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Abstract. We study stability analysis of a discrete-time dynamical system of Wolbachia diffusion
in mosquito populations with Allee effects on the wild mosquito population. We analyze the
competition between released mosquitoes and wild mosquitos. We show local and global stabilities
of the fixed points, and type of bifurcations concerning parameters. The results are verified by
numerical simulations.
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1. Introduction

Malaria, dengue fever, West Nile virus, chikungunya, and Zika virus are well-known
Mosquito-borne diseases. More than a billion people are at risk of these diseases all around
the world. It has been estimated that 3.9 billion people are at risk of infection [1, 2]. The
human viruses including dengue, Zika, chikungunya, and yellow fever are transmitted
primarily by Aedes aegypti mosquitoes. Due to the lack of vaccines and efficient clinical
cures [3], the only effective control strategy seems to be controlling the population of
mosquitoes that transmit human viruses.

Since massive spraying of insecticides and elimination of mosquito breeding sites are not
sustainable 4400 to reduce mosquito density and might also lead to serious environmental
problems, a promising strategy is the Wolbachia approach: releasing male and female
Aedes aegypti mosquitoes with Wolbachia so that these mosquitoes can breed with the
wild mosquito population and pass Wolbachia to the entire mosquito population. On one
hand, the ability to transmit viruses to humans for mosquitoes with Wolbachia is greatly
reduced [4]. On the other hand, since the Wolbachia infection often induces cytoplasmic
incompatibility (CI), which leads to early embryonic death when Wolbachia-infected males
mate with uninfected females [5], the Wolbachia approach would greatly reduce the density
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of the mosquito population and can thus potentially eliminate the mosquito population
and thus eradicate the mosquito-borne infectious diseases.

The sterile mosquitoes technique in which sterile mosquitoes are released to reduce or
eradicate the wild mosquito population has been used in preventing malaria transmission.
To study the impact of releasing sterile mosquitoes on malaria transmission, In [9], they
formulate a simple SEIR (susceptible-exposed-infected-recovered) malaria transmission
model as our baseline model, to derive a formula for the reproductive number of infections,
and determine the existence of endemic equilibria. They then include sterile mosquitoes in
the baseline model and consider the case of constant releases of sterile mosquitoes. They
examine how the releases affect the reproductive numbers and endemic equilibria for the
model with interactive mosquitoes and investigate how releasing sterile mosquitoes affects
malaria transmission.

The use of the Wolbachia strategy to suppress vector populations is a novel approach,
which has the potential to reduce mosquito populations and the risk of mosquito-borne
disease transmission [1, 2]. This approach, commonly known as the Incompatible Insect
Technique (IIT), is a species-specific and benign approach for controlling vector popu-
lations. Eggs produced from the successful mating between released male Wolbachia-
carrying Aedes aegypti (Wolbachia-Aedes) mosquitoes and urban female Aedes aegypti
mosquitoes in the environment (without Wolbachia) are non-viable, due to Cytoplasmic
Incompatibility (CI), therefore suppression of mosquito populations could be achieved with
regular releases over time.

Wolbachia technology is a novel vector control approach that can reduce mosquito
populations and the risk of mosquito-borne diseases, which has recently gained popularity
amongst countries. In 2016, Singapore embarked on a multi-phased field study named
Project Wolbachia – Singapore, to evaluate the use of Wolbachia technology as an Aedes
aegypti mosquito population suppression tool to fight dengue. Due to the novelty of
this technology in Singapore, this study aims to understand the public’s acceptance and
sentiments towards the use of Wolbachia technology [10].

Threshold values for the releases of sterile mosquitoes are derived for all of the models
that determine whether the wild mosquitoes are wiped out or coexist with the sterile
mosquitoes. Numerical examples are given to demonstrate the dynamics of the models.

2. Stability Analysis of The Discrete Model

There are many population models about mosquitoes [7–9]. Below the discrete model
of competition between two species is given by [6].

xt+1 =
b1xt

1 + α(xt + yt)
+ (1− d1)xt,

yt+1 =
b2yt

1 + β(xt + yt)

yt
(xt + yt)

+ (1− d2)yt,

(1)
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where xt represents the number of mosquito population infected with Wolbachia, and
yt represents the number of uninfected mosquito population at time t. The parameters
b1, b2 > 0 denote the birth rate of xt, yt, respectively. α and β denote the competition
coefficients within or between species, respectively. 0 < d2 < d1 < 1 are mortality rates of
yt and xt.
We add the Allee effect to uninfected mosquitoes in this model.

xt+1 =
b1xt

1 + α(xt + yt)
+ (1− d1)xt,

yt+1 =
b2yt

1 + β(xt + yt)

yt
(xt + yt)

+ (1− d2)yt
yt

c+ yt)
,

(2)

where c > 0 is the Allee effect constant. The study of the dynamical properties of this
map allows us to have information about the future behavior of mosquitoes populations.

