EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1948-1956
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On Dual B-Topological Spaces Determined by Filterbase and Some Sets in a Dual B-algebra

Katrina E. Belleza ${ }^{1, *}$, Jimboy R. Albaracin ${ }^{2}$
${ }^{1}$ Department of Computer, Information Science, and Mathematics, School of Arts and Sciences, University of San Carlos, Talamban, Cebu City, Philippines
${ }^{2}$ Mathematics and Statistics Programs, College of Science, University of the Philippines Cebu, Cebu City, Philippines

Abstract

This paper presents dual B-topologies that are determined by filterbase and some sets in a dual B-algebra. Also, some properties of a filterbase in a dual B-topological space are provided. In particular, a commutative dual B-topological space and a symmetric B-topological space are topological dual B-algebras.

2020 Mathematics Subject Classifications: 46H10, 54A05, 54F65, 54H99, 55M99
Key Words and Phrases: Topological algebra, dual B-algebra, topological dual B-algebra, dual B-topological space, tdB-algebra

1. Introduction

In 1998, D.S. Lee and D.N. Ryu [5] introduced the notion of a topological BCKalgebra. Moreover, they derived a filter base generating a $B C K$-algebra topology. On the following year, Y.B. Jun et al. [4] gave a filterbase generating a $B C I$-topology and making a $B C I$-algebra into a topological $B C I$-algebra for which the filterbase is a fundamental system of neighborhoods. In 2019, K.E. Belleza and J.P. Vilela introduces and characterized the notion of a dual B-algebra [2]. Moreover on the following year, K.E. Belleza introduces the dual B-topological space and a $t d B$-algebra involving dual B-ideals and dual B-subalgebras.

2. Preliminaries

Definition 1. [2] A dual B-algebra X^{D} is a triple ($X^{D}, \circ, 1$) where X^{D} is a non-empty set with a binary operation " \circ " and a constant 1 satisfying the following axioms for all x, y, z in X^{D} :

[^0]Email addresses: kebelleza@usc.edu.ph (K. Belleza), jralbaracin@up.edu.ph (J. Albaracin)

$$
(\mathrm{DB} 1) x \circ x=1 ; \quad(\mathrm{DB} 2) 1 \circ x=x ; \quad(\mathrm{DB} 3) x \circ(y \circ z)=((y \circ 1) \circ x) \circ z
$$

Lemma 1. [2] Let X^{D} be a dual B-algebra. For any x, y in $X^{D}, x \circ y=1$ implies $x=y$.
Theorem 1. [2] Let $X=(X, \circ, 1)$ be any algebra of type $(2,0)$. Then X is a dual B algebra if and only if for any $x, y, z \in X$,

$$
\text { (i) } x \circ x=1 ;(i i) x=(x \circ 1) \circ 1 ;(\text { iii })(x \circ y) \circ(x \circ z)=y \circ z
$$

Definition 2. [2] Let X^{D} be a dual B-algebra. Define a binary operation " + " on X as follows: $x+y=(x \circ 1) \circ y$ for all x, y in X^{D}. A dual B-algebra is said to be commutative if $x+y=y+x$, that is, $(x \circ 1) \circ y=(y \circ 1) \circ x$ for all x, y in X^{D}.

Proposition 1. [2] Suppose X^{D} is a commutative B-algebra. Then for all x, y in X^{D}, $x \circ(y \circ z)=y \circ(x \circ z)$.

Let X^{D} be a dual B-algebra such that $x \circ y=y \circ x$ for all $x, y \in X^{D}$. Then we say that X^{D} satisfies a symmetric condition [2].

Lemma 2. [2] Let X^{D} be a dual B-algebra satisfying a symmetric condition. Then for all $x, y, z \in X^{D},(x \circ y) \circ(z \circ y)=x \circ z$.
Definition 3. [1] Let X^{D} be a dual B-algebra and S a nonempty subset of X^{D}. Then S is called a dual B-subalgebra of X^{D} if S itself is a dual B-algebra with binary operation of X^{D} on S.

