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Abstract. Can we use lagged values of major stock market indices to provide useful predictions as a

standard vector autoregressive model? Underlying this application, of course, is the question of finding

a vector autoregressive model which makes accurate and efficient forecasts. In this paper, we use the

Genetic Algorithm with information complexity criteria as the fitness function to drive subset selection

and parameter estimation.

In the testing period when the target index lost more than 15%, the identified subset VAR model gained

over 17%. The prediction error bands built around the forecasts are half as wide as those obtained by

the saturated model.

Using both simulation and application studies, we present evidence that even when the typical regres-

sion assumptions seem to be met, the VAR model is misspecified.
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1. Introduction

When considering multivariate time series in the context of dynamic vector autoregressive

(VAR) modeling, how do we determine the structure of the relationships? In the simple

case of 2 variables, say x and y, and few lags under consideration, the problem is relatively

straightforward. For few predictors and lags, combinatorial evaluation of all possible subsets

of responses and predictors is not very computationally intensive. As long as both variables are
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stationary, or integrated of order 1 (I (0)), we can use multivariate least squares regression.

Under the usual assumption of Gaussianity, the VAR(q) model is given by (1):

�
y ′t
x ′t

�
=

�
b01

b02

�
+

q∑

i=1

�
φi11 φi12

φi21 φi21

��
y ′t−i

x ′t−i

�
+

�
ǫ′y t

ǫ′x t

�
. (1)

The ǫ are error terms drawn from homoskedastic multivariate white noise. The principle of

parsimony drives us to prefer small q. Doing so can protect against overfitting and lead to

more efficient forecasts; additionally, it is generally unlikely that higher-order autoregressions

are in effect for most econometric data. What can the researcher do, however, if there are

many time series under consideration? For example, consider a mere p = 2 variables with

lags from one to four; for OLS the researcher has two responses and eight potential predictors.

Along with an intercept term to estimate, there are 218−1= 262,143 asymmetric subset VAR

models. Thus, as the size of the likely universe increases linearly, the number of combinations

increases exponentially; performing complete enumerative subset analysis quickly becomes

impossible. In the realm of statistical modeling and data mining, this situation is known as

the “curse of dimensionality”. In most applications, a priori information useful for restricting

terms to 0 is rare. Several approaches have been proposed to impose restrictions, in an effort

to make the problem more tractable. Unfortunately, these existing attempts bring their own

problems.

In this paper, we propose and present the efficacy of a stochastic search procedure known

as the genetic algorithm (GA). Of course, the effectiveness of any search algorithm is strongly

affected by the choice of the fitness function which is to be optimized. To drive the model

selection process, we use the information complexity criterion ICOM P; in the spirit of the

well known AIC and SBC criteria. ICOM P was first introduced by [5]. In our numerical

examples, we first demonstrate our methods with a Monte Carlo simulation study, in which we

show that the estimated subset VAR model outperforms the saturated (all predictors included)

model. Secondly, we apply the methods to the practical stock-market movement prediction

problem. Given a subset of major stock market indices, can we use their lagged values to

provide useful predictions for themselves as a standard VAR model? The indices we use are:

DJ20: Dow Jones 20

MID: Amex Midcap 400

NDX: Nasdaq 100

RUT: Russell 2000

SPX: Standard & Poor’s S&P 500

XAU: Amex Gold Producers

Using our methods, we obtain accurate and efficient forecasts. To set the stage, the remainder

of this paper is organized as follows. In Section 2, we discuss vector autoregressive model-

ing, and some of the issues that must be addressed. Section 3 gives background information
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on the genetic algorithm. We discuss and give the derived forms of information criteria and

complexity in Section 4. In Section 5, we provide numerical results on both a Monte Carlo

simulation study and the aforementioned stock market prediction problem. Section 6 con-

cludes the paper with remarks.

2. Vector Autoregressive (VAR) Modeling

The purpose of developing a vector autoregressive model is to identify the relationships

between a set of linear time series so as to develop accurate and precise forecasts for the series

included. In a structural VAR model, the time path of each variable is influenced by the lags

of all included variables. For example, consider (2), with a simple VAR(2) model in standard

form (contemporaneous effects removed).

yt = a10 + a1_11 yt−1 + a1_12zt−1 + a2_11 yt−2 + a2_12zt−2 + e1t

zt = a20 + a1_21 yt−1 + a1_22zt−1 + a2_21 yt−2 + a2_22zt−2 + e2t
. (2)

A symmetric VAR model is one in which a lag of a specific variable is included for all variables.

For example, if a1_11 6= 0, a1_21 6= 0. On the other hand, an asymmetric VAR model does not

share this restriction. In this case, we could possibly have

yt = a10 + a1_12zt−1 + a2_11 yt−2 + e1t

zt = a20 + a1_21 yt−1 + a2_22zt−2 + e2t
. (3)

Despite the value of modeling a set of autoregressive time series in parallel, there is no free

lunch, and the cost of VAR modeling is that, in the absence of a priori restrictions, the model

can easily become overparameterized. This leads to highly biased regression coefficients and

large out-of-sample forecast errors.

