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Results about C-κ-normality and C-mild normality
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Abstract. A topological space X is C-κ-normal (C-mildly normal ) if there exist a κ-normal
(mildly normal) space Y and a bijective function f : X −→ Y such that the restriction f|A : A −→
f(A) is a homeomorphism for each compact subspace A ⊆ X. We present new results about those
two topological properties and use a discrete extension space to solve open problems regarding
C2-paracompactness and α-normality.
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1. Preliminaries

In the present work, we give some new results about C-κ-normality and C-mild nor-
mality [2] and use the discrete extension space to answer the open problems “Is C2-
paracompactness hereditary with respect to closed subspaces?” [5] And “Is α-normality
preserved by the discrete extension?” [3].

Throughout this paper, we denote the set of positive integers by N, the rationals by Q,
the irrationals by P, and the set of real numbers by R. Two subsets A and B of a space
X are called separated if there are two disjoint open subsets U and V such that A ⊆ U
and B ⊆ V . A space X is regular if for any closed subset E of X and for any element
x ∈ X \E we have {x} and E can be separated. A T3 space is a T1 regular space, a normal
space is a space where any two disjoint closed subsets can be separated, a T4 space is a T1

normal space, and a Tychonoff space (T3 1
2
) is a T1 completely regular space. We do not
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assume T2 in the definition of compactness, countable compactness, local compactness,
and paracompactness. We do not assume regularity in the definition of Lindelöfness. For
a subset A of a space X, intA and A denote the interior and the closure of A, respectively.
An ordinal γ is the set of all ordinal α such that α < γ . The first infinite ordinal is ω0

and the first uncountable ordinal is ω1.

A subset A of a space X is called a closed domain [12], called also regularly closed [23],
κ-closed [14], if A = intA. On 1972, S̆c̆epin introduced the notion of κ-normality [22]. A
space X is κ-normal if X is regular and any two disjoint closed domains can be separated.
About the same time, Singal defined the notion of mild normality [23]. A space X is
mildly normal if any two disjoint closed domains can be separated.

We begin by recalling the following definitions.

Definition 1. [15] A space (X , τ ) is called epi-mildly normal if there exists a coarser
topology τ ′ on X such that (X , τ ′ ) is Hausdorff (T2) mildly normal .

Definition 2. [4] A topological space (X , τ ) is called epi-normal if there is a topology
τ ′ on X coarser than τ such that (X , τ ′ ) is T4.

In a personal contact, Arhangel’skii intoduced in 2012 to Kalantan the following defi-
nition:

Definition 3. (Arhangel’skii) A topological space X is called C-κ-normal if there exist
a κ-normal space Y and a bijective function f : X −→ Y such that the restriction f|A :
A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X.

Definition 4. [2] A topological space X is called C-mildly normal if there exist a mildly
normal space Y and a bijective function f : X −→ Y such that the restriction f|A : A −→
f(A) is a homeomorphism for each compact subspace A ⊆ X .

In [2], the following theorem was proved.

Theorem 1. If X is C-mildly normal (C-κ-normal) Fréchet space and f : X −→ Y is a
witness of the C-mild normality (C-κ-normality ) of X, then f is continuous.

2. Main Results and Examples

Recall that a topological space X is called almost compact [19] if each open cover of
X has a finite subfamily such that the closures of whose members covers X. A space X
is said to be almost regular [23] if for any closed domain subset A and any x ̸∈ A, there
exist two disjoint open sets U and V such that x ∈ U and A ⊆ V . A technique which is
useful in the theory of coarser topologies is the semiregularization. The topology on X
generated by the family of all open domains is denoted by τ s. The space (X, τ s) is called
the semiregularization of X. A space (X , τ ) is semi-regular if τ=τ s.
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Theorem 2. Let X be an almost regular Hausdorff space. If X is mildly normal then X
is C-κ-normal.

