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Regularity on variants of transformation semigroups
that preserve an equivalence relation
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Abstract. The variant of a semigroup S with respect to an element a ∈ S, is the semigroup with
underlying set S and a new binary operation ∗ defined by x ∗ y = xay for x, y ∈ S. Let T (X) be
the full transformation semigroup on a nonempty set X. For an arbitrary equivalence E on X, let

TE(X) = {α ∈ T (X) : ∀a, b ∈ X, (a, b) ∈ E ⇒ (aα, bα) ∈ E}.

Then TE(X) is a subsemigroup of T (X). In this paper, we investigate regular, left regular and
right regular elements for the variant of some subsemigroups of the semigroup TE(X).
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1. Introduction and preliminaries

Let S be a semigroup and a belong to S. We define a new binary operation ∗ on S by
putting x ∗ y = xay for all x, y ∈ S. The operation ∗ is clearly associative. Hence (S, ∗) is
a semigroup and it is called a variant of S. We usually write (S, a) rather than (S, ∗) to
make the element explicit.

Variants of abstract semigroups were first studied by Hickey [5]. Although concrete
semigroups of relations had earlier been considered by Magill [10]. The study of semigroup
variants goes back to the 1960 monograph of Lyapin [9] and a 1967 paper by Magill and
Subbiah [6] that considers semigroups of functions X → Y under an operation defined by
f · g = f ◦ θ ◦ g, where θ is some fixed function Y → X. In the case that X = Y , this
provides an alternative product on the full transformation semigroup T (X) (consisting of
all functions X → X).

For an element a of a semigroup S, a is called regular if there exists x ∈ S such that
a = axa. A semigroup S is regular semigroup if every element of S is regular. Regular
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semigroups were introduced by Green [4] in his influential 1951 paper “On the structure
of semigroups”. The concept of regularity in a semigroup was adapted from an analogous
condition for rings, already considered by Neumann [12]. It was Green’s study of regular
semigroups that led him to define his celebrated relations. According to a footnote in
Green 1951, the suggestion that the notion of regularity be applied to semigroups was
first made by Rees [15, 16]. This property of regular elements was first observed by
Thierrin [17] in 1952.

Another important kind of the regularity was introduced by Clifford [1] in 1941, who
studied elements a of a semigroup S having the property that there exists x ∈ S such that
a = axa and ax = xa, which we now call a completely regular element, and semigroups
whose any element is completely regular, are called completely regular semigroups. The
complete regularity was also investigated by Croisot [2] in 1953, who also studied elements
a of a semigroup S for which a ∈ Sa2 (resp. a ∈ a2S), called left regular (resp. right
regular) elements, and semigroups whose every element is left regular (resp. right regular),
called left regular (resp. right regular) semigroups.

In [13], Pei has introduced a family of subsemigroup of T (X) defined by

TE(X) = {α ∈ T (X) : ∀a, b ∈ X, (a, b) ∈ E ⇒ (aα, bα) ∈ E}

where E is an arbitrary equivalence relation on X. In [13], the author investigated reg-
ularity and Green’s relations for TE(X). In [11], Namnak and Laysirikul investigated a
necessary and sufficient condition when elements of TE(X) to be left regular, right regular
and completely regular.

For a fixed element θ in TE(X), the variant semigroup of TE(X) with the sandwich
function θ will be denoted simply by TE(X, θ). Green’s equivalences for elements in the
sandwich semigroup TE(X, θ) were characterized by Pei alone [13].

Deng, Zeng and Xu [7] introduced a subsemigroup of T (X) defined by

TE∗(X) =: {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ σ if and only if (xα, yα) ∈ σ},

the so-called semigroups of transformations that preserve double direction equivalence on
X. They investigated the regularity and Green’s relations on TE∗(X). Later, Laysilikul
and Namnak [8] investigated a necessary and sufficient condition for the left regularity,
the right regularity and the completely regularity of elements in TE∗(X). Deng [3] dis-
cussed the Green’s ∗-relations, certain ∗-ideal and certain Rees quotient semigroup for
the semigroup TE∗(X) and proved that regular and abundant in the semigroup TE∗(X)
coincided. The variant semigroup of TE∗(X) with the sandwich function θ, and denoted
by (TE∗(X), θ). Yonthanthum [18] investigated a necessary and sufficient condition for
an element of (TE∗(X), θ) to be regular and determined when (TE∗(X), θ) is a regular
semigroup.

