EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 62-70 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Results about C- κ -normality and C-mild normality

Lutfi Kalantan¹, Alya'a Al-Awadi^{1,2,*}, Sadeq Thabit³

¹ King Abdulaziz University, Department of Mathematics, P.O.Box 80203, Jeddah 21589, Saudi Arabia.

² Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia

³ Hadhramout University, Department of Mathematics, Yemen

Abstract. A topological space X is C- κ -normal (C-mildly normal) if there exist a κ -normal (mildly normal) space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. We present new results about those two topological properties and use a discrete extension space to solve open problems regarding C_2 -paracompactness and α -normality.

2020 Mathematics Subject Classifications: 54D15, 54C10

Key Words and Phrases: κ -normal, normal, mildly normal, compact, C-normal, $C - \kappa$ -normal, C-mildly normal, minimal Hausdorff, discrete extension, epinormal, epi-mildly normal, α -normal, C_2 -paracompact

1. Preliminaries

In the present work, we give some new results about C- κ -normality and C-mild normality [2] and use the discrete extension space to answer the open problems "Is C_2 paracompactness hereditary with respect to closed subspaces?" [5] And "Is α -normality preserved by the discrete extension?" [3].

Throughout this paper, we denote the set of positive integers by \mathbb{N} , the rationals by \mathbb{Q} , the irrationals by \mathbb{P} , and the set of real numbers by \mathbb{R} . Two subsets A and B of a space X are called *separated* if there are two disjoint open subsets U and V such that $A \subseteq U$ and $B \subseteq V$. A space X is regular if for any closed subset E of X and for any element $x \in X \setminus E$ we have $\{x\}$ and E can be separated. A T_3 space is a T_1 regular space, a normal space is a space where any two disjoint closed subsets can be separated, a T_4 space is a T_1 normal space, and a Tychonoff space $(T_{3\frac{1}{2}})$ is a T_1 completely regular space. We do not

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4607

Email addresses: lkalantan@kau.edu.sa, lnkalantan@hotmail.com (L. Kalantan), amohammedalawadi@stu.kau.edu.sa, aaalawadi@uj.edu.sa (A. Alawadi), sthabit@hu.edu.ye,sthabit1975@gmail.com. (S. Thabit)

assume T_2 in the definition of compactness, countable compactness, local compactness, and paracompactness. We do not assume regularity in the definition of Lindelöfness. For a subset A of a space X, intA and \overline{A} denote the interior and the closure of A, respectively. An ordinal γ is the set of all ordinal α such that $\alpha < \gamma$. The first infinite ordinal is ω_0 and the first uncountable ordinal is ω_1 .

A subset A of a space X is called a closed domain [12], called also regularly closed [23], κ -closed [14], if $A = \overline{\text{int}A}$. On 1972, Ščepin introduced the notion of κ -normality [22]. A space X is κ -normal if X is regular and any two disjoint closed domains can be separated. About the same time, Singal defined the notion of mild normality [23]. A space X is mildly normal if any two disjoint closed domains can be separated.

We begin by recalling the following definitions.

Definition 1. [15] A space (X, \mathcal{T}) is called *epi-mildly normal* if there exists a coarser topology \mathcal{T}' on X such that (X, \mathcal{T}') is Hausdorff (T_2) mildly normal.

Definition 2. [4] A topological space (X, \mathcal{T}) is called *epi-normal* if there is a topology \mathcal{T}' on X coarser than \mathcal{T} such that (X, \mathcal{T}') is T_4 .

In a personal contact, Arhangel'skii intoduced in 2012 to Kalantan the following definition:

Definition 3. (Arhangel'skii) A topological space X is called C- κ -normal if there exist a κ -normal space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$.

Definition 4. [2] A topological space X is called *C*-mildly normal if there exist a mildly normal space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f_{|_A}: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$.

In [2], the following theorem was proved.

Theorem 1. If X is C-mildly normal (C- κ -normal) Fréchet space and $f: X \longrightarrow Y$ is a witness of the C-mild normality (C- κ -normality) of X, then f is continuous.

2. Main Results and Examples

Recall that a topological space X is called *almost compact* [19] if each open cover of X has a finite subfamily such that the closures of whose members covers X. A space X is said to be *almost regular* [23] if for any closed domain subset A and any $x \notin A$, there exist two disjoint open sets U and V such that $x \in U$ and $A \subseteq V$. A technique which is useful in the theory of coarser topologies is the semiregularization. The topology on X generated by the family of all open domains is denoted by τ_s . The space (X, τ_s) is called the semiregularization of X. A space (X, τ) is semi-regular if $\tau = \tau_s$.