Proof. Since (X ,τ ) is an almost regular Hausdorff space, then (X,τ s) is a Hausdorff
regular space [20]. Since X is mildly normal space we get (X,τ s) is mildly normal [15].
Then the identity function idX : (X ,τ ) −→ (X,τ s) is a continuous bijective function. If
C is any compact subspace of (X ,τ ), then the restriction of the identity function from C
onto idX(C) is continuous and “every continuous one-to-one mapping of a compact space
onto a Hausdorff space is a homeomorphism.” [12, Theorem 3.1.13]. So X is C-κ-normal
space.

Theorem 3. If (X , τ ) is almost regular almost compact space and τ s is T1, then (X ,
τ ) is C-κ-normal (C-mildly normal).

Proof. Since (X , τ ) is an almost regular space, (X,τ s) is regular space [20]. Hence
(X , τ s) is T3. Moreover, the coarser topology of an almost compact space is an almost
compact space. So τ s is almost compact. But every almost regular almost compact space
is mildly normal [23]. Thus τ s is regular mildly normal. Therefore by using the same
argument of the proof of theorem 2 we conclude that (X, τ ) is C-κ-normal (C-mildly
normal).

Theorem 4. C-κ-normality (C-mild normality) is an additive property.

Proof. Let Xα be a C-κ-normal (C-mildly normal) space for each α ∈ Λ. We show
that their sum ⊕α∈ΛXα is C-κ-normal (C-mildly normal). For each α ∈ Λ, pick a κ-
normal (mildly normal) space Yα and a bijective function fα : Xα −→ Yα such that
fα|Cα

: Cα −→ fα(Cα) is a homeomorphism for each compact subspace Cα of Xα. Since

regularity is additive [12, Theorem 2.2.7], then (Yα,⊕α∈Λτ
′
α) is a regular space. On the

other hand, mild normality is an additive property because each factor is open-and-closed
in ⊕α∈ΛXα and the intersection of any closed domain in ⊕α∈ΛXα with each factor Xα

will be a closed domain in Xα. Then the sum ⊕α∈ΛYα is κ-normal (mildly normal).
Consider the function sum [12, Exercises 2.2.E], ⊕α∈Λfα : ⊕α∈ΛXα −→ ⊕α∈ΛYα defined
by ⊕α∈Λfα(x) = fβ(x) if x ∈ Xβ, β ∈ Λ. Now, a subspace C ⊆ ⊕α∈ΛXα is compact if
and only if the set Λ0 = {α ∈ Λ : C ∩Xα ̸= ∅} is finite and C ∩Xα is compact in Xα for
each α ∈ Λ0. If C ⊆ ⊕α∈ΛXα is compact, then (⊕α∈Λfα)|C is a homeomorphism because
fα|C∩Xα

is a homeomorphism for each α ∈ Λ0.

Recall that a topology τ on a non-empty set X is said to be minimal Hausdorff if (X ,
τ ) is Hausdorff and there is no Hausdorff topology on X strictly coarser than τ , see [7, 8].
It was proved that “if the product space is minimal Hausdorff, then each factor is minimal
Hausdorff” [7], In [13] the converse of the previous statement was proved. Namely, “the
product of minimal Hausdorff spaces is minimal Hausdorff”. In the next theorem we will
use the following theorem: “A minimal Hausdorff space is compact if and only if it is
completely Hausdorff (T2 1

2
)”[21, Theorem 1.4]. We conclude the following theorems.
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Theorem 5. Let X and Y be minimal Hausdorff spaces, if X and Y are κ-normal spaces
then X × Y is κ-normal.

Proof. Since X and Y are κ-normal, they are regular Hausdorff spaces, which implies
T3, hence T2 1

2
. Since the T2 1

2
is multiplicative, the product space is T2 1

2
. So X × Y is

T2 1
2
minimal Hausdorff space which implies that X × Y is T2 compact, hence T4 and thus

κ-normal.

Now, we give the following characterization in the class of minimal Hausdorff spaces.

Theorem 6. Let X be a minimal Hausdorff Fréchet space. The following are equivalent.

(i) X is C-κ-normal.

(ii) X is locally compact.

(iii) X is compact

(iv) X is T4.

(v) X is epinormal, hence epi-mildly normal.