However, it easy to see that the notations TE(X) (TE∗(X)) and TE(X, θ) (TE∗(X, θ))
have the same elements. Hence, these are the same set but need not be the same semi-
group. If θ is the identity transformation, then these semigroups are coincided. Therefore
semigroups TE(X, θ) (TE∗(X, θ)) is a generalization of TE(X) (TE∗(X)) and TE(X, θ).
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In this paper, for a fixed element θ ∈ TE(X) (θ ∈ TE∗(X)), the variant semigroup of
TE(X) (TE∗(X)) with the sandwich function θ will be denoted by TE(X, θ) (TE∗(X, θ)).
This paper aims to characterize the regular, the left regular, the right regular and the
completely regular for elements of TE(X, θ) and TE∗(X, θ). Moreover, we give a necessary
and sufficient condition for the identity transformation idX of the semigroup TE(X) to
be regular, left regular, right regular and completely regular elements in TE(X, θ) and
TE∗(X, θ).

In this introductory section, we present many notations and lemma most of which will
be indispensable for our research. For arbitrary semigroup S, letReg(S), LReg(S), RReg(S)
and CReg(S), denote the set of all regular elements, the set of all left regular elements,
the set of all right regular elements and the set of all completely regular elements of S,
respectively.

For a nonempty set X and α ∈ T (X), we denote by π(α) the partition of X induced
by α, namely,

π(α) = {yα−1 : y ∈ Xα}.
Then π(α) = X/ ker(α) where ker(α) = {(x, y) ∈ X × X : xα = yα}. For A ⊆ X, we
define

πA(α) = {P ∈ π(α) : P ∩A ̸= ∅}.
In the remainder, let E be an equivalence relation on a nonempty set X. Denote by

X/E the quotient set. For x ∈ X, we write Ex as for the set of all elements of X that are
equivalent to x, that is, Ex = {y ∈ X : (x, y) ∈ E}. The following lemma is needed.

Lemma 1. [13] Let α ∈ T (X). Then α ∈ TE(X) if and only if for each A ∈ X/E, there
exists B ∈ X/E such that Aα ⊆ B.

2. Regularity of variants of transformation semigroups that preserve an
equivalence relation

In this section, we characterize the regular, left regular, right regular and completely
regular elements of the variant semigroup TE(X, θ). The identity transformation on X,
namely, idX is the identity of semigroup TE(X) but need not to be the identity of the
semigroup TE(X, θ). In addition, we give a necessary and sufficient condition for idX
of the semigroup TE(X) to be regular, left regular, right regular and completely regular
elements in TE(X, θ).

Theorem 1. Let α ∈ TE(X, θ). Then α ∈ Reg(TE(X, θ)) if and only if

(i) ker(α) = ker(αθ) and

(ii) for every A ∈ X/E, there exists B ∈ X/E such that A ∩Xαθ ⊆ Bθαθ.

Proof. Assume that α is regular of TE(X, θ). Then α = α∗β∗α for some β ∈ TE(X, θ).
Thus α = αθβθα. Clearly, ker(α) ⊆ ker(αθ). For the converse conclusion, let x, y ∈ X be
such that (x, y) ∈ ker(αθ). Then xαθ = yαθ and so

xα = xαθ(βθα) = yαθ(βθα) = yα.
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This means that (x, y) ∈ ker(α). Hence (1) holds. For each A ∈ X/E, by Lemma 1 there
exists B ∈ X/E such that Aβ ⊆ B. Thus Aβθ ⊆ Bθ. If a ∈ A ∩ Xαθ, then a ∈ A and
a = xαθ for some x ∈ X. Thus aβθ ∈ Bθ. This implies that

a = xαθ = xαθβθαθ = aβθαθ ∈ Bθαθ.