The positive invariant region of our model is as follows. Let a = 1− d2:

yt+1 =
b2yt

1 + β(xt + yt)

yt
(xt + yt)

+ (1− d2)yt
yt

(c+ yt)
(3)

We get the following inequality from this equation

yt+1 ≤
b2
β

+ (1− d2)yt. (4)

By t iteration of this recurrence inequality, we get

yt+1 − aty0 ≤
b2
β
(1 + a+ a2 + · · ·+ at−1) (5)

since 0 < a < 1, then

lim
t→∞

yt ≤
b2
d2β

.

Similarly,

lim
t→∞

xt ≤
b1
d1α

.

Therefore, there is a positive invariant for our mapping.
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3. Fixed Points and their stability

In this section, We investigate the fixed points of the map (2) and their stability
conditions[11, 12]. Let

xt+1 = f(xt, yt) =
b1xt

1 + α(xt + yt)
+ (1− d1)xt,

yt+1 = g(xt, yt) =
b2yt

1 + β(xt + yt)

yt
(xt + yt)

+ (1− d2)yt
yt

(c+ yt)
,

(6)

where we assumed g(0, 0) = 0. Then the solution of the following system of equations
gives us the fixed points:

x =
b1x

1 + α(x+ y)
+ (1− d1)x,

y =
b2y

1 + β(x+ y)

y

(x+ y)
+ (1− d2)y

y

(c+ y)
.

The fixed points are F0(0, 0), F1(
b1−d1
αd1

, 0), F2(0, y
∗)

where y∗ =

√
(βc+b2c−d2)2+4c(b2−βd2)−βc+b2c−d2

2(βd2−b2)
or y∗ =

√
(−βc+b2c−d2)2+4c(b2−βd2)+βc−b2c+d2

2(b2−βd2)
,

and F3(A,B)
where

A =
1

α2b2d21
(a+ b)

(a = αb1b2d1 + alphab1d1 − alphab2d
2
1 − alphad21 + βb21 − 2βb1d1 + βd21, and b = α2b2cd

2
1 −

αb1d1d2 + αd21d2 − βb21d2 + 2βb1d1d2 − βd21d2)

B =
1

α2b2d21
(m+ n).

(m = −α2b2cd
2
1−αb1d1+αd21−βb21+2βb1d1−βd21 and n = βb21d2+αb1d1d2−2βb1d1d2−

αd21d2 + βd21d2 The Jacobian matrix of the map (2) is:

J(x, y) =

(
fx fy
gx gy

)
,

where

fx(x, y) =
b1

(1 + α(x+ y))
− αb1x

(1 + α(x+ y))2
+ (1− d1)
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,

fy(x, y) = − ab1x

(a(x+ y) + 1)2

,

gx(x, y) = − b2y
2

(x+ y)2(1 + β(x+ y))
− βb2y

2

(x+ y)(1 + β(x+ y))2
+

2b2y

(x+ y)(1 + β(x+ y))
−

(1− d2)y
2

(c+ y)2
+

2(1− d2)y

c+ y
,

and

gy(x, y) = − b2y
2

(x+ y)2(1 + β(x+ y) + 1)
− βb2y

2

(x+ y)(β(x+ y) + 1)2
+

2b2y

(x+ y)(β(x+ y) + 1)
−

(1− d2)y
2

(c+ y)2
+

2(1− d2)y

c+ y
,

For the fixed point F0(0, 0) the Jacobian matrix is ;

J(0, 0) =

(
1− d1 + b1 0

0 0

)
.

The eigenvalues are λ1 = 1 − d1 + b1 and λ2 = 0. Then if |1 − d1 + b1| < 1, then F0 is
asymptotically stable fixed point.

The Jacobian matrix for the fixed point F1(
b1−d1
αd1

, 0) is ;

J(F1) =

(
1− d1 +

d21
b1

0

0 0

)
.

The eigenvalues are λ1 = 1 − d1 +
d21
b1

and λ2 = 0. Then if |1 − d1 +
d21
b1
| < 1 the F1 is

asymptotically stable fixed point otherwise unstable.

The Jacobian Matrix for the fixed point F2(0, y
∗) is;

J(F2) =

(
1 0

gx(F2) gy(F2)

)
.

