^{v}\right)$ for each $v \in V(G)$. Then $S=A \cup\left[\cup_{v \in V(G)} D_{v}\right]$. Let $v, w \in V(G) \backslash A$ with $v \neq w$. Since $S$ is a locating hop set in $G \circ H$,

$$
\begin{aligned}
{\left[N_{G}(v, 2) \cap A\right] \cup\left[\cup_{x \in N_{G}(v)} D_{x}\right] } & =N_{G \circ H}(v, 2) \cap S \\
& \neq N_{G \circ H}(w, 2) \cap S \\
& =\left[N_{G}(w, 2) \cap A\right] \cup\left[\cup_{y \in N_{G}(w)} D_{y}\right] .
\end{aligned}
$$

This implies that $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$ or $N_{G}(v) \neq N_{G}(w)$, showing that (i) holds.
Next, let $v \in V(G)$ and let $a, b \in V\left(H^{v}\right) \backslash D_{v}$ with $a \neq b$. Since $S$ is a locating hop set in $G \circ H$,

$$
\begin{aligned}
\left(\left[V\left(H^{v}\right) \backslash N_{H^{v}}(a)\right] \cap D_{v}\right) \cup\left[N_{G}(v) \cap A\right] & =N_{G \circ H}(a, 2) \cap S \\
& \neq N_{G \circ H}(b, 2) \cap S \\
& =\left(\left[V\left(H^{v}\right) \backslash N_{H^{v}}(b)\right] \cap D_{v}\right) \cup\left[N_{G}(w) \cap A\right] .
\end{aligned}
$$

Hence, $\left[V\left(H^{v}\right) \backslash N_{H^{v}}(a)\right] \cap D_{v} \neq\left[V\left(H^{v}\right) \backslash N_{H^{v}}(b)\right] \cap D_{v}$. This implies that $N_{H^{v}}(a) \cap D_{v} \neq N_{H^{v}}(b) \cap D_{v}$, showing $D_{v}$ is a locating set of $H^{v}$. Hence, (ii) holds. To show that (iii) holds, suppose there exists $w \in V(G)$ such that $N_{G}(v)=\{w\}$ for some $v \in V(G) \backslash A$. If $D_{w}=V\left(H^{w}\right)$, then we are done. So suppose that $D_{w} \neq V\left(H^{w}\right)$ and let $q \in V\left(H^{w}\right) \backslash D_{w}$. Then by assumption and the fact that $S$ is a locating hop set in $G \circ H$,

$$
D_{w} \cup\left(N_{G}(w) \cap A\right)=N_{G \circ H}(v, 2) \cap S
$$

E.M. A. Pagcu, G. A. Malacas, S. R. Canoy, Jr. / Eur. J. Pure Appl. Math, 15 (4) (2022), 1705-1715 1712

$$
\begin{aligned}
& \neq N_{G \circ H}(q, 2) \cap S \\
& =\left(\left[V\left(H^{w}\right) \backslash N_{H^{w}}(q)\right] \cap D_{w}\right) \cup\left[N_{G}(w) \cap A\right] .
\end{aligned}
$$

This implies that $\left[\left(V\left(H^{w}\right) \backslash N_{H^{w}}(q)\right) \cap D_{w}\right] \neq D_{w}$, that is, $N_{H^{w}}(q) \cap D_{w} \neq \varnothing$. This shows that $D_{w}$ is a dominating set of $H^{w}$. Finally, let $v, w \in V(G)$ with $v \neq w$ and $N_{G}(w) \cap A=N_{G}(v) \cap A$. Suppose $D_{v}$ and $D_{w}$ are not strictly locating sets of $H^{v}$ and $H^{w}$, respectively. Then there exist $x \in V\left(H^{v}\right) \backslash D_{v}$ and $y \in V\left(H^{w}\right) \backslash D_{w}$ such that $N_{H^{v}}(x) \cap D_{v}=D_{v}$ and $N_{H^{w}}(y) \cap D_{w}=D_{w}$. It follows that $\left[V\left(H^{v}\right) \backslash N_{H^{v}}(x)\right] \cap D_{v}=\varnothing$ and $\left[V\left(H^{w}\right) \backslash N_{H^{w}}(y)\right] \cap D_{w}=\varnothing$. This would imply that

$$
\begin{aligned}
N_{G \circ H}(x, 2) \cap S & =\left[\left(V\left(H^{v}\right) \backslash N_{H^{v}}(x)\right) \cap D_{v}\right] \cup\left(N_{G}(v) \cap A\right) \\
& =N_{G}(v) \cap A=N_{G}(w) \cap A \\
& =\left[\left(V\left(H^{w}\right) \backslash N_{H^{w}}(y)\right) \cap D_{w}\right] \cup\left(N_{G}(w) \cap A\right) \\
& =N_{G \circ H}(y, 2) \cap S,
\end{aligned}
$$

contrary to the assumption that $S$ is a locating hop set of $G \circ H$. Thus, (iv) holds.
For the converse, suppose that $S$ is as described and satisfies properties $(i)-(i v)$. Let $a, b \in V(G \circ H) \backslash S$ with $a \neq b$ and let $v, w \in V(G)$ such that $a \in V\left(v+H^{v}\right)$ and $b \in V\left(w+H^{w}\right)$. Consider the following cases:

## Case 1: $v=w$.

Suppose $a, b \in V\left(H^{v}\right) \backslash D_{v}$. By $(i i), N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose $a=v$ and $b \in V\left(H^{v}\right) \backslash D_{v}$. Pick any $z \in N_{G}(v)$. Since $D_{z} \subseteq N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$, it follows that $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.
Case 2: $v \neq w$.
Suppose $a=v$ and $b=w$. Then $v, w \in V(G) \backslash A$. By property $(i), N_{G}(v) \neq N_{G}(w)$ or $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$. If $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$, then $N_{G \circ H}(a, 2) \cap S \neq$ $N_{G \circ H}(b, 2) \cap S$. Suppose $N_{G}(v) \neq N_{G}(w)$. We may assume that there exists $p \in N_{G}(v) \backslash$ $N_{G}(w)$. Then $D_{p} \subseteq N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$. Hence, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.

Next, suppose that $a=v$ and $b \in V\left(H^{w}\right) \backslash D_{w}$ (or $b=w$ and $a \in V\left(H^{v}\right) \backslash D_{v}$ ). If $\left|N_{G}(v)\right|>1$ or $v w \notin E(G)$, pick any $z \in N_{G}(v) \backslash\{w\}$. Then $D_{z} \subseteq N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$. It follows that $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose that $N_{G}(v)=\{w\}$. Then $D_{w}$ is a dominating set by $(i i i)$. Hence, $\left[\left(V\left(H^{w}\right) \backslash N_{H^{w}}(b)\right) \cap D_{w}\right] \neq D_{w}$. This implies that

$$
\begin{aligned}
N_{G \circ H}(a, 2) \cap S & =D_{w} \cup\left(N_{G}(w) \cap A\right) \\
& \neq\left[\left(V\left(H^{w}\right) \backslash N_{\left.\left.H^{w}(b)\right) \cap D_{w}\right] \cup\left(N_{G}(w) \cap A\right)}\right.\right. \\
& =N_{G \circ H}(b, 2) \cap S .
\end{aligned}
$$

Finally, suppose that $a \in V\left(H^{v}\right) \backslash D_{v}$ and $b \in V\left(H^{w}\right) \backslash D_{w}$. If $\left[V\left(H^{v}\right) \backslash N_{H^{v}}(a)\right] \cap D_{v} \neq \varnothing$ and $\left[V\left(H^{w}\right) \backslash N_{H^{w}}(b)\right] \cap D_{w} \neq \varnothing$, then $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose one, say $\left[V\left(H^{v}\right) \backslash N_{H^{w}}(a)\right] \cap D_{v}=\varnothing$. If $N_{G}(v) \cap A \neq N_{G}(w) \cap A$, then $N_{G \circ H}(a, 2) \cap S \neq$ $N_{G \circ H}(b, 2) \cap S$. If $N_{G}(v) \cap A=N_{G}(w) \cap A$, then $\left[V\left(H^{w}\right) \backslash N_{H^{w}}(b)\right] \cap D_{w} \neq \varnothing$ by (iv). Thus, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.

Accordingly, $S$ is a locating hop set of $G \circ H$.
The next result is an immediate consequence of Theorem 5.

Corollary 5. Let $G$ be a non-trivial connected graph of order $m$ and let $H$ be any graph. Then the following statements hold:
(i) $m \cdot \ln (H) \leq \operatorname{lhn}(G \circ H) \leq \operatorname{lhn}(G)+m \cdot \gamma_{S L}(H)$.
(ii) If $\delta(G) \geq 2$, then $\operatorname{lhn}(G \circ H) \leq \operatorname{lnn}(G)+m \cdot \operatorname{sln}(H)$.
(iii) If $G$ is point determining, then $\operatorname{lhn}(G \circ H) \leq m \cdot \gamma_{S L}(H)$.
(iv) If $G$ is point determining and $\delta(G) \geq 2$, then

$$
\operatorname{lhn}(G \circ H) \leq m \cdot \operatorname{sln}(H) .
$$

Moreover, if in addition, $\ln (H)=\operatorname{sln}(H)$, then

$$
\operatorname{lhn}(G \circ H)=m \cdot \ln (H)=m \cdot \operatorname{sln}(H) .
$$