Definition 4. [1] Let X^{D} be a dual B-algebra. A subset F of X^{D} is called a dual B-filter if it satisfies the following axioms: for all x, y in X^{D},

$$
(\mathrm{dF} 1) 1 \in F ; \quad(\mathrm{dF} 2) x \circ y \in F \text { and } x \in F \text { imply } y \in F
$$

Definition 5. [3] Let X be a set. A topology (or topological structure) in X is a family τ of subsets of X that satisfies the following:
(i) Each union of members of τ is also a member of τ;
(ii) Each finite intersection of members of τ is also a member of τ; and
(iii) \varnothing and X are members of τ.

A couple (X, τ) consisting of a set X and a topology τ in X is called a topological space. We also say " τ is the topology of the space X ". The members of τ are called open sets of (X, τ). A family $\mathcal{B} \subset \tau$ is called a basis for τ if each open set is the union of members of \mathcal{B}. Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be topological spaces. A map $f: X \rightarrow Y$ is called continuous if the inverse image of each open set in Y is open in X (that is, if f^{-1} maps τ_{Y} into $\left.\tau_{X}\right)$. [3]

Theorem 2. [3] Let $\mathcal{B} \subset \tau$. The following two properties of \mathcal{B} are equivalent:
(i) \mathcal{B} is a basis for τ;
(ii) for each $G \in \tau$ and each $x \in G$, there is a $U \in \mathcal{B}$ with $x \in U \subset G$.

Definition 6. [3] Let (X, τ) be a topological space. By a neighborhood of an element x in X (denoted as $U(x)$) is meant any open set (that is, member of τ) containing x.

Definition 7. [3] Let $\left\{Y_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ be any family of topological spaces. For each $\alpha \in \mathcal{A}$, let τ_{α} be the topology for Y_{α}. The Cartesian product topology in $\prod_{\alpha} Y_{\alpha}$ is that having for subbasis all sets $\left\langle U_{\beta}\right\rangle=\rho_{\beta}^{-1}\left(U_{\beta}\right)$, where $\rho: \prod_{\alpha} Y_{\alpha} \rightarrow Y_{\alpha}, U_{\beta}$ ranges over all members of τ_{β} and β over all elements of \mathcal{A}.

Definition 8. [1] Let X^{D} be a dual B-algebra. A topology τ on X^{D} is called a dual B-topology and the couple $\left(X^{D}, \tau\right)$ is called a dual B-topological space.

Remark 1. Let X^{D} be a dual B-algebra and nonempty $A, B \in X^{D}$. Then

$$
A \circ B=\{a \circ b \mid a \in A, b \in B\} .
$$

Definition 9. [1] The triple (X^{D}, \circ, τ) is called a topological dual B-algebra (or $t d B$ algebra) if τ is a dual B-topology and the binary operation $\circ: X^{D} \times X^{D} \rightarrow X^{D}$ is continuous where the topology on $X^{D} \times X^{D}$ is the Cartesian product topology.

Theorem 3. [1] Let X^{D} be a dual B-algebra and τ a dual B-topology. Then (X^{D}, \circ, τ) is a tdB-algebra if and only if for all $x, y \in X^{D}$ and $U(x \circ y)$, there exists $U(x)$ and $U(y)$ such that $U(x) \circ U(y) \subseteq U(x \circ y)$.

3. Dual B-topological Space Determined by Some Sets

Suppose X^{D} is a dual B-algebra. For each $V \subseteq X^{D}$ and $x \in X^{D}$, let us denote the following notations:

$$
\text { (i) } V[x]=\left\{y \in X^{D} \mid x \circ y \in V\right\} ; \text { (ii) } V^{\prime}[x]=\left\{y \in X^{D} \mid y \circ x, x \circ y \in V\right\} \text {. }
$$

Remark 2. Let X^{D} be a dual B-algebra and $V \subseteq X^{D}$. Then $V^{\prime}[x] \subseteq V[x]$ for any $x \in X^{D}$.

Example 1. Consider the set $X^{D}=\{1, a, b, c, d, e\}$ and binary operation \circ as defined in the table below.

\circ	1	a	b	c	d	e
1	1	a	b	c	d	e
a	b	1	a	d	e	c
b	a	b	1	e	c	d
c	c	d	e	1	a	b
d	d	e	c	b	1	a
e	e	c	d	a	b	1

Then X^{D} is a dual B-algebra [1]. Let $V=\{a, d, e\}$. Then $V[b]=\{1, c, e\}$ and $V^{\prime}[b]=$ $\{c, e\}$.