Theorem 2. Let X be an almost regular Hausdorff space. If X is mildly normal then X is C- κ -normal.

Proof. Since (X, τ) is an almost regular Hausdorff space, then (X, τ_s) is a Hausdorff regular space [20]. Since X is mildly normal space we get (X, τ_s) is mildly normal [15]. Then the identity function $id_X : (X, \tau) \longrightarrow (X, \tau_s)$ is a continuous bijective function. If C is any compact subspace of (X, τ) , then the restriction of the identity function from C onto $id_X(C)$ is continuous and "every continuous one-to-one mapping of a compact space onto a Hausdorff space is a homeomorphism." [12, Theorem 3.1.13]. So X is C- κ -normal space.

Theorem 3. If (X, τ) is almost regular almost compact space and τ_s is T_1 , then (X, τ) is C- κ -normal (C-mildly normal).

Proof. Since (X, τ) is an almost regular space, (X, τ_s) is regular space [20]. Hence (X, τ_s) is T_3 . Moreover, the coarser topology of an almost compact space is an almost compact space. So τ_s is almost compact. But every almost regular almost compact space is mildly normal [23]. Thus τ_s is regular mildly normal. Therefore by using the same argument of the proof of theorem 2 we conclude that (X, τ) is C- κ -normal (C-mildly normal).

Theorem 4. C- κ -normality (C-mild normality) is an additive property.

Proof. Let X_{α} be a C- κ -normal (C-mildly normal) space for each $\alpha \in \Lambda$. We show that their sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is C- κ -normal (C-mildly normal). For each $\alpha \in \Lambda$, pick a κ normal (mildly normal) space Y_{α} and a bijective function $f_{\alpha} : X_{\alpha} \longrightarrow Y_{\alpha}$ such that $f_{\alpha|_{C_{\alpha}}} : C_{\alpha} \longrightarrow f_{\alpha}(C_{\alpha})$ is a homeomorphism for each compact subspace C_{α} of X_{α} . Since regularity is additive [12, Theorem 2.2.7], then $(Y_{\alpha}, \bigoplus_{\alpha \in \Lambda} \tau'_{\alpha})$ is a regular space. On the other hand, mild normality is an additive property because each factor is open-and-closed in $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ and the intersection of any closed domain in $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ with each factor X_{α} will be a closed domain in X_{α} . Then the sum $\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ is κ -normal (mildly normal). Consider the function sum [12, Exercises 2.2.E], $\bigoplus_{\alpha \in \Lambda} f_{\alpha} : \bigoplus_{\alpha \in \Lambda} X_{\alpha} \longrightarrow \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ defined by $\bigoplus_{\alpha \in \Lambda} f_{\alpha}(x) = f_{\beta}(x)$ if $x \in X_{\beta}, \beta \in \Lambda$. Now, a subspace $C \subseteq \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is compact if and only if the set $\Lambda_0 = \{\alpha \in \Lambda : C \cap X_{\alpha} \neq \emptyset\}$ is finite and $C \cap X_{\alpha}$ is compact in X_{α} for each $\alpha \in \Lambda_0$. If $C \subseteq \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is compact, then $(\bigoplus_{\alpha \in \Lambda} f_{\alpha})|_C$ is a homeomorphism because $f_{\alpha|_{C \cap X_{\alpha}}}$ is a homeomorphism for each $\alpha \in \Lambda_0$.

Recall that a topology τ on a non-empty set X is said to be minimal Hausdorff if (X, τ) is Hausdorff and there is no Hausdorff topology on X strictly coarser than τ , see [7, 8]. It was proved that "if the product space is minimal Hausdorff, then each factor is minimal Hausdorff" [7], In [13] the converse of the previous statement was proved. Namely, "the product of minimal Hausdorff spaces is minimal Hausdorff". In the next theorem we will use the following theorem: "A minimal Hausdorff space is compact if and only if it is completely Hausdorff ($T_{2\frac{1}{2}}$)"[21, Theorem 1.4]. We conclude the following theorems.

Theorem 5. Let X and Y be minimal Hausdorff spaces, if X and Y are κ -normal spaces then $X \times Y$ is κ -normal.