Proof: Let $S$ be a minimum locating hop set (lhn-set) in $G$. Then $S=A \cup\left[\cup_{v \in V(G)} D_{v}\right]$ and satisfies the conditions in Theorem 5. In particular, $D_{v}$ is a (minimum) locating set in $H^{v}$ for each $v \in V(G)$. Hence, $m \cdot \ln (H) \leq|A|+\sum_{v \in V(G)}\left|D_{v}\right|=|S|=\operatorname{lnn}(G \circ H)$.

Now, let $A_{1}$ be a locating hop set in $G$ and let $L_{v}$ be a strictly locating-dominating set ( $\gamma_{S L}$-set) in $H^{v}$ for each $v \in V(G)$. Then $S=A_{1} \cup\left[\cup_{v \in V(G)} L_{v}\right]$ is a locating hop set in $G \circ H$ by Theorem 5. This implies that $\operatorname{lhn}(G \circ H) \leq|S|=\operatorname{lhn}(G)+m \cdot \gamma_{S L}(H)$, showing that $(i)$ holds. If $\delta(G) \geq 2$ and each $L_{v}$ is a minimum strictly locating set (slnset) in $H^{v}$, then $S$ is a locating hop set in $G \circ H$ by Theorem 5. Thus, (ii) holds, that is, $\operatorname{lhn}(G \circ H) \leq|S|=\operatorname{lhn}(G)+m \cdot \operatorname{sln}(H)$.

Suppose $G$ is a point determining graph. For each $v \in V(G)$, let $T_{v}$ be a minimum strictly locating-dominating set ( $\gamma_{S L}$-set) in $H^{v}$. Then $S_{1}=\cup_{v \in V(G)} T_{v}$ is a locating hop set in $G \circ H$ by Theorem 5. This implies that $\operatorname{lhn}(G \circ H) \leq|S|=m \cdot \gamma_{S L}(H)$, showing that (iii) holds. Moreover, if we impose that $\delta(G) \geq 2$, then each set $T_{v}$ can be taken as a strictly locating set of $H^{v}$. Now, $S_{1}$ is still a locating hop set in $G \circ H$ by Theorem 5 . Thus, $\operatorname{lnn}(G \circ H) \leq m \cdot \operatorname{sln}(H)$. Suppose now that, in addition, $\ln (H)=\operatorname{sln}(H)$. Then $\operatorname{lhn}(G \circ H) \leq m \cdot \operatorname{sln}(H)=m \cdot \ln (H)$. Combining this with an inequality in $(i)$, it follows that $\operatorname{lnn}(G \circ H)=m \cdot \ln (H)=m \cdot \operatorname{sln}(H)$.

Corollary 6. Let $G$ be a cycle of order $m=4$ and $H$ be a non-trivial graph. Then

$$
\operatorname{lnn}(G \circ H)= \begin{cases}m \cdot \operatorname{sln}(H)+2 & \text { if } \ln (H)=\operatorname{sln}(H) \\ 2 \operatorname{sln}(H)+2 \ln (H)+2 & \text { if } \ln (H)<\operatorname{sln}(H) .\end{cases}
$$

Proof: Let $C_{4}=[a, b, c, d, a]$ and let $S$ be a minimum locating hop set in $C_{4} \circ H$. Put $D_{v}=S \cap V\left(H^{v}\right)$ for each $v \in C_{4}$. By Theorem $5(i), A=S \cap V\left(C_{4}\right) \neq \varnothing$. Without loss of generality, we suppose that $a \in A$. Suppose further that $b, d \notin A$. Since $N_{C_{4}}(b)=N_{C_{4}}(d)$ and $N_{C_{4}}(b, 2) \cap A=N_{C_{4}}(d, 2) \cap A=\varnothing, A$ does not satisfy Theorem $5(i)$, contrary to our assumption that $S$ is a locating hop set in $C_{4} \circ H$. Hence, either $b \in A$ or $d \in A$, say $b \in A$. Since $N_{C_{4}}(a) \cap A=N_{C_{4}}(c) \cap A, D_{a}$ or $D_{c}$, say $D_{a}$ must be a minimum strictly locating
set in $H^{a}$. It follows that $D_{c}$ is a minimum locatng set in $H^{c}$ by Theorem $5(i v)$ and the fact that $S$ is an $l h n$-set. Similarly, one of $D_{b}$ and $D_{d}$ is a minimum strictly locating set and the other a minimum locating set. Since $S$ is a minimum locating hop set in $C_{4} \circ H$, $|A|=2$ (increasing the number of elements of $A$ will not change the above requirement for the sets $D_{v}$ ), and two subsets of $S$ in copies of $H$ are strictly locating sets. Therefore,