Proof. (1) ⇒ (2) Since X is C-κ-normal Fréchet space, X is T2 1
2
see [2], By Theorem

“A minimal Hausdorff space is compact if and only if it is completely Hausdorff (T2 1
2
)”

[21, Theorem 1.4], gives that X is T2 compact, hence locally compact.
(2) ⇒ (3) Since any T2 locally compact space is Tychonoff and hence T2 1

2
, we obtain

X is compact.
(3) ⇒ (4) Any T2 compact space is T4.
(4) ⇒ (5) Any T4 is epinormal, hence epi-mildly normal.
(5) ⇒ (1) Any epinormal space is C-κ-normal [2].

From the above theorem, we conclude the following corollary

Corollary 1. In class of minimal Hausdorff, any Frėchet C-κ-normal space is κ-normal.

Since κ-normality is not hereditary [16], it seems to us that both C-mild normality
and C-κ-normality are not hereditary, but we still could not find a counterexample.

The question “Is there a Tychonoff space which is not C-κ-normal (C-mildly normal)
?¨ We answer this in the class of minimal Tychonoff spaces by using theorem “All minimal
completely regular spaces are compact”, [7], hence T4. So we get the following corollary.

Corollary 2. Any minimal Tychonoff space is C-κ-normal.

We know Tychonoff spaces which are not κ-normal (mildly normal). This spaces turn
out to be C-κ-normal (C-mildly normal) see [2, example 3], and also see example 5 below.

Let M be a non-empty proper subset of a topological space (X , τ ). Define a new
topology τ (M) on X as follows: τ (M) = {U ∪K : U ∈ τ and K ⊆ X \M }. (X , τ (M) ) is
called a discrete extension of (X , τ ) and we denote it by XM see [12, Example 5.1.22].

In general, C-κ-normality is not preserved by a discrete extension space. Here is an
example of C-κ-normal space whose a discrete extension space is not C-κ-normal.
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Example 1. Consider (R , I ) where I is the indiscrete topology. Let M = R \ {1, 2, 3}.
We have 1 /∈ M and M is closed in RM . The only open set in RM containing M is R.
But R ∩ {1} ≠ ∅. Thus RM is not regular. So, RM is not C-κ-normal because it is a
compact non-regular space [2].

Recall that a topological space X is called C2-paracompact if there exist a Hausdorff
paracompact space Y and a bijective function f : X −→ Y such that the restriction
f|A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X [17].

From definition since any T2 paracompact space is T4, any C2-paracompact space is
C-κ-normal. The converse is not true, we did show in [2] that example 2 below is a
C-κ-normal and it was shown in [5, example 4] it is not C2-paracompact.

By using the discrete extension space, we answer the following open problem : “Is C2-
paracompactness hereditary with respect to closed subspaces?” [5]. The answer is negative
even for open subspaces and here is a counterexample.

Example 2. Consider the infinite Tychonoff product space G = Dω1 =
∏

α∈ω1
D, where

D = {0, 1} considered with the discrete topology. Let H be the subspace of G consisting
of all points of G with at most countably many non-zero coordinates. Put M = G ×
H. Raushan Buzyakova proved that M cannot be mapped onto a normal space Z by a
bijective continuous function [9, example 4] result and the fact that M is a k-space, we
conclude that M is a Tychonoff space which is not C2-paracompact [5, example 4] . Let
X be any compactification of M and consider the discrete extension space XM of X. By
Theorem “Every lower compact space is C2-paracompact” [17, theorem 2.20] , XM is C2-
paracompact. Since M as a subspace of XM is the same as a subspace of X and M is
closed-and-open in XM , we get that C2-paracompactness is not hereditary with respect
to both closed and open subspaces .

Recall that a space X is called α-normal if for any two disjoint closed subsets A and
B of X there exist disjoint open subsets U and V of X such that A∩U is dense in A and
B ∩ V is dense in B [6].

We answer the following open problem : “Is α-normality preserved by the discrete
extension?” [3]. The answer is no and here is an example of an α-normal space whose a
discrete extension space is not α-normal.