Proof. Since X and Y are κ -normal, they are regular Hausdorff spaces, which implies T_3 , hence $T_{2\frac{1}{2}}$. Since the $T_{2\frac{1}{2}}$ is multiplicative, the product space is $T_{2\frac{1}{2}}$. So $X \times Y$ is $T_{2\frac{1}{2}}$ minimal Hausdorff space which implies that $X \times Y$ is T_2 compact, hence T_4 and thus κ -normal.

Now, we give the following characterization in the class of minimal Hausdorff spaces.

Theorem 6. Let X be a minimal Hausdorff Fréchet space. The following are equivalent.

- (i) X is C- κ -normal.
- (ii) X is locally compact.
- (iii) X is compact
- (iv) X is T_4 .
- (v) X is epinormal, hence epi-mildly normal.

Proof. (1) \Rightarrow (2) Since X is C- κ -normal Fréchet space, X is $T_{2\frac{1}{2}}$ see [2], By Theorem "A minimal Hausdorff space is compact if and only if it is completely Hausdorff $(T_{2\frac{1}{2}})$ " [21, Theorem 1.4], gives that X is T_2 compact, hence locally compact.

 $(2) \Rightarrow (3)$ Since any T_2 locally compact space is Tychonoff and hence $T_{2\frac{1}{2}}$, we obtain X is compact.

(3) \Rightarrow (4) Any T_2 compact space is T_4 .

 $(4) \Rightarrow (5)$ Any T_4 is epinormal, hence epi-mildly normal.

 $(5) \Rightarrow (1)$ Any epinormal space is C- κ -normal [2].

From the above theorem, we conclude the following corollary

Corollary 1. In class of minimal Hausdorff, any Frechet C- κ -normal space is κ -normal.

Since κ -normality is not hereditary [16], it seems to us that both *C*-mild normality and *C*- κ -normality are not hereditary, but we still could not find a counterexample.

The question "Is there a Tychonoff space which is not C- κ -normal (C-mildly normal) ?" We answer this in the class of minimal Tychonoff spaces by using theorem "All minimal completely regular spaces are compact", [7], hence T_4 . So we get the following corollary.

Corollary 2. Any minimal Tychonoff space is C- κ -normal.

We know Tychonoff spaces which are not κ -normal (mildly normal). This spaces turn out to be C- κ -normal (C-mildly normal) see [2, example 3], and also see example 5 below.

Let M be a non-empty proper subset of a topological space (X, τ) . Define a new topology $\tau_{(M)}$ on X as follows: $\tau_{(M)} = \{U \cup K : U \in \tau \text{ and } K \subseteq X \setminus M\}$. $(X, \tau_{(M)})$ is called a *discrete extension* of (X, τ) and we denote it by X_M see [12, Example 5.1.22].

In general, C- κ -normality is not preserved by a discrete extension space. Here is an example of C- κ -normal space whose a discrete extension space is not C- κ -normal.

Example 1. Consider $(\mathbb{R}, \mathcal{I})$ where \mathcal{I} is the indiscrete topology. Let $M = \mathbb{R} \setminus \{1, 2, 3\}$. We have $1 \notin M$ and M is closed in \mathbb{R}_M . The only open set in \mathbb{R}_M containing M is \mathbb{R} . But $\mathbb{R} \cap \{1\} \neq \emptyset$. Thus \mathbb{R}_M is not regular. So, \mathbb{R}_M is not C- κ -normal because it is a compact non-regular space [2].

Recall that a topological space X is called C_2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f_{|_A} : A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$ [17].

From definition since any T_2 paracompact space is T_4 , any C_2 -paracompact space is C- κ -normal. The converse is not true, we did show in [2] that example 2 below is a C- κ -normal and it was shown in [5, example 4] it is not C_2 -paracompact.

By using the discrete extension space, we answer the following open problem : "Is C_2 paracompactness hereditary with respect to closed subspaces?" [5]. The answer is negative even for open subspaces and here is a counterexample.

Example 2. Consider the infinite Tychonoff product space $G = D^{\omega_1} = \prod_{\alpha \in \omega_1} D$, where $D = \{0, 1\}$ considered with the discrete topology. Let H be the subspace of G consisting of all points of G with at most countably many non-zero coordinates. Put $M = G \times H$. Raushan Buzyakova proved that M cannot be mapped onto a normal space Z by a bijective continuous function [9, example 4] result and the fact that M is a k-space, we conclude that M is a Tychonoff space which is not C_2 -paracompact [5, example 4]. Let X be any compactification of M and consider the discrete extension space X_M of X. By Theorem "Every lower compact space is C_2 -paracompact" [17, theorem 2.20], X_M is C_2 -paracompact. Since M as a subspace of X_M is the same as a subspace of X and M is closed-and-open in X_M , we get that C_2 -paracompactness is not hereditary with respect to both closed and open subspaces.