$$
\begin{aligned}
\operatorname{lnn}\left(C_{4} \circ H\right)=|A|+2 \ln (H)+2 \ln (H) & =2 \ln (H)+2 \ln (H)+2 \\
\text { If } \ln (H)=\operatorname{sln}(H), \text { then } \operatorname{lnn}\left(C_{4} \circ H\right)=4 \ln (H)+2 & =4 \operatorname{sln}(H)+2
\end{aligned}
$$

## 5. Conclusion

As the concept of locating set plays an important role in the study of locating domination in a graph, the concept of locating hop set plays a similar important part in the study of locating hop domination. Locating hop sets in the join and the corona of two graphs have been characterized. These type of sets may be studied also in other graphs including those graphs which can be obtained by applying other binary operations of graphs. Furthermore, it may be interesting to study the relationship between this new parameter and other related known graph-theoretic parameters.

## Acknowledgements

This research is funded by the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and the Minadanao State University-Iligan Institute of Technology. The authors would like to thank the reviewers for their indispensable comments and suggestions that led to this improved version of the paper.

## References

[1] G. Cagaanan and S. Canoy Jr. Bounds for the geodetic number of the cartesian product of graphs. Utilitas Matematica, 79:91-98, 2009.
[2] T. Daniel and S. Canoy Jr. Clique domination in a graph. Applied Mathematical Sciences, 9(116):5749-5755, 2015.
[3] R. Eballe and S. Canoy Jr. Steiner sets in the join and composition of graphs. Applied Mathematical Sciences, 170:65-73, 2004.
[4] B. Omamalin, S. Canoy Jr. and H Rara. Locating total dominating sets in the join, corona and composition of graphs. Applied Mathematical Sciences, 8:2363-2374, 2014.
[5] S. Canoy Jr. and G. Malacas. Determining the intruder's location in a given network: Locating-dominating sets in a graph. NRCP Research Journal, 8:0117-3294, 2013.
[6] S. Canoy Jr. and G. Salasalan. A variant of hop dominationin graphs. Eur. J. Pure Appl. Math., 15(2):342-353, 2021.
[7] S. Canoy Jr. and G. Salasalan. Locating-hop domination in graphs. Kyungpook Mathematical Journal, 62:193-204, 2022.
[8] S. Canoy Jr., G. Malacas and D. Tarepe. Locating-dominating sets in graphs. Applied Mathematical Sciences, 8:4381-4388, 2014.
[9] S. Canoy Jr., R. Mollejon and J.G. Canoy. Hop dominating sets in graphs under binary operations. European Journal of Pure and Applied Mathematics, 12:1455-1463, 2019.
[10] C. Natarajan and S. Ayyaswamy. Hop domination in graphs-ii. Versita, 23(2):187199, 2015.
[11] S. Omega and S. Canoy Jr. Locating sets in a graph. Applied Mathematical Sciences, 9:2957-2964, 2015.
[12] G. Salasalan and S. Canoy Jr. Global hop domination numbers of graphs. Eur. J. Pure Appl. Math., 14(1):112-125, 2021.
[13] G. Salasalan and S. Canoy Jr. Revisiting domination, hop domination, and global hop domination in graphs. Eur. J. Pure Appl. Math., 14(4):1415-1428, 2021.
[14] S.J. Seo and P.J. Slater. Open neighborhood locating-dominating sets. Australasean Journal of Combinatorics, 46:109-119, 2010.
[15] S.J. Seo and P.J. Slater. Open neighborhood locating-dominating in trees. Discrete Applied Mathematics, 159:484-489, 2011.
[16] P.J. Slater. Leaves of trees. Congressus Numerantium, pages 549-559, 1975.
[17] P.J. Slater. Domination and location in acyclic graphs. Networks, 17:55-64, 1987.
[18] D.P. Summer. Point determination in graphs*. Discrete Mathematics, North-Holland Publishing Company, pages 179-187, 1973.


[^0]:    *Corresponding author.
    DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4500
    Email addresses: ethelmae.pagcu@g.msuiit.edu.ph (EM. Pagcu),
    gina.malacas@g.msuiit.edu.ph (G. Malacas), sergio.canoy@g.msuiit.edu.ph (S. Canoy, Jr.)
    https://www.ejpam.com (C) 2022 EJPAM All rights reserved.