Proposition 2. Suppose X^{D} is a dual B-algebra and $V \subseteq X^{D}$ such that $1 \in V$. Then $x \in V^{\prime}[x]$. In particular, $V=\{1\}$ if and only if $V[x]=\{x\}=V^{\prime}[x]$ for any $x \in X$.

Proof. Suppose X^{D} is a dual B-algebra and $V \subseteq X^{D}$ such that $1 \in V$. By (DB1), $x \circ x=1 \in V$ for all $x \in X^{D}$. This implies that $x \in V^{\prime}[x]$.

Suppose $V=\{1\}$. Then $V[x]=\{x\}=V^{\prime}[x]$ for any $x \in X$. Let $V[x]=\{x\}=V^{\prime}[x]$. Then $x \circ x \in V$. Thus, $1 \in V$. Suppose $a \in V$ such that $a \neq 1$. Then there exists $y \in X$ such that $x \circ y=a$ with $x \neq y$. Hence, $y \in V[x]$, a contradiction. Therefore, $V=\{1\}$.

Proposition 3. Let X^{D} be a dual B-algebra and $U, V \subset X^{D}$. If $U \subseteq V$, then $U[x] \subseteq V[x]$ and $U^{\prime}[x] \subseteq V^{\prime}[x]$ for any $x \in X^{D}$.

Proof. Suppose X^{D} is a dual B-algebra and $U, V \subset X^{D}$. Let $y \in U[x]$. Then $x \circ y \in U \subseteq V$. Hence, $y \in V[x]$ which implies that $U[x] \subseteq V[x]$. Similarly, $U^{\prime}[x] \subseteq V^{\prime}[x]$.

Proposition 4. Let X^{D} be a dual B-algebra satisfying the symmetric condition and $V \subseteq$ X^{D} such that for all $p, q \in V$ and $x \in X^{D}, p \circ(x \circ q)=1$ implies $x \in V$. Then $V^{\prime}[x] \circ V^{\prime}[y] \subseteq V^{\prime}[x \circ y]$.

Proof. Let $p \circ q \in V^{\prime}[x] \circ V^{\prime}[y]$ where $p \in V^{\prime}[x]$ and $q \in V^{\prime}[y]$. Then $p \circ x, x \circ p, q \circ y, y \circ q \in$ V. By (DB1), Lemma 2, (DB3), symmetric condition, and (DB2), $1=(p \circ x) \circ(p \circ x)=$ $(p \circ x) \circ[(p \circ q) \circ(x \circ q)]=(p \circ x) \circ[(p \circ q) \circ[(x \circ y) \circ(q \circ y)]]=(p \circ x) \circ([[(x \circ y) \circ 1] \circ$ $(p \circ q)] \circ(q \circ y))=(p \circ x) \circ[[(x \circ y) \circ(p \circ q)] \circ(q \circ y)]$. Since $(p \circ x),(q \circ y) \in V$ and $(p \circ x) \circ[[(x \circ y) \circ(p \circ q)] \circ(q \circ y)]=1$, this implies that $(x \circ y) \circ(p \circ q) \in V$ by the hypothesis. Similarly, $(p \circ q) \circ(x \circ y) \in V$. Hence, $p \circ q \in V^{\prime}[x \circ y]$. Therefore, $V^{\prime}[x] \circ V^{\prime}[y] \subseteq V^{\prime}[x \circ y]$.

Theorem 4. Let Ω be a family of nonempty subsets in a dual B-algebra X^{D} that is closed under finite intersections. Then the set $\tau=\left\{U \subseteq X^{D} \mid \forall x \in U, \exists V \in \Omega\right.$ such that $V[x] \subseteq$ $U\}$ is a dual B-topology on X^{D}.