Hence A ∩Xαθ ⊆ Bθαθ.
Conversely, suppose that the conditions (1) and (2) hold. For each A ∈ X/E, we

choose A′ ∈ X/E such that A ∩Xαθ ⊆ A′θαθ. Let x ∈ X. If x ∈ Xαθ, then by (2), we
choose and fix an element x′ ∈ (Ex)

′ such that x = x′θαθ. Otherwise, if x /∈ Xαθ, we
choose and fix an element x′ ∈ (Ex)

′. Define β : X → X by

xβ = x′ for all x ∈ X.

Then β is a well-defined mapping. Let x, y ∈ X be such that (x, y) ∈ E. Then Ex = Ey and
so Ex′ = Ey′ . This implies that β ∈ TE(X, θ). It remains to be verified that α ∗β ∗α = α.
If x ∈ X, then xαθβθα = (xαθ)′θα with (xαθ)′θαθ = xαθ. Thus ((xαθ)′θ, x) ∈ ker(αθ) =
ker(α). This implies that xαθβθα = (xαθ)′θα = xα and therefore α = α ∗ β ∗ α. Hence α
is regular in TE(X, θ).

Let E be an equivalence relation on X and Y be a subset of X. A mapping α : Y → X
is called E-preserving if for all x, y ∈ Y, (x, y) ∈ E implies (xα, yα) ∈ E. If α satisfies the
condition that (xα, yα) ∈ E if and only if (x, y) ∈ E, then α is called E∗-preserving . It
is easy to see that every α ∈ TE(X) is E-preserving but need not be E∗-preserving .

The following result is immediate from Theorem 1.

Corollary 1. idX ∈ Reg(TE(X, θ)) if and only if θ is an E∗-preserving bijection.

Proof. Suppose that idX ∈ Reg(TE(X, θ)). Let x, y ∈ X be such that xθ = yθ.
Then (x, y) ∈ ker(θ). By Theorem 1, ker(idX) = ker(idXθ) = ker(θ), which implies that
x = xidX = yidX = y. Hence θ is an injection. For each x ∈ X, there exists B ∈ X/E such
that xθ ∈ Exθ ∩XidXθ ⊆ BθidXθ. Thus xθ = x′θ2 for some x′ ∈ B. Since θ is injective,
we deduce that x = x′θ. Consequently, θ is a bijection. Finally, for any x, y ∈ X, if
(xθ, yθ) ∈ E, then there exists B ∈ X/E such that xθ, yθ ∈ Exθ ∩ XidXθ ⊆ BθidXθ.
Therefore xθ = x′θ2 and yθ = y′θ2 where x′, y′ ∈ B. It follows from θ is injective that
x = x′θ and y = y′θ. Since (x′, y′) ∈ E and θ ∈ TE(X), (x, y) = (x′θ, y′θ) ∈ E. We
conclude that θ is an E∗-preserving bijection.

Conversely, if θ is an E∗-preserving bijection, then θ−1 ∈ TE(X, θ) and

idX = idXθ(θ−1θ−1)θidX = idX ∗ (θ−1θ−1) ∗ idX .

Hence idX ∈ Reg(TE(X, θ)).

In what follows we investigate when an element in TE(X, θ) is left regular.

Theorem 2. Let α ∈ TE(X, θ). Then α ∈ LReg(TE(X, θ)) if and only if for every
A ∈ X/E, there exists B ∈ X/E such that for each P ∈ πA(α), xθαθ ∈ P for some x ∈ B.
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Proof. Assume that α ∈ LReg(TE(X, θ)). Then α = β ∗ α ∗ α for some β ∈ TE(X, θ)
and so α = βθαθα. Let A ∈ X/E. By Lemma 1, there exists B ∈ X/E such that Aβ ⊆ B.
Suppose that P ∈ πA(α) and let x ∈ P ∩ A. Hence xβ ∈ B and xα = xβθαθα which
means xβθαθ ∈ (xα)α−1 = P .