2.1. Attempts to Make VAR Modeling More Tractable

Over the years, several suggestions have been put forth in the literature, in order to solve

these issues. Both Lutkepohl [14] and Penm and Terrell [18] recommend subset VAR models

which are basically saturated VAR(q∗) models, where q∗ < order of full saturated model. The

Vector Error Correction Model has also gained popularity, though it can only be applied to time

series that are cointegrated. Using the definition of the well-known [8] paper by Engle and

Granger, the components of a vector X of T time series are said to be cointegrated of order

d , b (X ∼ C I (d , b)) if the following restrictions apply.

1. Each series exhibits the same order of integration: x t ∼ I (d) , t = 1 . . . T .

2. There exists a vector β (called the cointegrating vector) such that the linear combination

Xβ is integrated at a lower order: Xβ ∼ I (d − b) , b > 0. This is a special situation; it

is generally the case that a linear combination of I (d) variables remains I (d), and they

are not cointegrated.
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Cointegrated variables share a common stochastic trend; for a set of cointegrated variables,

a valid error correction can be written which will react to correct short term departures from

the common trend. Additionally, Bayesian vector autoregression has been developed by several

researchers, both for cointegrated [2, also see the unpublished manuscript of Kleibergen and

van Dijk] and non-cointegrated [13] data.

Many of these attempts to deal with the curse of dimensionality come with their own

shortcomings. We can use likelihood ratio hypothesis testing to determine the maximum lags

to model, but the test statistic often does not follow the asymptotic chi-squared distribution

under the null hypothesis. This approach also restricts the researcher to considering sequential

lags (∆1,∆2, . . . ,∆q∗), where a better model may skip certain lags. Granger causality tests

[9, 23] could also be used to reduce the dimensionality of the VAR model, but this approach

fails to exploit potential asymmetric relationships. [18] suggest restricting the Φ matrices to

be complete - a given lag is either used for all series, or it’s not used at all. This method risks

including useless predictors at the expense of useful ones; leading to larger forecast errors.

2.2. Subset VAR Models with Robust Covariance Estimation

The typical Gaussian VAR model, in standard form, can be written as a multivariate regres-

sion problem: Y = X B+E, where Y ∈ Rn×p is the matrix of p responses across n observations.

Assuming k lags of Y , X ∈ Rn×(pk+1) - all the appropriate lags of each response, plus a con-

stant term. The error terms are assumed to be drawn from a multivariate Gaussian white noise

process, with mean vector µ = 0 and constant covariance matrix Σ. Finally, B ∈ R(pk+1)×p

is the matrix of model coefficients. Of course, there is potentially a coefficient on each lag

of each response (plus the constant), for all responses. In order to perform subsetting with

asymmetric restrictions in this context, we need to rearrange the data slightly.

Following [3], the first step is to transform Y from an
�
n× p

�
matrix into an

�
np× 1

�
Yvec

vector using the vec (·) operator, which vertically catenates columns of a matrix. Secondly, we

use the Kronecker product, which multiplies all elements of two matrices, to create

Xsup = Ip ⊗ X ; Xsup is an
�
np× p

�
pk+ 1

��
matrix. With these transformations, both the

coefficient and error matrices become vectors. The relationship then becomes

Yvec︸︷︷︸
np×1

= Xsup︸︷︷︸
np×p(pk+1)

β︸︷︷︸
p(pk+1)×1

+ ǫ︸︷︷︸
np×1

. (4)

At this point, subset selection becomes simple - each column of the sparse Xsup matrix repre-

sents a specific predictor used for a specific response. For example, if p = 2 and k = 3, the

1st & 7th columns are the constant applied to the 1st & 2nd predictors, respectively. A binary

string of length p
�

pk+ 1
�
, indicates the presence or absence of a specific predictor used for

a specific response - exactly how the GA operates (more later). Following [14], we apply

feasible generalized least squares (FGLS), which is asymptotically equivalent to OLS. For FGLS

estimation of the subset VAR model, we can follow a simple two-step procedure:

1. Compute a consistent estimate of Ω̂:
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• Estimate the coefficients: β̂1 =
�

X ′supXsup

�−1
X ′supYvec,

• Get the estimated residuals: ǫ̂ = Yvec − Xsupβ̂1,

• Construct an estimate of the covariance matrix after reshaping ǫ̂ so that ǫ̂ ∈ Rn×p:

Σ̂1 =
1

n
ǫ̂′ǫ̂,

• Compute: Ω̂ = Σ̂1 ⊗ In.