Proof. Let X^{D} be a dual B-algebra and $x \in X^{D}$. Note that $V[x] \subseteq X^{D}$ for any $V \in \Omega$. This implies that $X^{D} \in \tau$. Since \varnothing does not contain any element, then it is vacuously true that $\varnothing \in \tau$. Suppose $U_{1}, U_{2} \in \tau$ and $x \in U_{1} \cap U_{2}$. Then there exist $V_{1}, V_{2} \in \Omega$ such that $V_{1}[x] \subseteq U_{1}$ and $V_{2}[x] \subseteq U_{2}$. Since $V_{1} \cap V_{2} \subseteq V_{1}, V_{2}$, it follows that $\left(V_{1} \cap V_{2}\right)[x] \subseteq V_{1}[x] \subseteq U_{1}$ and $\left(V_{1} \cap V_{2}\right)[x] \subseteq V_{2}[x] \subseteq U_{2}$ by Proposition 3. Moreover by the hypothesis, $V_{1} \cap V_{2} \in \Omega$. This implies that $\left(V_{1} \cap V_{2}\right)[x] \subseteq U_{1}$ and $\left(V_{1} \cap V_{2}\right)[x] \subseteq U_{2}$ or $\left(V_{1} \cap V_{2}\right)[x] \subseteq U_{1} \cap U_{2}$. Hence, $U_{1} \cap U_{2} \in \tau$. Suppose $x \in \bigcup_{i \in \mathcal{A}} U_{i}$ where $U_{i} \in \tau$ for all $i \in \mathcal{A}$. Then there exists $j \in \mathcal{A}$ such that $x \in U_{j}$. This implies that $V_{j}[x] \subseteq U_{j}$ for some $V_{j} \in \Omega$. Hence, $V_{j}[x] \subseteq \bigcup_{i \in \mathcal{A}} U_{i}$. It follows that $\bigcup_{i \in \mathcal{A}} U_{i} \in \tau$. Therefore, τ is a dual B-topology on X^{D}.

Henceforth, the dual B-topology τ in the following results is the dual B-topology in Theorem 4.

Theorem 5. Suppose X^{D} is a dual B-topological space and Ω is a family of subsets in a dual B-algebra X^{D} that is closed under finite intersections. If $\varnothing \in \Omega$, then X^{D} is a $t d B$-algebra.

Proof. Suppose X^{D} is a dual B-topological space and Ω is a family of subsets in a dual B-algebra X^{D} that is closed under finite intersections. Let $V \subseteq X^{D}$. Then for all $x \in V$, there exists $\varnothing \in \Omega$ such that $\varnothing[v]=\varnothing \subseteq V$. This implies that $V \in \tau$. Hence $\mathcal{P}\left(X^{D}\right) \subseteq \tau$ where $\mathcal{P}\left(X^{D}\right)$ is the power set of X^{D}. Since $\tau \subseteq \mathcal{P}\left(X^{D}\right)$, it follows that $\tau=\mathcal{P}\left(X^{D}\right)$. Let $x, y \in X^{D}$ and $U(x \circ y) \in \tau$. Then there exist $\{x\},\{y\} \in \tau$ such that $\{x\} \circ\{y\}=\{x \circ y\} \subseteq U(x \circ y)$. Then X^{D} is a $t d B$-algebra.

Theorem 6. Let Ω be a family of subsets in the dual B-algebra X^{D} that is closed under finite intersections. Suppose that for each $U \in \Omega, 1 \in U$ and for each $x \in U$, there exists $V \in \Omega$ such that $V[x] \subseteq U$. Then the set $\mathcal{B}=\left\{U[a] \mid U \in \Omega, a \in X^{D}\right\}$ is a basis for the dual B-topology.

Proof. First, we will show that $\mathcal{B} \subseteq \tau$. Suppose $x \in U[a] \in \mathcal{B}$ for any $a \in X^{D}$ and $U \in \Omega$. Then $a \circ x \in U$. Moreover, there exists $V \in \Omega$ such that $V[a \circ x] \subseteq U$. Let $y \in V[x]$. Then $x \circ y \in V$. By Theorem 1(iii), $(a \circ x) \circ(a \circ y)=x \circ y \in V$. Hence, $a \circ y \in V[a \circ x] \subseteq U$. This implies that $y \in U[a]$. Moreover, $U[a] \in \tau$. That is, $V[x] \subseteq U[a]$. Consequently, $\mathcal{B} \subseteq \tau$. Now let $U \in \tau$ and $x \in U$. Then there exists $V \in \Omega$ such that $V[x] \subseteq U$. By Proposition 2 and Remark 2, $x \in V[x]$. Therefore, there exists $V[x] \in \mathcal{B}$ such that $x \in V[x] \subseteq U$. By Theorem $2, \mathcal{B}$ is a basis for the dual B-topology τ.