Recall that a space X is called α -normal if for any two disjoint closed subsets A and B of X there exist disjoint open subsets U and V of X such that $A \cap U$ is dense in A and $B \cap V$ is dense in B [6].

We answer the following open problem : "Is α -normality preserved by the discrete extension?" [3]. The answer is no and here is an example of an α -normal space whose a discrete extension space is not α -normal.

Example 3. Let $M = ((\omega_1 + 1) \times (\omega_0 + 1)) \setminus \{\langle \omega_1, \omega_0 \rangle\}$ is a Tychonoff Plank space see [24, example 87] we know that M is a Tychonoff non α -normal space [6], take the compactification X of M then it is α -normal being T_2 compact space. Consider the discrete extension X_M . Observe that M is closed in X_M . Since α -normality is hereditary with respect to closed subspaces [6], we conclude that X_M cannot be α -normal.

The following example answers three kinds of invariants. We used two well-known spaces, the Alexandroff duplicate space and the closed extension space.

Let X be any T_1 topological space. Let $X' = X \times \{1\}$. Note that $X \cap X' = \emptyset$. Let $A(X) = X \cup X'$. For simplicity, for an element $x \in X$, we will denote the element $\langle x, 1 \rangle$

in X' by x' and for a subset $B \subseteq X$ let $B' = \{x' : x \in B\} = B \times \{1\} \subseteq X'$. For each $x' \in X'$, let $\mathcal{B}(x') = \{\{x'\}\}$. For each $x \in X$, let $\mathcal{B}(x) = \{U \cup (U' \setminus \{x'\}) : U$ is open in X with $x \in U$. Let \mathcal{T} denote the unique topology on A(X) which has $\{\mathcal{B}(x) : x \in X\} \cup \{\mathcal{B}(x') : x' \in X'\}$ as its neighborhood system. A(X) with this topology is called the *Alexandroff Duplicate of X* [11].

Example 4. Consider the Alexandroff duplicate space $A(\mathbb{R})$ of \mathbb{R} with its usual metric topology. It is C_2 -paracompact [5], hence C- κ -normal. Now, let $i = \sqrt{-1} \notin \mathbb{R}$ and put $X = \mathbb{R} \cup \{i\}$. Let τ be the closed extension topology on X generated from \mathbb{R} with its usual metric topology and i. So, $\tau = \{\emptyset\} \cup \{W \cup \{i\} : W \subseteq \mathbb{R}; W \text{ is open in the usual metric topology }\}$.

 (X, τ) is not C-normal see [1]. So it is not not C- κ -normal because it is Fréchet being first countable, Lindelöf space, which is not C-normal [2, theorem0.10]. Define $g: A(\mathbb{R}) \longrightarrow X$ by

$$g(x) = \begin{cases} i & ; if \ x \in \mathbb{R}' \\ x & ; if \ x \in \mathbb{R} \end{cases}$$

g is an open onto function. Thus C- κ -normality is neither invariant, open invariant, nor quotient invariant.

Since κ -normality is not multiplicative, it seems to us that both *C*-mild normality and *C*- κ -normality are not multiplicative, but we still could not find a counterexample. We know the example of two linearly ordered topological spaces whose product is not κ -normal (mildly normal) was given in [14]. This space turns out to be *C*- κ -normal. Here is an example.

Example 5. We will define a Hausdorff compact linearly ordered space Y such that $\omega_1 \times Y$ is C- κ -normal. Let $\{y_n : n < \omega_0\}$ be a countably infinite set such that $\{y_n : n < \omega_0\} \cap$ $(\omega_1 + 1) = \emptyset$. Let $Y = \{y_n : n < \omega_0\} \cup (\omega_1 + 1)$. Let τ be the topology on Y generated by the following neighborhood system: For an $\alpha \in \omega_1$, a basic open neighborhood of α is the same as in ω_1 with its usual order topology. For $n \in \omega_0$, a basic open neighborhood of y_n is $\{y_n\}$. A basic open neighborhood of ω_1 is of the form $(\alpha, \omega_1] \cup \{y_n : n \ge k\}$ where $\alpha < \omega_1$ and $k \in \omega_0$. In other words, $\{y_n : n < \omega_0\}$ is a sequence of isolated points which converges to ω_1 . Note that if we define an order < on Y as follows: For each $n \in \omega_0$, $\omega_1 < y_{n+1} < y_n$, and < on $\omega_1 + 1$ is the same as the usual order on $\omega_1 + 1$, then (Y, τ) is a linearly ordered topological space. It was shown in [14] that (Y, τ) is a Hausdorff normal space and hence mildly normal. But $\omega_1 \times Y$ is not mildly normal [14]. A similar proof as in [15] shows that $\omega_1 \times Y$ is $C-\kappa$ -normal.