2. Compute the FGLS estimates:

β̂FGLS = (X
′
supΩ̂

−1Xsup)
−1X ′supΩ̂

−1Yvec, (5)

ǫ̂FGLS = Yvec − Xsupβ̂FGLS, (6)

Σ̂FGLS =
1

n
ǫ̂′FGLSǫ̂FGLS. (7)

This is the estimation method proposed in [3]. Under the assumption of Gaussianity of the

error terms, the FGLS estimators have the same asymptotic distribution as the traditional

maximum likelihood estimators.

There is one slight modification that needs to be made to the 3rd items in each of the

steps above. In many real-life problems, covariance matrices can become ill-conditioned,

non-positive definite, or singular. This is especially true in cases of regression with highly

collinear predictors. As can be seen in Table 1, there is a high degree of multicollinearity

among the daily changes of the first five indices used in our application. The usual responseTable 1: Correlation Matrix for Indi
es Used.
DJ20 MID NDX RUT SPX XAU

DJ20 1.000 0.736 0.613 0.702 0.693 −0.107

MID 1.000 0.881 0.935 0.924 −0.158

NDX 1.000 0.886 0.877 −0.231

RUT 1.000 0.869 −0.151

SPX 1.000 −0.179

XAU 1.000

to singular or ill-conditioned covariance matrix estimates is ridge regularization, which works

to counteract the ill-conditionedness by adjusting the eigenvalues of Σ̂. Usually, the ridge

parameter α is chosen to be very small. This, of course, begs the questions

• “How large should α be?”

• “How small can α be?”

The answer to ridge regularization questions is to use a robust covariance estimator that

data-adaptively improves ill-conditioned and/or singular covariance matrix estimates. Many

different robust, or smoothed, covariance estimators have been developed; several of them

work by the same mechanism as ridge regularization - perturb the diagonals, and hence,
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the eigenvalues. In this paper, we use the Maximum Likelihood / Empirical Bayes covariance

estimator

Σ̂M LE/EB = Σ̂+
p− 1

(n) t r(Σ̂−1)
Ip, (8)

which is ridge regularization, where the ridge parameter α is determined by the data - not a

subjective decision. For various other robust covariance estimators we’ve found valuable, see

[22, 19, 7, 25, 12].

The integration with FGLS estimation is simple; assuming we were using Σ̂M LE/EB, the

final part of step 1 would entail computing Ω̂ = Σ̂M LE/EB⊗ In. Finally, after the FGLS estimates

of the coefficients have been computed, we smooth the Σ̂∗FGLS using the same estimator. In

general, we prefer to not change the problem more than necessary, so we perform two tests

for matrix condition before using the selected robust covariance estimator - if the answer to

either question is in the affirmative, we instead use the robust estimator:

1. Is the reciprocal of the condition number small: κ−1(Σ̂)≤ 1e−10?

2. Is Σ̂ nonpositive definite?

2.3. Error Term Bootstrap Procedure

Runkle [21] identified several shortcomings with the ways in which econometricians com-

puted and reported variance decompositions and impulse response functions. Chief was that

confidence intervals around estimates were missing in the literature. His claims were that

error bands became so large as to make inference from point estimates useless and invalid.

He demonstrated, using the example from [24], both an analytical and an empirical method

for computing the missing confidence intervals. We employ a variation of his bootstrap pro-

cedure here. The fundamental insight is that, since the estimated residuals from any model

are assumed to be a representative sample of the true disturbances, the order in which they

occur should not matter. This allows us to determine an empirical distribution (and mean)

by generating many artificial observations of the data using the estimated residuals. With our

modifications, the procedure iterates these four steps after estimating a subset VAR model:

1. Draw an appropriate number of bootstrapped realizations from ǫ̂FGLS uniformly and

with replacement. The bootstrapped matrix is called ǫ̂FGLS,B; the number of rows it

contains is equal to the original (in-sample) sample size plus enough disturbances for

all forecast observations.

2. Conditioning on the pre-sample observations, recursively simulate the data YB using the

β̂FGLS model coefficients matrix and the error terms from ǫ̂FGLS,B, as in (4).

3. With the simulated dependent and independent matrices, YB and XB, re-estimate the

FGLS parameters for both the subset model β̂SUB,B, and the saturated model β̂SAT,B.

4. These models are then used to compute point estimates and forecast errors for the out-

of-sample simulated datapoints: FSUB = YB − β̂SUB,BXB and FSAT = YB − β̂SAT,BXB. For

this work, we allowed the procedure to look ahead 100 periods.
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For our results reported here, we used B = 2000 iterations. Utilizing all bootstrapped simula-

tions and for each time step, two Mean Squared Errors (MSE) are computed and stored - one

for the subset VAR model, and the other for the saturated model.

MSESUB,i =
1

B

 
B∑

b=1

Yb,t+i − β̂SUB,bX b

!
, MSESAT,i =

1

B

 
B∑

b=1

Yb,t+i − β̂SAT,bX b

!
(9)

With this procedure we obtain a point estimate and a variance estimate for each out-of-sample

forecast. This allows us to compare the precision with which models make forecasts; we can

build error bands, such as Ŷt+i ± 2σ̂t , around the point estimates.