Theorem 7. Let Ω be a family of subsets in a commutative dual B-algebra X^{D} that is closed under finite intersections. Suppose that for each $V \in \Omega, 1 \in V$ and for each $x \in V \in \Omega$, there exists $U \in \Omega$ such that $U[x] \subseteq V$. Then X^{D} is a tdB-algebra.

Proof. Let $x, y \in X^{D}$ and $U \in \tau$ such that $x \circ y \in U$. Then there exists $V \in \Omega$ such that $V[x \circ y] \subseteq U$. By Remark 2 and Proposition 2 respectively, $V^{\prime}[x \circ y] \subseteq V[x \circ y]$ with $x \in V^{\prime}[x]$ and $y \in V^{\prime}[y]$. We will show that $V^{\prime}[x] \circ V^{\prime}[y] \subseteq V^{\prime}[x \circ y]$. Suppose $a \in V^{\prime}[x]$. Then $a \circ x, x \circ a \in V$. By (DB1), Theorem 1(iii), and Proposition 1, $1=$ $(a \circ y) \circ(a \circ y)=(a \circ y) \circ[(x \circ a) \circ(x \circ y)]=(x \circ a) \circ[(a \circ y) \circ(x \circ y)]$ and $1=$ $(x \circ y) \circ(x \circ y)=(x \circ y) \circ[(a \circ x) \circ(a \circ y)]=(a \circ x) \circ[(x \circ y) \circ(a \circ y)]$. By Lemma 1, it follows that $(a \circ y) \circ(x \circ y)=x \circ a \in V$ and $(x \circ y) \circ(a \circ y)=a \circ x \in V$. This implies that $a \circ y \in V^{\prime}[x \circ y]$. Hence, $V^{\prime}[x] \circ y \subseteq V^{\prime}[x \circ y]$. Suppose $b \in V^{\prime}[y]$. Then $b \circ y, y \circ b \in V$. By Theorem 1(iii), $(x \circ b) \circ(x \circ y)=b \circ y \in V$ and $(x \circ y) \circ(x \circ b)=y \circ b \in V$. This implies that $x \circ b \in V^{\prime}[x \circ y]$. Hence, $x \circ V^{\prime}[y] \subseteq V^{\prime}[x \circ y]$. Assume on the contrary that $V^{\prime}[x] \circ V^{\prime}[y] \nsubseteq V^{\prime}[x \circ y]$. By Proposition 2, $V^{\prime}[x] \circ y \in V^{\prime}[x] \circ V^{\prime}[y] \nsubseteq V^{\prime}[x \circ y]$ and $x \circ V^{\prime}[y] \in V^{\prime}[x] \circ V^{\prime}[y] \nsubseteq V^{\prime}[x \circ y]$. These are contradictions. Therefore, X^{D} is a $t d B$-algebra.

Lemma 3. Suppose Ω is an arbitrary family of dual B-filters in a dual B-algebra X^{D}. Then for all $a \in V \in \Omega, V[a]=V$.

Proof. Suppose Ω is an arbitrary family of dual B-filters in a dual B-algebra X^{D} and let $a \in V \in \Omega$. Suppose $x \in V[a]$. Then $a \circ x \in V$. Since V is a dual B-filter and $a \in V$, it follows that $x \in V$ implying that $V[a] \subseteq V$. Conversely, suppose $x \in V$. Since V is a dual B-filter, V is a dual B-subalgebra of X^{D}. Then $a \circ x \in V$. Hence, $x \in V[a]$. Therefore, $V[a]=V$.

The next corollary follows from Lemma 3 and Theorem 7.
Corollary 1. Let Ω be a family of dual B-filters in a commutative dual B-algebra X^{D} closed under finite intersections such that $1 \in V$ for all $V \in \Omega$. Then X^{D} is a tdB-algebra.

4. Filterbase in a Dual B-algebra

Definition 10. Let X^{D} be a dual B-topological space. A filterbase \mathcal{U} in X^{D} is a family $\mathcal{U}=\left\{A_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ of subsets of X^{D} having two properties:
(i) $A_{\alpha} \neq \varnothing$ for all $\alpha \in \mathcal{A}$;
(ii) for all $\alpha, \beta \in \mathcal{A}$, there exists $\gamma \in \mathcal{A}$ such that $A_{\gamma} \subseteq A_{\alpha} \cap A_{\beta}$.

