EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1593-1596
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On the Diophantine Equation $(p+4 n)^{x}+p^{y}=z^{2}$

Wachirarak Orosram ${ }^{1, *}$, Kitsanuphong Makonwattana ${ }^{1}$, Saichon Khongsawat ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand

Abstract

In this paper, we study the Diophantine equation $(p+4 n)^{x}+p^{y}=z^{2}$, where n is a non-negative integer and $p, p+4 n$ are prime numbers such that $p \equiv 7(\bmod 12)$. We show that the non-negative integer solutions of such equation are $(x, y, z) \in\{(0,1, \sqrt{p+1})\} \cup\left\{\left(1,0,2 \sqrt{n+\frac{p+1}{4}}\right)\right\}$, where $\sqrt{p+1}$ and $\sqrt{n+\frac{p+1}{4}}$ are integers.

2020 Mathematics Subject Classifications: 11D61
Key Words and Phrases: exponential Diophantine equation, Catalan's conjecture

1. Introduction

A problem related to the Diophantine equation has been investigated by many researchers. It is considered one of the significant problems in elementary number theory. The proving method mainly uses a property in the integer system and algebraic number theory. Some of which appear in a higher system of the integer called the ring of integers. In 2011, Suvarnamani [10] considered a Diophantine equation $2^{x}+p^{y}=z^{2}$ when $p>2$ and p is a prime number. The result showed that $(x, y, z)=(3,0,3)$ is a solution of the equation for all prime $p>2$. If $p=3$, then $(x, y, z)=(4,2,5)$ is also a solution of the equation. If $p=1+2^{k+1}$ for some non-negative integer k, then $(x, y, z)=(2 k, 1,1+2 k)$. In 2012, the Diophantine equation $4^{x}+p^{y}=z^{2}$, where x, y and z are non-negative integers and p is a positive prime number was studied by Chotchaisthit [2]. The study revealed that the equation has no non-negative integer solution. In 2014, Suvarnamani [11] proved that the equation $p^{x}+(p+1)^{y}=z^{2}$ has a unique non-negative integer solution $(p, x, y, z)=(3,1,0,2)$ when p is an odd prime number. In 2016, Hoque [6] proved that there are exactly two solutions to $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$, where $p, q \in \mathbb{Z}$ such that $p>0, q>1$ and $M_{p q}=p^{q}-1$. In 2018, Kumar et al. [7] showed that the non-linear diophantine equation $p^{x}+(p+6)^{y}=z^{2}$ has no solution. Moreover, Fernando [4] showed

[^0]that a Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ has no positive-integer solution, when $p, p+8$ are primes such that $p>3$. In 2019, Kumar et al. [8] proved that the solution of an exponential Diophantine equation $p^{x}+(p+12)^{y}=z^{2}$ has no non-negative integer solution, when p and $p+12$ are prime numbers such that p is in the form of $6 n+1$. In 2020, Burshtein [1] proved that a Diophantine equation $p^{x}+(p+12)^{y}=z^{2}$ has no positive integer solution (x, y, z), when p is a prime number such that $p+5=2^{2 u}$. In 2021, Dokchan and Pakapongpun [3] studied a Diophantine equation $p^{x}+(p+20)^{y}=z^{2}$, when p and $p+20$ are primes and showed that the equation has no positive integer solution (x, y, z). In the same year, Gayo and Bacani [5] solved the Diophantine equation $M_{p}^{x}+\left(M_{q}+1\right)^{y}=z^{2}$ when M_{p} and M_{q} are Mersenne primes .

In this work, we give solutions of the Diophantine equations $1+b^{y}=z^{2}, 1+(d+4 t)^{x}=z^{2}$ where b, t, d are positive integers. Then, we extend to the solutions of the Diophantine equation $(p+4 n)^{x}+p^{y}=z^{2}$ where $p, p+4 n$ are prime numbers such that $p \equiv 7(\bmod 12)$ and n is a positive integer such that $n \equiv 0,1(\bmod 3)$.

2. Main results

Proposition 1. (Catalan's conjecture) $(a, b, x, y)=(3,2,2,3)$ is the unique solution of the Diophantine equation $a^{x}-b^{y}=1$, where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$.

This proposition was proved in 2004 by Mihailescu [9].
Lemma 1. Let b be a positive integer. The non-negative integer solutions to the Diophantine equation $1+b^{y}=z^{2}$ is $(y, z)=(1, \sqrt{b+1})$ if $\left.\sqrt{b+1}\right)$ is a positive integer.