An obvious question is why we should go through all this trouble to bootstrap from the

estimated residuals after fitting the VAR model. After all, as long as the OLS assumptions

are justified, it would be much simpler to simulate error terms from a multivariate Gaussian

distribution with an appropriate scatter matrix. However, when the data exhibit non-Gaussian

behavior, from what distribution would we simulate? The use of this method is justified on

the basis that it is more robust.

3. Genetic Algorithm (GA)

There are many search algorithms that a researcher could apply to a subset model selec-

tion problem such as this. We could have chosen to use a gradient-based algorithm, such as

the greedy algorithm or a modified Newton method. One shortcoming of this approach is that

maximization of the likelihood does not consider model complexity, and will lead to subopti-

mal forecasts when the functional form is misspecified. Additionally, the likelihood landscape

is very rugged in the high dimensions that characterize vector autoregressions. Hill-climbing

algorithms have a high likelihood of getting stuck in local optima. A second approach would

be to use simulated annealing. Simulated annealing shares the complexity short-sightedness

of other methods; in its defense, it is less likely to get stuck far away from the global optimum.

However, it requires several subjective decisions. If made poorly, these decisions can doom

the algorithm to failure. For example, how are we to decide the range for the temperature

parameter, or the cooling schedule?

Evolutionary algorithms such as the GA, popularized by [10, 11], have become useful tools

for complex statistical modeling, identifying near-optimal solutions while providing computa-

tional efficiency. Published research that has used the GA for financial / econometric modeling

include [17, 20, 26]. The GA is a search algorithm that borrows concepts from biological evo-

lution. Biological chromosomes, which determine so much about organisms, are represented

as binary words – these determine the composition of possible solutions to an optimization

problem. For multivariate regression subsetting, each chromosome is a q-length vector such

that each locus represents the presence (1) or absence (0) of a specific predictor. An example

chromosome may be [10011001]; in this case, predictors 1,4,5,8 will be used for OLS while

2,3,6,7 will not. One argument leveled against the GA is that there is no artificial constraint

to prevent duplication of solutions within or between iterations. On the surface, this seems

wasteful, but a true understanding of the GA reveals this as a strength. This is due to the way
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in which solutions are considered as an ensemble, and not individually - specifically because

of the crossover operator. The general procedure in the GA is simple and straightforward, and

is shown here.

1. Generate initial population of chromosomes

2. Score all members of current population

3. Determine how current population is mated and represented in next generation

4. Perform chromosomal crossover and genetic mutation

5. Pass on offspring to new generation

6. Loop back to 2 until termination criteria metTable 2: Geneti
 Algorithm Parameters used in Appli
ation Example.
Parameter Setting

Number of Generations 100

Population Size 100

Generation Seeding Relative Ranking

Crossover Probability 0.75

Mutation Probability 0.25

Objective Function ICOM PM ISP_PEU(F̂
−1)

As seen in Table 2, there are eight major parameters used to define the operation of the

genetic algorithm. Since the GA has become a fairly well-known search algorithm, we direct

interested readers to many excellen sources for further details.

4. Information Criteria and Complexity

Introduced by [5], ICOM P is a logical extension of Akaike’s AIC [1]. AIC scores a model

by penalizing a bad fit with twice the negative log-likelihood, and model complexity with

twice the number of parameters estimated. For multivariate Gaussian errors,

AIC = np log (2π)+ n log |Σ̂|+ np+ 2m, where (10)

m =

�
p (k+ 1)+

p
�

p+ 1
�

2

�
.

For m, the first term is the number of unrestricted VAR components in the model; the second is

the number of variances and covariances. Schwartz’s Bayesian Criteria (SBC or BIC) enforces

a similar penalty, scaling the number of parameters with log n. Penalizing model complexity

with no more information than the number of parameters can be compared to the proverbial

blind man trying to identify an elephant by only feeling it’s legs. This is just not enough

information to measure the information in a model. For the same dataset, neither AIC nor

SBC will be able to distinguish between two models with a similar fit and size, but different

structures. Thus, we use a form of ICOM P which penalizes model complexity with a more

judicious penalty term.
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ICOM P(F̂−1) utilizes the information in the first order maximal entropic complexity of the

estimated inverse Fisher information matrix (IFIM). Because of this more intelligent penalty,

the number of variables, their different structures, and their interrelationships are all simulta-

neously taken into consideration. In a World Title Award winning paper, [4] demonstrated the

value of ICOM P and information theoretic techniques to select autoregressive distributed lag

models for forecasting food consumption in the Netherlands. The simplest form of ICOM P

that uses this penalty function is shown in (11).