Here are cases when the product of two C- κ -normal spaces will be C- κ -normal.

Since the product of ordinals is always κ -normal (mildly normal) [18], we conclude the following theorem.

Theorem 7. The product of ordinals is C- κ -normal (C-mildly normal).

Theorem 8. If X and Y are minimal Hausdorff Fréchet C- κ -normal, then $X \times Y$ is C- κ -normal.

Proof. Since X and Y are minimal Hausdorff Fréchet C- κ -normal, X and Y are $T_{2\frac{1}{2}}[2]$. Since the $T_{2\frac{1}{2}}$ is multiplicative, the product space is $T_{2\frac{1}{2}}$. So $X \times Y$ is $T_{2\frac{1}{2}}$ minimal Hausdorff space implies that $X \times Y$ is T_2 compact, hence C- κ -normal.

Theorem 9. If X is Fréchet and countably compact C- κ -normal space, and Z is T_2 paracompact first countable space then $X \times Z$ is C- κ -normal.

Proof. Let Y be a κ -normal space, $f: X \longrightarrow Y$ be a bijective function such that the restriction on any compact subspace is a homeomorphism. Now, X is Fréchet gives that f is continuous, see Theorem 1. Since X is countably compact and f continuous surjective, we have Y is countably compact κ -normal. Since a product of a countably compact κ -normal space with a paracompact first countable space is κ -normal, $Y \times Z$ is κ -normal [14]. Now, define $g: X \times Z \longrightarrow Y \times Z$ by $g(\langle x, i \rangle) = \langle f(x), i \rangle$. Then g is a bijective function and $g = f \times id_Z$, where id_Z is the identity function on Z. Let C be any compact subspace of $X \times Z$. Then $C \subseteq p_1(C) \times p_2(C)$, where p_1 and p_2 are the usual projection functions. $p_1(C)$ is a compact subspace of X and $p_2(C)$ is a compact subspace of Z, thus $p_1(C) \times p_2(C)$ is a compact subspace of $X \times Z$. Now, $f|_{p_1(C)}: p_1(C) \longrightarrow f(p_1(C))$ is a homeomorphism and $id_{Z|_{p_2(C)}}: p_2(C) \longrightarrow p_2(C)$ is a homeomorphism. Thus $(f \times id_Z)|_{(p_1(C) \times p_2(C))}: p_1(C) \times p_2(C) \longrightarrow fp_1(C) \times p_2(C)$ is a homeomorphism. We conclude that $g|_C: C \longrightarrow g(C)$ is a homeomorphism because

$$g_{|_{C}} = ((f \times id_{Z})_{|_{p_{1}(C) \times p_{2}(C)}})_{|_{C}}.$$

Recall that a space X is *Dowker* if X is T_4 and $X \times \mathbb{I}$ is not normal, where \mathbb{I} is the closed unit interval considered with its usual metric topology, [12]. Dowker, in [10], stated the following theorem: "A space X is normal and countably paracompact if and only if $X \times \mathbb{I}$ is normal". Here is a C- κ -normal version, one direction of the Dowker's theorem. If C- κ -normality is hereditary with respect to closed spaces, then the converse will be true.

Theorem 10. If X is T_1 Fréchet C- κ -normal Lindelöf space, then $X \times \mathbb{I}$ is C- κ -normal space.

Proof. Let X be a T_1 Fréchet C- κ -normal Lindelöf space. Pick a witness function f and a κ -normal space Y. Then by Theorem 1 the witness function $f : X \longrightarrow Y$ is continuous and the witness space Y is T_3 , [2]. Since X is Lindelöf and T_3 , we get Y is paracompact, and hence T_4 . So, by Dowker's theorem $Y \times \mathbb{I}$ is T_4 . By a similar argument as in the proof of Theorem9, we can prove that $X \times \mathbb{I}$ is a C- κ -normal space.

Recall that a space X is called *nearly compact* [24] if each open cover of X has a finite subfamily the interiors of the closures of whose members covers X.