Conversely, for each A ∈ X/E, we choose A′ ∈ X/E such that for every P ∈
πA(α), xθαθ ∈ P for some x ∈ A′. Let x ∈ X. Since X/E and π(α) are partitions of
X, there exist A ∈ X/E and P ∈ π(α) such that x ∈ A and x ∈ P . Hence P ∈ πA(α). By
assumption, we choose and fix an element x′ ∈ A′ such that x′θαθ ∈ P and A′ ∈ X/E.
We also have that x′θαθα = xα. Define β : X → X by

xβ = x′ for all x ∈ X.

Let x, y ∈ X be such that (x, y) ∈ E. Then Ex = Ey and thus Ex′ = Ey′ . This implies
that β ∈ TE(X, θ). If x ∈ X, then xβθαθα = x′θαθα = xα which implies that α = βθαθα.
Therefore α = β ∗ α ∗ α and hence α is left regular, as required.

Corollary 2. idX ∈ LReg(TE(X, θ)) if and only if θ is a surjection.

Proof. Suppose that idX ∈ LReg(TE(X, θ)). Let x ∈ X. Since {x} ∈ πEx(idX) and
by Theorem 2, there exists B ∈ X/E such that bθidXθ ∈ {x} for some b ∈ B. Therefore
x = bθidXθ = bθθ. Hence θ is a surjection on X.

Conversely, assume that θ is a surjection. Thus θ2 is also surjective. Let A ∈ X/E.
Note that πA(idX) = {{a} : a ∈ A}. Let P ∈ πA(idX), then P = {a} where a ∈ A and so
a = xθθ for some x ∈ X. Choose B = Ex and so xθidXθ = xθθ = a ∈ {a} = P . Hence by
Theorem 2, we conclude that idX ∈ LReg(TE(X, θ)).

Theorem 3. Let α ∈ TE(X, θ). Then α ∈ RReg(TE(X, θ)) if and only if (θαθ)|Xα is an
E∗-preserving injection.

Proof. Suppose that α ∈ RReg(TE(X, θ)). Then there is β ∈ TE(X, θ) such that
α = α ∗ α ∗ β and so α = αθαθβ. Since θαθ ∈ TE(X), (θαθ)|Xα is E-preserving. Let
x, y ∈ Xα be such that x = x′α and y = y′α where x′, y′ ∈ X. If xθαθ = yθαθ,
then x = x′α = x′αθαθβ = xθαθβ = yθαθβ = y′αθαθβ = y′α = y. It follows that
(θαθ)|Xα is an injection. If (xθαθ, yθαθ) ∈ E, then since β ∈ TE(X, θ), we have that
(xθαθβ, yθαθβ) ∈ E. Moreover,

(x, y) = (x′α, y′α) = (x′αθαθβ, y′αθαθβ) = (xθαθβ, yθαθβ) ∈ E

which implies that (θαθ)|Xα is an E∗-preserving injection.
Conversely, assume that (θαθ)|Xα is an E∗-preserving injection. Let A ∈ X/E be

such that A ∩ Xαθαθ ̸= ∅. We choose and fix an element xA ∈ A ∩ Xαθαθ. For each
x ∈ A ∩ Xαθαθ, there exists a unique element x′ ∈ Xα such that x = x′θαθ by the
condition (θαθ)|Xα is injective. We observe that (x′θαθ, x′Aθαθ) = (x, xA) ∈ E. It follows
from (θαθ)|Xα is an E∗-preserving mapping that (x′, x′A) ∈ E. Define βA : A → Ex′

A
by

xβA =

{
x′ if x ∈ Xαθαθ,

x′A otherwise.
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Then we define the map β : X → X by

β|A =

{
βA if A ∩Xαθαθ ̸= ∅,
idA otherwise,

for all A ∈ X/E. Since X/E is a partition of X, β is well-defined. Let x, y ∈ X be such
that (x, y) ∈ E. Then x, y ∈ A for some A ∈ X/E. By the definition of β, we have
(xβ, yβ) = (xβ|A, yβ|A). If A ∩ αβαβ = ∅, then (xβ, yβ) = (xidA, yidA) = (x, y) ∈ E. If
A ∩ αβαβ ̸= ∅, then xβ, yβ ∈ Aβ = AβA ⊆ Ex′

A
. Consequently, β ∈ TE(X, θ).