ICOM P(F̂−1) = np log (2π)+ n log |Σ̂|+ np+ 2C1(F̂
−1) (11)

Modeling procedures like this have high potential for overparameterization and bias; a useful

form of ICOM P which uses a stricter penalty,

ICOM PM ISP_PEU(F̂
−1) = np log (2π)+ n log |Σ̂|+ np+m+ 2B+ 2C1(F̂

−1), (12)

was developed by [6] as a Bayesian criterion for maximizing a posterior expected utility. The

MISP_PEU indicates that this criterion is misspecification-resistant, and its relationship to the

posterior expected utility (more on the misspecification robustness soon). For the feasible

generalized least squares estimates, F̂−1
is shown in (13).

F̂−1 (θ) =

�
(X ′supΩ̂

−1Xsup)
−1 0

0′ 2

n
D+p (Σ̂⊗ Σ̂)D

+′

p

�
(13)

The matrix Dp is a unique
�

p2 × p
�

p+ 1
�
/2
�

duplication matrix which transforms a square

matrix; D+p is its Moore-Penrose Inverse:

D+p = (D
′

pDp)
−1D′p.

See [15] for more about the duplication matrix and the matrix calculus required for the

derivations. For a given square matrix M , the complexity is defined as

C1 (M) =
s

2
log

�
t r (M)

s

�
−

1

2
log |M | , (14)

where s = rank(M). After some work, we have the complexity of the inverse Fisher informa-

tion matrix in (15).

C1(F̂
−1) = {

m

2
log




t r[
�

X ′supΩ̂
−1Xsup

�−1

] + 1

2n
G

m


 . . .

−
1

2
log |

�
X ′supΩ̂

−1Xsup

�−1
| −

p

2
log (2) +

p
�

p+ 1
�

log n

4
. . .

−

�
p+ 1

�

2
log |Σ̂∗FGLS|}. (15)
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We define G to be

G = t r(Σ̂∗2FGLS) + t r(Σ̂∗2FGLS) + 2

p∑

j=1

�
σ̂2

j j

�2

.

In most statistical modeling problems, we can’t assume that the true model is one of those

being evaluated. This can bias parameter estimates and over- or under- estimate their vari-

ances. In the context of regression, one of the most abused assumptions is that of normality.

Non-normal characteristics of data, such as kurtosis and skewness, bias the coefficient esti-

mates. To combat this, a bias estimate can be computed as B̂ = t r(F̂−1R̂). When a model is

correctly specified, it is well known that the covariance of the parameters is F̂−1 . However,

in the presence of misspecification, the appropriate covariance matrix can be shown to be
ÔCov (θ) = F̂−1R̂F̂−1. Whereas F̂ is the inner-product (or Hessian) form of the FIM, R̂ is

the outer-product form, both shown in (16) and (17).

F = −E

�
∂ 2 log L (θ)

∂ θ∂ θ ′

�
(16)

R = E

�
∂ log L (θ)

∂ θ
·
∂ log L (θ)

∂ θ ′

�
(17)

Of course, we must use the observed values for these matrices: F̂ and R̂ . Unfortunately, for

the problem of feasible generalized least squares, computation of R̂ is a currently intractable

problem, so B̂ is not directly computable. However, it can be shown that B̂ ≃ nm/ (n−m− 2).

Thus, ICOM PM ISP_PEU(F̂
−1) can still drive effective model selection, considering the non-

normal characteristics of the data, despite any incorrect assumptions, is given by

ICOM PM ISP_PEU(F̂
−1) = np log (2π)+ n log |Σ̂FGLS|+ np

+ m+ 2

�
nm

n−m− 2

�
+ 2C1(F̂

−1). (18)

Slightly simpler would be ICOM PM ISP , which does not have the m term, or ICOM PPEU ,

missing the 2B̂.

Finally, we would mention that cross-validation based criteria are often used for model

selection problems. Given the high complexity of our application, cross-validation is just not

computationally feasible. This complexity raises concerns regarding the feasibility of subset

selection, given existing computational power. One response would be to restrict attention to

very small models. Our results, however, demonstrate that arbitrary restrictions such as this

are unnecessary.

5. Numerical Results

The value of our techniques are demonstrated here using both simulated data and the

real-world example using stock market indices, respectively. In both cases, we see models

emerging that fit the data well, are efficient with their forecasts, and use substantially reduced

parameter spaces.
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5.1. Simulation

We begin by generating data from a bivariate (p = 2) autoregressive data generating

process shown in (19). �
y ′t
x ′t

�
= φ1

�
y ′t−1

x ′t−1

�
+φ2

�
y ′t−2

x ′t−2

�
+ ǫt (19)

We build the coefficient matrices as

φ1 =

�
−0.2800 0.0215

−0.5496 0.2854

�
, and φ2 =

�
−0.2785 −0.4081

−0.0144 0.1809

�
,

and the error terms are generated from a multivariate Gaussian white noise process ǫt ∼
N2

�
µ,Σ

�
with parameters

µ =
�

0.00 0.00
�

and Σ =

�
0.09 0.05

0.05 0.04

�
.