Proof. Let b be a positive integer. We have $z^{2}-b^{y}=1$. By proposition 1 , it is sufficient to consider the case $b=1, z \leq 1$ or $y \leq 1$. Hence, it remains to consider the following cases of b, y and z. If $b=1$, then we have $z^{2}=2$, which is impossible. If $z=0$ or $z=1$, then there is no solution. If $y=0$, then we have $z^{2}=2$ which is impossible. If $y=1$, then we have $z^{2}=b+1$ or $z=\sqrt{b+1}$. Thus, we have $(y, z)=(1, \sqrt{b+1})$.

Corollary 1. Let p be a prime number such that $p \equiv 7(\bmod 12)$. The non-negative integer solutions to the Diophantine equation $1+p^{y}=z^{2}$ is $(y, z)=(1, \sqrt{p+1})$ if $\left.\sqrt{p+1}\right)$ is a positive integer.

Lemma 2. Let t and d be positive integers. The non-negative integer solutions of the Diophantine equation $1+(d+4 t)^{x}=z^{2}$ is $(x, z)=\left(1,2 \sqrt{t+\frac{d+1}{4}}\right)$ if $\sqrt{t+\frac{d+1}{4}}$ is a positive integer.

Proof. Let t, d be positive integers such that $\sqrt{t+\frac{d+1}{4}}$ is a positive integer. We have $z^{2}-(d+4 t)^{x}=1$. By proposition 1 , it is sufficient to consider only the case that $z \leq 1$ or $x \leq 1$. Hence, we consider the following cases of z and x. For $z=0$ and $z=1$, there is no solution. If $x=0$, then we have $z^{2}=2$, which is impossible. If $x=1$, then we have
$z^{2}=4 t+d+1$. Thus $z=2 \sqrt{t+\frac{d+1}{4}}$ where $\sqrt{t+\frac{d+1}{4}}$ is a positive integer. Therefore, $(x, z)=\left(1,2 \sqrt{t+\frac{d+1}{4}}\right)$.

Corollary 2. Let n be a positive integer and $p,(p+4 n)$ be prime numbers such that $n \equiv 0,1$ $(\bmod 3)$ and $p \equiv 7(\bmod 12)$. The non-negative integer solutions of the Diophantine equation $1+(p+4 n)^{x}=z^{2}$ is $(x, z)=\left(1,2 \sqrt{n+\frac{p+1}{4}}\right)$ if $\sqrt{n+\frac{p+1}{4}}$ is a positive integer.

Theorem 1. Let n be a positive integer such that $n \equiv 0,1(\bmod 3), p \equiv 7(\bmod 12)$. If $\sqrt{p+1}$ and $\sqrt{n+\frac{p+1}{4}}$ are also integers, then all of the non-negative integer solutions to the Diophantine equation $(p+4 n)^{x}+p^{y}=z^{2}$ are given by $(x, y, z) \in\{(0,1, \sqrt{p+1})\} \cup$ $\left\{\left(1,0,2 \sqrt{n+\frac{p+1}{4}}\right)\right\}$, where p and $p+4 n$ are prime number.

Proof. Since p is a prime number such that $p \equiv 7(\bmod 12)$, it is clear that $p \equiv 3$ $(\bmod 4)$ and $p \equiv 1(\bmod 3)$. Let (x, y, z) be a non-negative integer solution of $(p+4 n)^{x}+$ $p^{y}=z^{2}$. If $x=0$ or $y=0$, then $(x, y, z)=(0,1, \sqrt{p+1})$ or $(x, y, z)=\left(1,0,2 \sqrt{n+\frac{p+1}{4}}\right)$. Suppose $x>0$ and $y>0$. We consider the following cases.

Case 1. x and y are even numbers. Since $(p+4 n)^{x}+p^{y}=z^{2}$, it follows that z is even. So $z^{2} \equiv 0(\bmod 4)$. Note that $(p+4 n)^{x} \equiv 1(\bmod 4)$ and $p^{y} \equiv 1(\bmod 4)$. Thus $(p+4 n)^{x}+p^{y} \equiv 2(\bmod 4)$ which contradicts with $z^{2} \equiv 0(\bmod 4)$.

Case 2. x and y are odd numbers. Since $(p+4 n)^{x} \equiv 3(\bmod 4)$ and $p^{y} \equiv 3(\bmod 4)$, it follows that $(p+4 n)^{x}+p^{y} \equiv 2(\bmod 4)$ which contradicts with $z^{2} \equiv 0(\bmod 4)$.