REFERENCES

Theorem 11. Let X, Y are Hausdorff nearly compact C- κ -normal space, then $X \times Y$ is a C- κ -normal space.

Proof. Since (X, τ) and (Y, τ') are nearly compact Hausdorff spaces, we get (X, τ_s) and (Y, τ'_s) are Hausdorff compact spaces [20], and $(X, \tau_s) \times (Y, \tau'_s)$ is a T_2 compact topological space which is coarser than the topology on $X \times Y$. Thus, $X \times Y$ is epinormal and hence it is C- κ -normal [2].

The following problems are still open:

- (i) Does there exist a Tychonoff space which is not C-κ-normal? Observe that such a space is not in the class of minimal Hausdorff space, not in the class of minimal T₃ spaces, not locally compact, not submetrizable, not C-normal, a space can not be ordinal, can not epinormal, not Lindelöf. Observe also that the existence of such a space, will show that C-κ-normal is not hereditary just by taking a compactification of it.
- (ii) Is C- κ -normality (C-mild normality) multiplicative?

References

- [1] D Abuzaid, S Al-Qarhi, and L Kalantani. Closed extension topological spaces. *European Journal of Pure and Applied Mathematics (EJPAM)*, 15(2):672–680, 2022.
- [2] A Al-Awadi, L Kalantan, and S Thabit. c-κ-normal and c-mildly normal topological properties. to appear.
- [3] A Alawadi, L Kalantan, and M Saeed. On the discrete extension spaces. Journal of Mathematical Analysis, 9(2):150–157, 2018.
- [4] S AlZahrani and L Kalantan. Epinormality. Journal of Nonlinear Sciences & Applications, 9(9):5398–5402, 2016.
- [5] H Alzumi, L Kalantan, and M M Saeed. Results on c₂-paracompactness. European Journal of Pure and Applied Mathematics., 14(2):351–357, 2021.
- [6] A V Arhangel'skii and L D Ludwig. On α-normal and β-normal spaces. Commentationes Mathematicae Universitatis Carolinae., 42(3):507–519, 2001.
- [7] M P Berri. Minimal topological spaces. Transactions of the American Mathematical Society., 108(1):97–105, 1963.
- [8] N Bourbaki. General Topology. Springer-Verlag, 1995.
- [9] R Z Buzyakova. An example of a product of two normal groups that cannot be condensed onto a normal space. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika., 3:59–59, 1997.

- [10] C H Dowker. On countably paracompact spaces. Canadian Journal of Mathematics., 3:219–224, 1951.
- [11] R Engelking. On the double circumference of alexandroff. Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys., 16(8):629–634, 1968.
- [12] R Engelking. General Topology. PWN, Warszawa, 1977.
- [13] S Ikenage. Product of minimal topological spaces. Proceedings of the Japan Academy., 40(5):329–331, 1964.
- [14] L Kalantan. Results about κ -normality. Topology and its Applications, 125(1):47–62, 2002.
- [15] L Kalantan and I Alshammari. Epi-mild normality. Open Mathematics., 16(1):1170– 1175, 2018.
- [16] L Kalantan and N Kemoto. Mild normality in products of ordinals. Houston Journal of Mathematics., 29(4):937–947, 2003.
- [17] L Kalantan, M M Saeed, and H Alzumi. c-paracompactness and c₂-paracompactness. Turkish Journal of Mathematics., 43(1):9–20, 2019.
- [18] L Kalantan and P Szeptycki. κ -normality and products of ordinals. Topology and its Applications, 123(3):537–545, 2002.
- [19] P T Lambrinos. On almost compact and nearly compact spaces. Rendiconti del Circolo Matematico di Palermo, 24(1):14–18, 1975.
- [20] M Mršević, I L Reilly, and M K Vamanamurthy. On semi-regularization topologies. Journal of the Australian Mathematical Society, 38(1):40–54, 1985.
- [21] J R Porter and R M Stephenson. Minimal hausdorff spaces—then and now. In Handbook of the History of General Topology, pages 669–687, 1998.
- [22] E V Shchepin. Real functions and spaces that are nearly normal. Sibirskii Matematicheskii Zhurnal, 13(5):1182–1196, 1972.
- [23] M K Singal and A R Singal. Mildly normal spaces. Kyungpook Mathematical Journal, 13(1):29–31, 1973.
- [24] L Steen and J A Seebach. Counterexamples in Topology. Dover Publications INC, USA, 1995.