Note the presence of correlation between the error terms - we do this so as to introduce some

extra difficulty into the modeling process. Each simulation is allowed to run for a burn-in

period of 1000 cycles, which are subsequently thrown away before n = 200 observations are

saved. All modeling performed with this data was based on (1) with q = 4 lags of both vari-

ables; thus there are 218−1= 262,143 potential nontrivial subset models. An example of one

such set of simulated data can be seen in Figure 1. The simulation is clearly generating sta-

tionary data. To demonstrate that this is not necessarily an easy simulation, we attempted to
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Figure 1: Example of Simulated VAR Data.
fit a subset model of the correct structure to one set of observations. Hence we assume some a

priori knowledge of the structure. The GA string for this solution is [011110000011110000].

This indicates that: all 3rd and 4th lags are restricted to 0 for each variable, the 1st and 2nd

lags are not, and there is no intercept. We would like, of course, to see estimated parameter
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estimates reasonably close to those shown above. The fit was first performed with n = 200

observations, then with n = 1000 observations. As can be seen in Table 3, many of the pa-Table 3: Estimated φ matri
es and Relative Errors for Di�erent n.
n φ̂1,

|φ̂1−φ1|
φ1

% φ̂2,
|φ̂2−φ2|
φ2

%

200

�
−0.33 0.13

−0.62 0.36

�
,

�
18.86 493.02

12.81 25.33

� �
−0.15 −0.50

0.01 0.22

�
,

�
46.14 22.03

147.92 22.33

�

1000

�
−0.32 0.084

−0.58 0.33

�
,

�
13.04 291.16

5.26 16.78

� �
−0.21 −0.43

0.05 0.14

�
,

�
25.03 4.43

443.06 21.17

�

rameter estimates are quite biased, even when many observations were available. Next to

each estimated coefficient matrix is a matrix showing the percentage deviation from the true

coefficient. With the exception of the bold element, the accuracy of the estimates improved

substantially when n = 1000 observations are used. This is clearly a difficult environment in

which to pick a good model.

Our first set of simulation experiments with this data generating process involved fitting

all possible symmetric subset models. We assume that a lag is included / excluded for both

responses. With q = 18, this substantially reduces the computational burden from 262,143

to 511 possible models. In each simulation, five information criteria are computed based on

the FGLS estimators - AIC , SBC , ICOM P, ICOM PM ISP , and ICOM PPEU . With no desire to

“multiply hypotheses more than necessary”(William of Occam), robust covariance estimation

was performed with the Maximum Likelihood / Empirical Bayes estimator in this and the next

experiment. Table 4 shows correct model hit rates and the average model size for n = 50,

n= 200, and n= 500. Clearly, the performance of all criteria is rather dismal for the smallestTable 4: Model Hit Rates and Average Subset Model Sizes (True Model Size = 4).
AIC SBC ICOMP ICOM PM ISP ICOM PPEU

n= 50

Hit Rate (%) 18.5 13.8 13.1 2.7 12.1

Average Size 4.24 2.96 3.96 2.45 3.27

n= 200

Hit Rate (%) 49.5 87.90 59.80 84.8 77.6

Average Size 4.67 3.95 4.46 3.99 4.13

n= 500

Hit Rate (%) 49.7 99.2 62.0 94.7 84.8

Average Size 4.68 4.01 4.49 4.05 4.17

sample size evaluated. As n increases, we observe the consistency of AIC picking the correct

model less than 50% of the time, as well as the tendency to pick overly complex models.

The ICOM P with neither the heavier penalty nor the misspecification adjustment is the 2nd
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worst performer and also exhibits a tendency to overfit. Both SBC and ICOM PM ISP , however,

perform very well, picking the correct model with very high frequencies, and exhibiting no

tendency to overfit.

The strong performance of ICOM PM ISP is of particular interest. Recall that the error terms

were generated as homoskedastic multivariate gaussian noise with only slight correlation.

Thus, we would expect the model to be correctly specified. However, what we observe here

suggests something very interesting: model misspecification comes automatically with

• even slight correlation of errors

• high dimensionality −→ overparameterization

• multicollinearity inherent in time series data

More on this later.

For our second experiment with this simulation protocol, we performed 100 Monte Carlo

simulations of the entire modeling process, using the simpler form of ICOM P, shown in (11).

The best 5 subset models selected by the genetic algorithm shared remarkable similarities

in structures and parsimony. None selected an intercept for the model, and all restricted

most elements of φ̂3 and φ̂4 to be 0 - in the interest of space, only the first two terms are

shown in Table 5. Out of these top five models. It is interesting to note that there was

substantially more confusion in the estimates for the φ̂2 matrices, despite the fact that the

true variance of the error term on this component was the smaller of the two. Here we’veTable 5: Top Five Models as Sele
ted By the GA with ICOM P.
φ̂1 φ̂2 Score % Reduction

1

�
−0.230 ·
−0.466 0.245

� �
−0.247 −0.525

0.071 ·

�
−299.83 (−272.85) 61.1 (9.9)