Example 3. Let M=((ω1 + 1) × (ω0 + 1)) \ {⟨ω1, ω0⟩} is a Tychonoff Plank space see
[24, example 87] we know that M is a Tychonoff non α-normal space [6], take the com-
pactification X of M then it is α-normal being T2 compact space. Consider the discrete
extension XM . Observe that M is closed in XM . Since α-normality is hereditary with
respect to closed subspaces [6], we conclude that XM cannot be α-normal.

.
The following example answers three kinds of invariants. We used two well-known

spaces, the Alexandroff duplicate space and the closed extension space.
Let X be any T1 topological space. Let X ′ = X × {1}. Note that X ∩ X ′ = ∅. Let

A(X) = X ∪X ′. For simplicity, for an element x ∈ X, we will denote the element ⟨x, 1⟩
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in X ′ by x′ and for a subset B ⊆ X let B′ = {x′ : x ∈ B} = B × {1} ⊆ X ′. For
each x′ ∈ X ′, let B(x′) = {{x′}}. For each x ∈ X, let B(x) = {U ∪ (U ′ \ {x′}) : U
is open in X with x ∈ U }. Let τ denote the unique topology on A(X) which has
{B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′} as its neighborhood system. A(X) with this topology
is called the Alexandroff Duplicate of X [11].

Example 4. Consider the Alexandroff duplicate space A(R) of R with its usual metric
topology. It is C2-paracompact [5], hence C-κ-normal. Now, let i =

√
−1 ̸∈ R and put

X = R∪{i}. Let τ be the closed extension topology on X generated from R with its usual
metric topology and i. So, τ= {∅} ∪ {W ∪ {i} : W ⊆ R;W is open in the usual metric
topology }.
(X , τ ) is not C-normal see [1]. So it is not not C-κ-normal because it is Fréchet
being first countable, Lindelöf space, which is not C-normal [2, theorem0.10]. Define
g : A(R) −→ X by

g(x) =

{
i ; if x ∈ R′

x ; if x ∈ R

g is an open onto function. Thus C-κ-normality is neither invariant, open invariant, nor
quotient invariant.

.
Since κ-normality is not multiplicative, it seems to us that both C-mild normality and

C-κ-normality are not multiplicative, but we still could not find a counterexample. We
know the example of two linearly ordered topological spaces whose product is not κ-normal
(mildly normal) was given in [14]. This space turns out to be C-κ-normal. Here is an
example.

Example 5. We will define a Hausdorff compact linearly ordered space Y such that ω1×Y
is C-κ-normal. Let {yn : n < ω0} be a countably infinite set such that {yn : n < ω0} ∩
(ω1 + 1) = ∅. Let Y = {yn : n < ω0} ∪ (ω1 + 1). Let τ be the topology on Y generated
by the following neighborhood system: For an α ∈ ω1, a basic open neighborhood of α is
the same as in ω1 with its usual order topology. For n ∈ ω0, a basic open neighborhood of
yn is {yn}. A basic open neighborhood of ω1 is of the form (α, ω1] ∪ {yn : n ≥ k} where
α < ω1 and k ∈ ω0. In other words, {yn : n < ω0} is a sequence of isolated points which
converges to ω1. Note that if we define an order < on Y as follows: For each n ∈ ω0,
ω1 < yn+1 < yn, and < on ω1 + 1 is the same as the usual order on ω1 + 1, then (Y , τ )
is a linearly ordered topological space. It was shown in [14] that (Y , τ ) is a Hausdorff
compact space, hence it is mildly normal. Also, it is well known that ω1 is a Hausdorff
normal space and hence mildly normal. But ω1 × Y is not mildly normal [14]. A similar
proof as in [15] shows that ω1 × Y is C-κ-normal.

Here are cases when the product of two C-κ-normal spaces will be C-κ-normal.
Since the product of ordinals is always κ-normal (mildly normal) [18], we conclude the

following theorem.

Theorem 7. The product of ordinals is C-κ-normal (C-mildly normal).
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Theorem 8. If X and Y are minimal Hausdorff Fréchet C-κ-normal, then X × Y is
C-κ-normal.