Remark 3. Let X^{D} be a dual B-topological space and $x_{1} \in X^{D}$. The family $\left\{U\left(x_{1}\right)\right\}$ is a filterbase called the neighborhood filterbase of x_{1}.

Example 2. Suppose X^{D} is a dual B-topological space. Any family \mathcal{W} of subsets of X^{D} containing \varnothing is not a filterbase. In particular, the dual B-topology τ on X^{D} is not a filterbase in X^{D}.

Remark 4. The family of dual B-filters is not a subclass of a filterbase in a dual B-algebra X^{D}.

Example 3. Consider the dual B-algebra $X=\{1, a, b, c, d, e\}$ in Example 1. Let $\mathcal{F}=$ $\{\{1, e\},\{1, a, b\},\{1, c\}\}$. Then \mathcal{F} is a family of dual B-filters in X^{D} [1]. Note that $\{1, e\},\{1, a, b\} \in \mathcal{F}$ but $\{1, e\} \cap\{1, a, b\}=\{1\} \notin \mathcal{F}$. This implies that \mathcal{F} is not a filterbase.

Remark 5. A filterbase is not a subclass of a family of dual B-filters in a dual B-algebra.
Example 4. Consider the dual B-algebra $X^{D}=\{1, a, b, c, d, e\}$ in Example 1 and $\Omega=$ $\{\{1, a, b\},\{a\}\}$. Then Ω is a filterbase of X^{D} but $\{a\} \in \Omega$ is not a dual B-filter of X^{D} since $1 \notin\{a\}$.

The next results describes the dual B-topology τ determined by a filterbase Ω followed by the relationship of Ω and τ if Ω is a family of dual B-filters.

Theorem 8. Let Ω be a filterbase in a dual B-algebra X^{D}. Then the family $\tau=\{O \subseteq$ $X^{D} \mid \forall a \in O, \exists V \in \Omega$ such that $\left.V^{\prime}[a] \subseteq O\right\}$ is a dual B-topology on X^{D}.

Proof. Let Ω be a filterbase in a dual B-algebra X^{D}. Since $V^{\prime}[a] \subseteq X^{D}$ for all $V \in \Omega$ and $a \in X^{D}$, it follows that $X^{D} \in \tau$. Since \varnothing do not have any element, then vacuously $\varnothing \in \tau$. Suppose that $O_{\alpha}, O_{\beta} \in \tau$ and $a \in O_{\alpha} \cap O_{\beta}$. Then there exist $V_{\alpha}, V_{\beta} \in \Omega$ such that $V_{\alpha}^{\prime}[a] \subseteq O_{\alpha}$ and $V_{\beta}^{\prime}[a] \subseteq O_{\beta}$. Since Ω is a filterbase, there exists $V \in \Omega$ such that $V \subseteq V_{\alpha} \cap V_{\beta}$. By Proposition $3, V^{\prime}[a] \subseteq\left(V_{\alpha} \cap V_{\beta}\right)^{\prime}[a] \subseteq V_{\alpha}^{\prime}[a] \subseteq O_{\alpha}$. Similarly, $V^{\prime}[a] \subseteq O_{\beta}$. Hence, $V^{\prime}[a] \subseteq O_{\alpha} \cap O_{\beta}$. This implies that $O_{\alpha} \cap O_{\beta} \in \tau$. Suppose $O_{\alpha} \in \tau$ for all $\alpha \in \mathcal{A}$ and let $a \in \bigcup_{\alpha \in \mathcal{A}} O_{\alpha}$. Then $a \in O_{\beta} \in \tau$ for some $\beta \in \mathcal{A}$. This implies that there exists $V_{\beta} \in \Omega$ such that $V_{\beta}^{\prime}[a] \subseteq O_{\beta}$. Hence, $V_{\beta}^{\prime}[a] \subseteq \bigcup_{\alpha \in \mathcal{A}} O_{\alpha}$. It follows that $\bigcup_{\alpha \in \mathcal{A}} O_{\alpha} \in \tau$. Therefore, τ is a dual B-topology.

Theorem 9. Let X^{D} be a dual B-topological space and Ω a filterbase in X^{D} such that Ω is a family of dual B-filters of X^{D}. Then Ω is a proper subclass of τ.