2

�
−0.120 ·
−0.472 0.327

� �
−0.166 −0.486

0.118 ·

�
−295.08 (−272.35) 44.5 (8.3)

3

�
−0.281 ·
−0.560 0.327

� �
−0.339 −0.369

· 0.142

�
−286.94 (−257.26) 61.1 (11.5)

4

�
−0.276 ·
−0.511 0.194

� �
−0.230 −0.529

· 0.167

�
−284.28 (−256.56) 61.1 (10.8)

5

�
−0.274 ·
−0.553 0.352

� �
−0.223 −0.633

0.090 ·

�
−266.46 (−240.98) 61.1 (10.6)

identified, in the 4th column, the score for both the subset model and the corresponding

saturated model - the latter in parentheses. The final column identifies the percentage by

which the model complexity was reduced - both in terms of the parameter space and the

information complexity, respectively. With a relatively modest reduction in the information
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criteria score, we obtained greatly simplified models. Though not shown here, both the subsetTable 6: Mean Squared Errors for Simulated Data.
X1 X2

Step MSESUB,i MSESAT,i MSESUB,i MSESAT,i

10 0.0652* 0.0675 0.0325* 0.0337

20 0.0687* 0.0701 0.0321* 0.0330

30 0.0664* 0.0687 0.0326* 0.0339

40 0.0675* 0.0699 0.0331* 0.0341

50 0.0674* 0.0696 0.0334* 0.0346

60 0.0656* 0.0690 0.0320* 0.0335

70 0.0711* 0.0729 0.0339* 0.0349

80 0.0645* 0.0669 0.0315* 0.0327

90 0.0652* 0.0670 0.0319* 0.0329

100 0.0684* 0.0699 0.0333* 0.0340

and saturated models performed similarly when used to make out-of-sample predictions for

T = t+1 . . . t+100 periods ahead. Having said that, we see immense value in these methods

when we consider the forecast precision of the subset VAR model. We utilized the error term

bootstrapping procedure to perform this evaluation, with results in Table 6. The bootstrap

procedure was executed B = 2000 times, in approximately 4.5 minutes, using a forecast time

horizon of 100 days. For both the saturated and best subset models, the mean squared error

(9) was computed across all simulations. As can be seen, for all time steps considered, the

subset VAR model provided a much tighter forecast precision than the saturated model, as

measured by MSE. Finally, using the best subset VAR model, the residuals were computed and
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Figure 2: Multivariate Normality Test Results for Residuals.
analyzed to determine how well they met the standard OLS assumptions of Gaussianity. We

employed the tests for multivariate skewness and kurtosis of [16], and found the data fit the
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assumption of normality very well, as can be seen in Figure 2. Additionally, we evaluated

the sample autocorrelation coefficient for orders one to five; the strongest correlation was

−0.0408 - virtually negligible. Figure 3 shows the time-ordered plots of the residuals from

each response. It is clear that the residuals are homoskedastic. So here we see that the error
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Figure 3: Time-ordered Plot of Residuals Displaying Homoskedasti
ity.
terms from the best subset model show no departure from the assumption of uncorrelated

homoskedastic multivariate normality. And yet, our first experiment suggested the model

was misspecified. Thus, the use of stricter misspecification-resistent criteria may be justified

even when the model seems correct. We propose that this is the case for VAR modeling, in

general.

5.2. Selecting an Economically Valuable Trading Model

Our application example was performed using the first 3 months of 2002 (approximately

60 trading days) as the training period, and the ensuing 3 months as the trading period. Us-

ing the usual benchmark of Standard & Poor’s S&P 500, the uncompounded return for the

in-sample period is −0.40%. The index lost 15.28% during the testing period. Figure 4 shows

the activity of the SPX over the entire period, along with its daily changes. All analysis was

performed using uncompounded returns; this was accomplished by decomposing the series

into its relative daily changes:
�

yt − yt−1

�
/yt−1. A cumulative sum was then computed on

these daily returns. This gives a simple measure of trading activity, and acts to more conserva-

tively estimate the value of a given model. In preparing the predictor variables, the data used
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was begun six days prior to the 1st day of 2002. After all five lags were computed on the first

differences, these conditional observations were dropped. This was done so as to maintain

a constant number of usable observations across all models. In time series analysis, we are

mostly interested in forecasting, conditional upon existing data. In the specific specialization

of trading, a model that has a higher out-of-sample return is deemed to have stronger forecast

power. Due to the much higher dimensionality of this dataset, the chances of overparameter-

ization are higher. Additionally, since we are dealing with financial data, we expect heavier

tails. Thus, the model selection information criteria we employ is ICOM PM ISP_PEU with a

strict and misspecification-robust penalty term. Using the GA settings in Table 2, 100 replica-

tions of the genetic algorithm were executed. Replications that did not terminate early eval-
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Figure 5: GA Progress and Residuals Plot from Best Subset Model.
uated at most 15,000 unique subset VAR models, with average running time approximately