Proof. Since X and Y are minimal Hausdorff Fréchet C-κ-normal, X and Y are
T2 1

2
[2]. Since the T2 1

2
is multiplicative, the product space is T2 1

2
. So X×Y is T2 1

2
minimal

Hausdorff space implies that X × Y is T2 compact, hence C-κ-normal.

Theorem 9. If X is Fréchet and countably compact C-κ-normal space, and Z is T2

paracompact first countable space then X × Z is C-κ-normal.

Proof. Let Y be a κ-normal space, f : X −→ Y be a bijective function such that
the restriction on any compact subspace is a homeomorphism. Now, X is Fréchet gives
that f is continuous, see Theorem 1. Since X is countably compact and f continuous
surjective, we have Y is countably compact κ-normal . Since a product of a countably
compact κ-normal space with a paracompact first countable space is κ-normal , Y × Z
is κ-normal [14]. Now, define g : X × Z −→ Y × Z by g(⟨x, i⟩) = ⟨f(x), i⟩. Then g
is a bijective function and g = f × idZ , where idZ is the identity function on Z. Let
C be any compact subspace of X × Z. Then C ⊆ p1(C) × p2(C), where p1 and p2
are the usual projection functions. p1(C) is a compact subspace of X and p2(C) is a
compact subspace of Z, thus p1(C) × p2(C) is a compact subspace of X × Z. Now,
f|p1(C)

: p1(C) −→ f(p1(C)) is a homeomorphism and idZ|p2(C)
: p2(C) −→ p2(C) is a

homeomorphism. Thus (f × idZ)|(p1(C)×p2(C)) : p1(C) × p2(C) −→ fp1(C)× p2(C) is a

homeomorphism. We conclude that g|C : C −→ g(C) is a homeomorphism because

g|C = ((f × idZ)|p1(C)×p2(C)
)|C .

Recall that a space X is Dowker if X is T4 and X × I is not normal, where I is the
closed unit interval considered with its usual metric topology, [12]. Dowker, in [10], stated
the following theorem: “A space X is normal and countably paracompact if and only if
X× I is normal”. Here is a C-κ-normal version, one direction of the Dowker’s theorem. If
C-κ-normality is hereditary with respect to closed spaces, then the converse will be true.

Theorem 10. If X is T1 Fréchet C-κ-normal Lindelöf space , then X × I is C-κ-normal
space.

Proof. Let X be a T1 Fréchet C-κ-normal Lindelöf space. Pick a witness function
f and a κ-normal space Y . Then by Theorem 1 the witness function f : X −→ Y is
continuous and the witness space Y is T3, [2]. Since X is Lindelöf and T3, we get Y is
paracompact, and hence T4. So, by Dowker’s theorem Y × I is T4. By a similar argument
as in the proof of Theorem9, we can prove that X × I is a C-κ-normal space.

Recall that a space X is called nearly compact [24] if each open cover of X has a finite
subfamily the interiors of the closures of whose members covers X.
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Theorem 11. Let X, Y are Hausdorff nearly compact C-κ-normal space, then X × Y is
a C-κ-normal space.

Proof. Since (X ,τ ) and (Y ,τ ′ ) are nearly compact Hausdorff spaces, we get (X,τ s)
and (Y ,τ ′s) are Hausdorff compact spaces [20], and (X,τ s) × (Y ,τ ′s) is a T2 compact
topological space which is coarser than the topology on X ×Y . Thus, X ×Y is epinormal
and hence it is C-κ-normal [2].

The following problems are still open:

(i) Does there exist a Tychonoff space which is not C-κ-normal? Observe that such a
space is not in the class of minimal Hausdorff space, not in the class of minimal T3

spaces, not locally compact, not submetrizable, not C-normal, a space can not be
ordinal, can not epinormal, not Lindelöf. Observe also that the existence of such a
space, will show that C-κ-normal is not hereditary just by taking a compactification
of it.

(ii) Is C-κ-normality (C-mild normality) multiplicative?
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