Case 3. x is an even number and y is an odd number. Let $x=2 k, k \geq 1$ and $y=2 s+1, s \geq 0$. We have $(p+4 n)^{2 k}+p^{2 s+1}=z^{2}$, or equivalently $p^{2 s+1}=z^{2}-(p+4 n)^{2 k}=$ $\left[z+(p+4 n)^{k}\right]\left[z-(p+4 n)^{k}\right]$. Thus, there exist non-negative integers α, β such that $p^{\alpha}=z+(p+4 n)^{k}$ and $p^{\beta}=z-(p+4 n)^{k}$, where $\alpha>\beta$ and $\alpha+\beta=2 s+1$. Then, we have $2(p+4 n)^{k}=p^{\beta}\left(p^{\alpha-\beta}-1\right)$. This implies that $\beta=0$. We have $2(p+4 n)^{k}=\left(p^{2 s+1}-1\right)$, which is impossible because $2(p+4 n)^{k} \equiv 1,2(\bmod 3)$ but $\left(p^{2 s+1}-1\right) \equiv 0(\bmod 3)$.

Case 4. x is an odd number and y is an even number. Let $x=2 k+1, k \geq 0$ and $y=2 s, s \geq 1$. We have $(p+4 n)^{2 k+1}+p^{2 s}=z^{2}$, or equivalently $(p+4 n)^{2 k+1}=z^{2}-p^{2 s}=$ $\left(z+p^{s}\right)\left(z-p^{s}\right)$. Thus, there exist non-negative integer α, β such that $(p+4 n)^{\alpha}=z+p^{s}$ and $(p+4 n)^{\beta}=z-p^{s}$ where $\alpha>\beta$ and $\alpha+\beta=2 k+1$. Then, we have $2(p)^{s}=$ $(p+4 n)^{\beta}\left[(p+4 n)^{\alpha-\beta}-1\right]$. This implies that $\beta=0$. We have $2(p)^{s}=(p+4 n)^{2 k+1}-1$, which is impossible because $2(p)^{s} \equiv 2(\bmod 3)$ but $(p+4 n)^{2 k+1}-1 \equiv 0,1(\bmod 3)$.

Acknowledgements

The authors wish to thank the referees for their kind suggestions and comments to improve the article.

References

[1] N. Burshtein. On the Diophantine equation $p^{x}+(p+12)^{y}=z^{2}$ when $p+5=2^{2 u}$. Annals of Pure and Applied Mathematic, 18(1):41-44, 2020.
[2] S. Chotchaisthit. On The Diophantine Equation $4^{x}+p^{y}=z^{2}$ where p is a prime number. American Journal Mathematics and Sciences, 1(1):191-193, 2012.
[3] R. Dokchan and A. Pakapongpun. On the Diophantine $p^{x}+(p+20)^{y}=z^{2}$ when p and $p+20$ are primes. International Journal of Mathematics and Computer Science, 16(1):179-183, 2021.
[4] N. Fernando. On the Solvability of the Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ when $p>3$ and $p+8$ are primes. Annals of Pure and Applied Mathematics, 18(1):9-13, 2018.
[5] W. S. Gayo and J. B. Bacani. On the Diophantine equation $M_{p}^{x}+\left(M_{q}+1\right)^{y}=z^{2}$. European Journal of Pure and Applied Mathematics, 14(2):396-403, 2021.
[6] A. Hoquea. On the Diophantine equation $\left(M_{p q}\right)^{x}+\left(M_{p q}+1\right)^{y}=z^{2}$. European Journal of Pure and Applied Mathematics, 9(2):240-243, 2016.
[7] S. Kumar, S. Gupta and H. Kishan. On the non-linear Diophantine equation $p^{x}+$ $(p+6)^{y}=z^{2}$. Annals of Pure and Applied Mathematics, 18(1):125-128, 2018.
[8] S. Kumar, S. Gupta and H. Kishan. On the solution of exponential Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$. International Journal of Mathematics and Computer Science, 11(1):1-19, 2019.
[9] P. Mihailescu. Primary cyclotomic units and a proof of Catalan's conjecture. Journal für die Reine and Angewandte Mathematik, 572:167-195, 2004.
[10] A. Suvarnamani. On the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$. International Journal of Mathematical Sciences and Applications, 1(3):1415-1419, 2011.
[11] A. Suvarnamani. On the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 94(5):689-692, 2014.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4508
 Email addresses: Wachirarak.tc@bru.ac.th (W. Orosram),
 620112210001@bru.ac.th (K. Makonwattana)620112210034@bru.ac.th (S. Khongsawat)