The eigenvalues are λ1 = 1 and λ2 = gy(F2). We have non-hyperbolic fixed point. The
Center Manifold Theorem must be applied. We explain stability of F2 in the Numerical
result section and gave the center manifold curves.
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For the fixed point F3(A,B) = the Jacobian Matrix is;

J(F2) =

(
B11 B12

B21 B22

)
.

where

B12 =
b(b1 − d1)

2 − αd1
(
(b1(αcd1 − d1 − 1) + b12 + d1

)
α(b21

,

B11 =
b21(α+ β) + d21(α(−αb1c+ b1 − 1) + β) + b1d1(α− b1) + α− 2β)

αb21
,

B21 = −
b2(αd1 + 2β(b1 − d1))

(
β(b1 − d1)

2 − αd1(b1(αcd1 − 1) + d1)
)2

αb21d1(b1 − d1)2(αd1 + β(b1 − d1))2
,

and

B22 =

(
αd1(b1(αcd1 − b2β(b1 − d1)

2
)
G

αb21d1(b1 − d1)2(αd1 + β(b1 − d1))2

where

G = (α2d21
(
b31(d2 − 1)(αcd1 + 1) + b1b2(d1(2− αc) + 1) + b21(−2b2 − d1d2 + d1)− b2d1

)
+

αβd1(b1−d1)
(
b1b2(d1(2− 2αc) + 3) + b31(d2 − 1) + b21(−2b2 − d1d2 + d1)− 3b2d1

)
+2β2b2(b1−d1)

3)

By the trace-determinant (Jury Condition), if

|trJ | − 1 < detJ < 1

The positive fixed point is stable.

4. Numerical Results

In this section, we verify the theoretical results of our model by numerical simulations.
We use Mathematica and Sage software for these simulations. In order to investigate the
impact their interaction and the Allee effect on we changed the values of b1, b2, c, α, β, and
the mortality rates (d1, d2). We fix the intraspecific competition coefficients (cij = 1).
The most important result we get, F1 is globally asymptotically stable, this means that
whatever the initial value of Wolbachia-infected mosquito population xt, the population
of uninfected mosquito population yt will extinct but xt will persist with respect to Allee
effect.
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Figure 1: Phase portrait for the model (2) for F1 fixed poınt, α = β = 1.8, c = 8, d1 = 0.3, d2 = 0.3 and
b1 = b2 = 1, (x0, y0) = (5, 0.1).

Figure 2: Phase portrait for the model (2) for F2 fixed poınt, α = β = 0.5, c = 8, d1 = 0.25, d2 = 0.5 and
b1 = 1, b2 = 5, (x0, y0) = (0.1, 2).

We take α = β = .5, b1 = 1, b2 = 5, c = 8, d1 = .25, 2 = .5, we get the fixed point
F2(0, 12.4), and λ1 = 0.89, λ1 = 0.51 eigenvalues. The center manifold for these parameters
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Figure 3: a) for F1 fixed poınt, α = β = 1.8, c = 8, d1 = 0.3, d2 = 0.3 and b1 = b2 = 1, (x0, y0) = (5, 0.1).
b) Time series of (x, y) for the model for F1 fixed poınt, α = β = 1.8, c = 8, d1 = 0.5, d2 = 0.2 and
b1 = b2 = 1, (x0, y0) = (5, 0.1).

Figure 4: Phase diagram with isoclines for the model for F1 fixed poınt, α = β = 0.8, c = 1.8, d1 = d2 = 0.5,
and b1 = b2 = 1, (x0, y0) = (2, 3).
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are h(x) = 20x3 − 316x2 + 17x, and (y) = 0.0001y3 − 0.04y2 (with green and blue colors
in Figure 4). In Figure 1. and Figure 2. , we give the phase diagrams for the fixed points
and In Figure 3. we give the time series of the model.

if we let c = 0, that means there is no Allee Effect, and keeping the other parameters
the same, we see that only the positive fixed point is stable.

5. Conclusion

An innovative and effective method to control mosquitoes is to employ Wolbachia,
which has led to a growing number of researchers building models to study the dynamics
of Wolbachia transmission. Considering that the collection data of mosquitoes in the
wild are discrete, we established a discrete competition model to study the conditions for
Wolbachia to successful spread in mosquitoes.

Numerical simulations are also provided to demonstrate these theoretical results. We
mainly showed that the simulation results are consistent with the theoretical results. In
particular, since we cannot determine the exact position of the stable manifold, we show
its approximate position through simulations by Sage.
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