Proof. Suppose X^{D} is a dual B-topological space and Ω a filterbase in X^{D} such that Ω is a family of dual B-filters of X^{D}. Note that $\varnothing \notin \Omega$ by Definition $10(\mathrm{i})$ but $\varnothing \in \tau$. This implies that $\Omega \neq \tau$. Let $O \in \Omega$ and $x \in O$. It remains to show that $O^{\prime}[x] \subseteq O$. Suppose $a \in O^{\prime}[x]$. Then $a \circ x, x \circ a \in O$. Since O is a dual B-filter and $x \in O$, it follows that $a \in O$. Hence, $O^{\prime}[x] \subseteq O$. This implies that $O \in \tau$. Therefore, Ω is a proper subclass of τ.

Theorem 10. Suppose X^{D} is a dual B-topological space and let Ω be a filterbase in X^{D} such that for all $V \in \Omega$ and for all $p, q \in V$, (i) $p \circ 1 \in V$; and (ii) $(p \circ x) \circ q=1$ implies $x \in V$. Then Ω is the neighborhood filterbase of $1 \in X^{D}$. That is, Ω is a family of neighborhoods of $1(\forall V \in \Omega, 1 \in V$ and $V \in \tau)$.

Proof. Suppose X^{D} is a dual B-topological space and let Ω be a filterbase in X^{D} and $p \in V$. By (i), $p \circ 1 \in V$. By (DB1) and (ii), $(p \circ 1) \circ(p \circ 1)=1$ implying that $1 \in V$. Claim: $V^{\prime}[p] \subseteq V$.
Let $x \in V^{\prime}[p]$. Then $x \circ p, p \circ x \in V$. This implies that $p \circ x=v$ for some $v \in V$. By (DB1) and (ii), $1=v \circ v=(p \circ x) \circ v$ implying that $x \in V$. This proves the claim.
By the claim, $V \in \tau$. Therefore, Ω is the neighborhood filterbase of $1 \in X^{D}$.
Lemma 4. Suppose X^{D} is a dual B-topological space and let Ω be a filterbase in X^{D} such that for all $V \in \Omega$ and for all $p, q \in V$, (i) $p \circ 1 \in V$; and (ii) $(p \circ x) \circ q=1$ implies $x \in V$. Then $V^{\prime}[a]$ is open in X^{D} for all $a \in X^{D}$.

Proof. Suppose X^{D} is a dual B-topological space and let Ω be a filterbase in X^{D}. Suppose $x \in V^{\prime}[a]$ for any $a \in X^{D}$. Then $a \circ x, x \circ a \in V$. Note that by Theorem 10, $V \in \tau$. By Theorem 8, there exist $U_{\alpha}, U_{\beta} \in \Omega$ such that $U_{\alpha}^{\prime}[a \circ x], U_{\beta}^{\prime}[x \circ a] \subseteq V$. Since Ω is a filterbase in X^{D}, there exist $W \in \Omega$ such that $W \subseteq\left(U_{\alpha} \cap U_{\beta}\right)$. This implies that $W \subseteq U_{\alpha}$ and $W \subseteq U_{\beta}$. By Proposition 3, it follows that $W^{\prime}[a \circ x] \subseteq U_{\alpha}^{\prime}[a \circ x] \subseteq V$ and $W^{\prime}[x \circ a] \subseteq U_{\beta}^{\prime}[x \circ a] \subseteq V$.
Claim: $W^{\prime}[x] \subseteq V^{\prime}[a]$.
Suppose $y \in W^{\prime}[x]$. Then $x \circ y, y \circ x \in W$. By (DB1) and Theorem 1 (iii), $1=(x \circ y) \circ$
$(x \circ y)=[(a \circ x) \circ(a \circ y)] \circ(x \circ y)$. Similarly, $1=(y \circ x) \circ(y \circ x)=[(a \circ y) \circ(a \circ x)] \circ(y \circ x)$. Hence by (DB2), $(1 \circ[(a \circ x) \circ(a \circ y)]) \circ(x \circ y)=1$ and $(1 \circ[(a \circ y) \circ(a \circ x)]) \circ(y \circ x)=1$. By Theorem 10 and hypothesis (ii), $(a \circ x) \circ(a \circ y) \in W$ and $(a \circ y) \circ(a \circ x) \in W$. This implies that $a \circ y \in W^{\prime}[a \circ x] \subseteq U_{\alpha}^{\prime}[a \circ x] \subseteq V$. Similarly, $y \circ a \in W^{\prime}[x \circ a] \subseteq U_{\beta}^{\prime}[x \circ a] \subseteq V$. It follows that $y \in V^{\prime}[a]$. This proves the claim. Therefore, $V^{\prime}[a] \in \tau$. That is, $V^{\prime}[a]$ is open in X^{D} for all $a \in X^{D}$.