Finally, to show that α = αθαθβ, let x ∈ X. Then xαθαθ ∈ Xαθαθ. Then there exists
A ∈ X/E such that xαθαθ ∈ A. By the definition of βA, xαθαθβA = (xαθαθ)′ where
(xαθαθ)′θαθ = xαθαθ = (xα)θαθ. Since (xαθαθ)′ is unique, we get that (xαθαθ)′ = xα.
Thus xαθαθβ = xαθαθβA = xα. Therefore α = α ∗ α ∗ β. Hence α ∈ RReg(TE(X, θ)), as
asserted.

Corollary 3. idX ∈ RReg(TE(X, θ)) if and only if θ is an E∗-preserving injection.

Proof. Assume that idX ∈ RReg(TE(X, θ)). By Theorem 3, we get that (θidXθ)|XidX

is an E∗-preserving injection. This implies that θθ is an E∗-preserving injection. Hence θ
is an E∗-preserving injection.

This converse of corollary is clear.

Final of this section, we give a characterization of completely regular elements in
TE(X, θ). Recall that, an element a of a semigroup S is completely regular if and only if
a is both left and right regular [14]. Hence, as an immediate consequence of Theorems 2
and 3, we have the following.

Theorem 4. Let α ∈ TE(X, θ). Then α ∈ CReg(TE(X, θ)) if and only if

(i) for every A ∈ X/E, there exists B ∈ X/E such that for each P ∈ πA(α), xθαθ ∈ P
for some x ∈ B and

(ii) (θαθ)|Xα is an E∗-preserving injection.

As an immediate consequence of Corollaries 2 and 3.

Corollary 4. idX ∈ CReg(TE(X, θ)) if and only if θ is an E∗-preserving bijection.

Theorem 5. Let α ∈ TE(X, θ). If α ∈ CReg(TE(X, θ)), then every A ∈ X/E, there exists
B ∈ X/E such that |P ∩Bθαθ| = |P ∩Xθαθ| = 1 for all P ∈ πA(α).

Proof. Assume that α ∈ CReg(TE(X, θ)). Then α is regular, left regular and right
regular. Let A ∈ X/E. By Theorem 2, there exists B ∈ X/E such that for each P ∈
πA(α), xθαθ ∈ P for some x ∈ B. For each P ∈ πA(α), we have xθαθ ∈ P for some
x ∈ B. Therefore P ∩ Bθαθ ̸= ∅ and P ∩ Xθαθ ̸= ∅. Let y ∈ P ∩ Xθαθ. Then
yα = xθαθα. By Theorem 3, we obtain that (θαθ)|Xα is injective. Claim that α|Xθαθ

is also injective, let x1, x2 ∈ Xθαθ be such that x1α = x2α. Then x1 = x′1θαθ and
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x2 = x′2θαθ for some x′1, x
′
2 ∈ X. Thus x′1θαθα = x′2θαθα and so x′1θαθαθ = x′2θαθαθ.

Since θαθ|Xα is injective, x′1θα = x′2θα which implies that x1 = x′1θαθ = x′2θαθ = x2. So,
we have the claim. This implies that y = xθαθ and hence |P ∩Xθαθ| = 1. It follows from
P ∩Bθαθ ⊆ P ∩Xθαθ that |P ∩Bθαθ| = |P ∩Xθαθ| = 1.

3. Regularity of variants of transformation semigroups that preserve
double direction equivalence

In this section, we characterize the regular, left regular, right regular and completely
regular elements of the variant semigroup TE∗(X, θ). In addition, we give a necessary and
sufficient condition for the identity transformation idX of the semigroup TE∗(X) to be
regular, left regular, right regular and completely regular elements in TE∗(X, θ).

Theorem 6. Let α ∈ TE∗(X, θ). Then α ∈ Reg(TE∗(X, θ)) if and only if

(i) ker(α) = ker(αθ) and

(ii) for every A ∈ X/E, there exists B ∈ X/E such that A ∩Xαθ = Bθαθ.

Proof. Suppose that α ∈ Reg(TE∗(X, θ)). Then α ∈ Reg(TE(X, θ)). By Theorem 1(i),
we have (i) holds. Let A ∈ X/E. Then by Theorem 1(ii), there exists B ∈ X/E such that
A∩Xαθ ⊆ Bθαθ. Since θ, αθ ∈ TE(X) and by Lemma 1, there are C,D ∈ X/E such that
Bθ ⊆ C and Cαθ ⊆ D. Therefore A ∩Xαθ ⊆ D. Since A and D are equivalence classes
of X, A = D. This implies that A ∩ Xαθ ⊆ Bθαθ ⊆ Cαθ = Cαθ ∩ Xαθ ⊆ A ∩ Xαθ.
Hence A ∩Xαθ = Bθαθ.

Conversely, assume that conditions (i) and (ii) hold. Define β : X → X as in the proof
of Theorem 1. Then β ∈ TE(X) and α = α ∗ β ∗ α. It remains to show that β ∈ TE∗(X).
Let x, y ∈ X be such that (xβ, yβ) ∈ E. Then (x′, y′) ∈ E where Ex ∩Xαθ = Ex′θαθ and
Ey ∩Xαθ = Ey′θαθ. Thus Ex′ = Ey′ and so Ex ∩Xαθ = Ex′θαθ = Ey′θαθ = Ey ∩Xαθ,
which implies that Ex = Ey. Therefore (x, y) ∈ E and hence β ∈ TE∗(X).

Corollary 5. idX ∈ Reg(TE∗(X, θ)) if and only if θ is a bijection.

Now, we discuss a characterization of an element in the semigroup TE∗(X, θ) to be left
regular.

Theorem 7. Let α ∈ TE∗(X, θ). Then α ∈ LReg(TE∗(X, θ)) if and only if for every
P ∈ π(α), P ∩Xθαθ ̸= ∅.

Proof. Suppose that α ∈ LReg(TE∗(X, θ)). Then α ∈ LReg(TE(X, θ)). Let P ∈ π(α)
and p ∈ P . Then P ∈ πEp(α). By Theorem 2, there exists B ∈ X/E such that xθαθ ∈ P
for some x ∈ B. Hence P ∩Xθαθ ̸= ∅.

Conversely, for every P ∈ π(α), P ∩Xθαθ ̸= ∅. We choose and fix an element xP θαθ ∈
P . For each x ∈ X, we let Px ∈ π(α) be such that x ∈ Px. Define β : X → X by xβ = xPx

for all x ∈ X. Next, we will show that β ∈ TE∗(X, θ), let x, y ∈ X. If (x, y) ∈ E, then
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(xα, yα) ∈ E and (xβ, yβ) = (xPx , xPy) where xPxθαθ ∈ Px and xPyθαθ ∈ Py. We then
have (xPxθαθα, xPyθαθα) = (xα, yα) ∈ E. Since θαθα ∈ TE∗(X), (xβ, yβ) = (xPx , xPy) ∈
E. On the other hand, if (xβ, yβ) ∈ E, then (xPx , xPy) ∈ E where xPxθαθ ∈ Px and
xPyθαθ ∈ Py and so (xα, yα) = (xPxθαθα, xPyθαθα) ∈ E. By α ∈ TE∗(X), it follows that
(x, y) ∈ E. Hence β ∈ TE∗(X). Finally, to show that α = β ∗ α ∗ α. Let x ∈ X. Then
xPxθαθ ∈ Px and hence xβθαθα = xPxθαθα = xα, as required.

Corollary 6. idX ∈ LReg(TE∗(X, θ)) if and only if θ is a surjection.