The next theorem identifies a dual B-topological space determined by a filterbase to be a $t d B$-algebra provided some conditions.

Theorem 11. Suppose X^{D} is a dual B-topological space satisfying the symmetric condition and Ω a filterbase in X^{D} such that for all $V \in \Omega$ and for all $p, q \in V$, (i) $p \circ 1 \in V$; and (ii) $(p \circ x) \circ q=1$ implies $x \in V$. Then X^{D} is a tdB-algebra.

Proof. Suppose X^{D} is a dual B-topological space satisfying the symmetric condition and Ω a filterbase in X^{D}. Let $x \circ y \in O \in \tau$ for any $x, y \in X^{D}$. By Theorem 8 , there exists $V \in \Omega$ such that $V^{\prime}[x \circ y] \subseteq O$. Note that by Lemma 4, Theorem 10, and Proposition $2, V^{\prime}[x], V^{\prime}[y] \in \tau$ with $x \in V^{\prime}[x]$ and $y \in V^{\prime}[y]$. By Proposition $4, V^{\prime}[x] \circ V^{\prime}[y] \subseteq O$. Therefore by Theorem 3, X^{D} is a $t d B$-algebra.

The last corollary follows from Theorem 11 and Definition 4 of a dual B-filter.
Corollary 2. Suppose X^{D} is a dual B-topological space satisfying the symmetric condition and Ω a filterbase in X^{D} such that for all $V \in \Omega, V$ is a dual B-filter. Then X^{D} is a $t d B$-algebra.

5. Conclusion

Given a dual B-algebra X^{D} and a family Ω of nonempty subsets of X^{D} that is closed under finite intersection, we can construct a dual B-topology on X^{D} given by $\tau=\{U \subseteq$ $X^{D} \mid \forall x \in U, \exists V \in \Omega$ such that $\left.V[x] \subseteq U\right\}$. If the empty set is a member of Ω, then X^{D} is a $t d B$-algbera. Furthermore, if Ω is a filterbase of X^{D}, then $\tau=\left\{O \subseteq X^{D} \mid \forall a \in O, \exists V \in\right.$ Ω such that $\left.V^{\prime}[a] \subseteq O\right\}$ is also a dual B-topology on X^{D}. If the condition is imposed to Ω such that for all $V \in \Omega$ and for all $p, q \in V$, (i) $p \circ 1 \in V$; and (ii) $(p \circ x) \circ q=1$ implies $x \in V$, then X^{D} is a $t d B$-algebra. Generally, in this paper we constructed two dual B-topologies on X^{D} and proved with some conditions that X^{D} with these topologies is a $t d B$-algebra.

Acknowledgement

This research is financially supported through an approved research load by the Research, Development, Extension and Publications Office (RDEPO) of the University of San Carlos during the 2nd term of A.Y. 2020-2021. The author would like to extend their sincerest gratitude for this support.

References

[1] Belleza, K., and Albaracin, J., On Dual B-filters and Dual B-subalgebras in a Topological Dual B-algebra, Journal of Mathematics and Computer Science, 28 No. 1 (2023), 1-10.
[2] Belleza, K. and Vilela, J., The Dual B-Algebra, European Journal of Pure and Applied Mathematics, 12 No. 4 (2019), 1497-1507.
[3] Dugunji, J., Topology, Allyn and Bacon Inc., Atlantic Avenue, Boston (1966).
[4] Jun, Y.B. et al., On Topological BCI-Algebras, Information Sciences, 116 (1999), 253-261.
[5] Lee, D.S. and Ryu, D.N., Notes on Topological BCK-Algebras, Scientiae Mathematicae Japonicae, 1 No. 2 (1998), 231-235.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4594