Proof. The necessity is clear from Corollary 2. To prove the sufficiency, we suppose
that θ is a surjection. Then θθ is also a surjection. Since π(idX) = {{x} : x ∈ X},
P ∩ XθidXθ = P ∩ Xθθ ̸= ∅ for all P ∈ π(idX). Hence idX ∈ LReg(TE∗(X, θ)), by
Theorem 7.

Next, we characterize a right regular element of TE∗(X, θ). The following lemma is
needed.

Lemma 2. [8] Let α ∈ TE∗(X, θ) and A,B ∈ X/E. If Aα ⊆ B, then Bα−1 = A.

Theorem 8. Let α ∈ TE∗(X, θ). Then α ∈ RReg(TE∗(X, θ)) if and only if

(i) (θαθ)|Xα is an injection and

(ii) if there exists A ∈ X/E such that A ∩ X(αθ)2 = ∅, then there exists an injection
φ : {A ∈ X/E : A ∩X(αθ)2 = ∅} → {A ∈ X/E : A ∩Xα = ∅}.

Proof. Assume that α ∈ RReg(TE∗(X, θ)). Then α ∈ RReg(TE(X, θ)). By Theorem
3, we then have (i) hold. Next, we prove that (ii) holds in the following. Suppose that
{A ∈ X/E : A ∩ X(αθ)2 = ∅} ̸= ∅. Let A ∈ X/E be such that A ∩ X(αθ)2 = ∅.
Since α ∈ RReg(TE∗(X, θ)), there exists β ∈ TE∗(X, θ) such that α = α ∗ α ∗ β and so
α = αθαθβ. By Lemma 1, we let A′ ∈ X/E such that Aβ ⊆ A′. Claim that A′ ∩Xα = ∅,
suppose not. Let x ∈ X be such that xα ∈ A′ and choose a ∈ A. Then aβ ∈ A′ and
so (xαθαθβ, aβ) = (xα, aβ) ∈ E. Since β ∈ TE∗(X), we get (xαθαθ, a) ∈ E. Hence
xαθαθ ∈ A which is a contradiction. Thus A′ ∩ Xα = ∅. Define φ : {A ∈ X/E :
A ∩X(αθ)2 = ∅} → {A ∈ X/E : A ∩Xα = ∅} by

Aφ = A′ for all A ∈ X/E and A ∩X(αθ)2 = ∅.

To show that φ is injective, let A,B ∈ {A ∈ X/E : A ∩ X(αθ)2 = ∅} be such that
Aφ = Bφ. By the definition of φ,Aφ = A′ and Bφ = B′ where Aβ ⊆ A′ and Bβ ⊆ B′

for some A′, B′ ∈ X/E. It follows from Lemma 2 that A = A′β−1 and B = B′β−1. Since
A′ = B′, we deduce that A = B. Therefore φ is an injection. Hence (ii) holds.

Conversely, suppose that the conditions (i) and (ii) hold. For each x ∈ X(αθ)2, we
choose and fix an element x′ ∈ Xα such that x = x′θαθ. Let A ∈ X/E be such that
A ∩X(αθ)2 ̸= ∅. Then we fix xA ∈ A ∩Xα and define βA : A → X by

xβA =

{
x′ if x ∈ X(αθ)2,

x′A otherwise.
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Let A ∈ X/E be such that A ∩X(αθ)2 = ∅ and x ∈ A. By (ii), we fix x̃ ∈ Aφ and define
βA : A → X by

xβA = x̃ for all x ∈ A.

Let β : X → X by β|A = βA for all A ∈ X/E. Since X/E is a partition of X,β is
well-defined. Let x, y ∈ X be such that (x, y) ∈ E. Then x, y ∈ A for some A ∈ X/E.
There are two cases to consider.

Case 1. A ∩X(αθ)2 = ∅. Then (xβ, yβ) = (x̃, ỹ) ∈ E.
Case 2. A ∩X(αθ)2 ̸= ∅. Without loss of generality, we assume that x, y ∈ X(αθ)2.

Hence xβ = x′ and yβ = y′ where x = x′θαθ and y = y′θαθ, respectively. Since θαθ ∈
TE∗(X, θ) and (x′θαθ, y′θαθ) ∈ E, we conclude that (xβ, yβ) = (x′, y′) ∈ E.

On the other hand, let x, y ∈ X be such that (xβ, yβ) ∈ E. Thus xβ, yβ ∈ B for some
B ∈ X/E. If B ∩Xα = ∅, then by the definition of β, xβ, yβ ∈ B = Exφ = Eyφ. Since
φ is an injection, Ex = Ey and hence (x, y) ∈ E. If B ∩Xα ̸= ∅, then by the definition
of β, we may assume that xβ = x′, yβ = y′ for some x′, y′ ∈ Xα with x = x′θαθ and
y = y′θαθ. Since (x′, y′) = (xβ, yβ) ∈ E and θαθ ∈ TE∗(X), we deduce that (x, y) =
(x′θαθ, y′θαθ) ∈ E. It follows that β ∈ TE∗(X). Let x ∈ X, then x(αθ)2 ∈ X(αθ)2 and
there exists (x(αθ)2)′ ∈ Xα such that (x(αθ)2)′θαθ = x(αθ)2 = (xα)θαθ. We note by (1)
that (x(αθ)2)′ = xα. Therefore

x(α ∗ α ∗ β) = xαθαθβ = x(αθ)2β = (x(αθ)2)′ = xα.

Hence α is right regular, as required.

Corollary 7. idX ∈ RReg(TE∗(X, θ)) if and only if

(i) θ is an injection and

(ii) A ∩Xθ ̸= ∅ for all A ∈ X/E.

Proof. Assume that idX ∈ RReg(TE∗(X, θ)). By Corollary 3, we get that θ is injective.
Suppose that A ∩ Xθ2 = ∅ for some A ∈ X/E. By (2) of Theorem 8, there exists an
injection φ : {A ∈ X/E : A ∩X(idXθ)2 = ∅} → {A ∈ X/E : A ∩XidX = ∅}. This is a
contradiction with {A ∈ X/E : A ∩ XidX = ∅} = {A ∈ X/E : A ∩ X = ∅} = ∅. Thus
A∩Xθ2 ̸= ∅ for all A ∈ X/E. It follows from Xθ2 ⊆ Xθ that A∩Xθ ̸= ∅ for all A ∈ X/E.

The converse of corollary follows from Theorem 8.

The following result is obtained directly from Theorem 7 and Theorem 8.

Theorem 9. Let α ∈ TE∗(X, θ). Then α ∈ CReg(TE∗(X, θ)) if and only if

(i) for every P ∈ π(α), P ∩Xθαθ ̸= ∅,

(ii) (θαθ)|Xα is an injection and

(iii) if there exists A ∈ X/E such that A ∩ X(αθ)2 = ∅, then there exists an injection
φ : {A ∈ X/E : A ∩X(αθ)2 = ∅} → {A ∈ X/E : A ∩Xα = ∅}.

Corollary 8. idX ∈ CReg(TE∗(X, θ)) if and only if θ is a bijection.
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4. Conclusion and discussion

In this work, we presented necessary and sufficient conditions when elements of the
semigroups TE(X, θ) and TE∗(X, θ) to be regular, left regular, right regular and completely
regular. The identity transformation is a regular, a left regular, a right regular and a com-
pletely regular element for the semigroups TE(X) and TE∗(X) but need not for TE(X, θ)
and TE∗(X, θ). Hence, we presented properties for θ that the identity transformation is
regular, left regular, right regular and completely regular.

The important theory in algebraic semigroups theory is Cayley’s Theorem for semi-
groups that every semigroup is isomorphic to a subsemigroup of some full transformation
semigroup. Hence in order to study structure of semigroups, it suffices to consider subsemi-
groups of the full transformation semigroup. Therefore, several researchers are interested
in the characterizations of subsemigroups of the full transformation semigroup.

In future work, we intend to expand other algebraic structures for the variants of
transformation semigroups that preserve an equivalence relation and other transformation
semigroups.
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