15 minutes. Due to the vast number of possible subset models (9.808× 1055) (and inherent
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randomness of the GA), there was much variety in results across all replications. According to

the GA progress plot in Figure 5, the best replication had converged to its final solution before

the 40th generation. The right pane of Figure 5 shows histograms of the residuals from the

best subset model; note the general Gaussian look, though the residuals from some indices

are clearly non-normal. Overall, though, there appears to be no significant departure from

Gaussianity, using Mardia’s tests. Additionally, we evaluated the condition of autocorrelation

in the residuals when the model was used to predict the SPX daily moves. 1st through 6th

order autocorrelations were −0.0635, 0.0016, 0.1242, −0.0102,−0.0193, −0.0175 - all very

small. Finally, in assessing the OLS assumptions, we inspected the time-ordered plot of these

residuals; there was no sign of heteroskedasticity.

The overall best model achieved a dramatic decrease in the number of parameters from

the saturated model - approximately 80%. The 38 (out of 186) coefficients selected by the best

model are shown in Table 7. For comparison purposes, we also performed 100 replications of

the modeling process using AIC to drive the model selection. The best subset model identified

by AIC used 82 predictors, more than twice as many as shown here - leading to less precise

forecasts. It is interesting to note that this parsimonious model only utilized nine predictors

to trade the target index, the four most important of which were:

• XAU - 5th lag - −0.393

• RUT - 2nd lag - 0.386

• SPX - 2nd lag - −0.347

• XAU - 4th lag - 0.155

According to this model, the SPX is mostly influenced by the Amex Gold Producers index,

the Russell 2000 index, and itself. After the best VAR coefficients were determined by the

genetic algorithm, the direction of daily moves was predicted by si gnum(ÕSPX t). Interpreting

these predictions as buy-long or sell-short signals, trading was simulated over the entire 6

month period, with uncompounded returns accumulated and shown in Figure 6. The model

did not perform all that well over the in-sample period, racking up more than 3% in losses

while the index was flat. In the testing period, however, while the index lost more than

15%, the model made more than 17% - far outperforming the benchmark. Who wouldn’t

be happy with +17% gains while the stock market lost so much ground? Out of the 100

replications, 90 of the models outperformed the index - for the training period. While only

15% lost money during the testing period, ALL outperformed the benchmark. In Table 8,

we’ve provided results from the best seven models (associated with seven lowest ICOM P

values) across all simulations. Assuming we were performing the model training in real time,

clearly we would have been more interested in the models with both low scores and high

in-sample returns. Several of these models had very good out-of-sample performance. Thus,

even if we were to pass over the best model according to ICOM P, the next several would

perform admirably. In fact, the first two have such similar ICOM P scores (not e1 apart)

that the models are indistinguishable. This table bolsters our confidence that out-of-sample

performance of our procedure is generally good, despite the specific evolutionary trajectory

followed by the population of chromosomes leading to this specific overall best solution.

Finally, we address the precision of the forecast errors from this very parsimonious model,

using the procedure detailed in Section 2.2. In the interest of simplified output, the entire
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Figure 6: Trading Results from Best Subset Model.
forecast horizon was divided into increments of 10. Table 9 shows the MSE’s for just the SPX

index. Even as far as 100 observations into the future, we see that the subset model made

substantially (order of 2 or better) more precise forecasts than the saturated model. We can

also see this demonstrated graphically in Figure 7. It is interesting to note how similar the

point estimates were for both models. At least on this wide scale, they overlap enough to

blur the differences. We see, however, how much wider are the error bands (±2σ̂) when

constructed using the saturated model. Thus, the methods presented have allowed us to build

a model that is:

• not overly complex

• fits the data extremely well

• is very precise
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ients from Best Subset VAR Model.
DJ20 MID NDX RUT SPX XAU

CONST 8.130 · · · · ·
DJ20(1) · · · · · ·
MID(1) 0.459 · · · −0.039 −0.008

NDX(1) 0.797 · · · · ·
RUT(1) −4.267 · · · · ·
SPX(1) · · · −0.022 · ·
XAU(1) · · · · · ·
DJ20(2) · · · · · ·
MID(2) · · · · · ·
NDX(2) · · · · 0.049 ·
RUT(2) · · · 0.133 0.386 ·
SPX(2) · · · · −0.347 ·
XAU(2) · · 0.332 −0.022 · ·
DJ20(3) · · · · · ·
MID(3) · 0.157 · · · ·
NDX(3) · · · · · −0.012

RUT(3) · −0.192 · · −0.087 ·
SPX(3) · −0.017 · · · ·
XAU(3) −3.555 · · · · ·
DJ20(4) · · 0.079 −0.007 · ·
MID(4) 4.454 · · · · ·
NDX(4) 0.401 −0.014 · · · ·
RUT(4) −4.938 0.025 −0.470 · · ·
SPX(4) −1.824 · · · · ·
XAU(4) · 0.174 −0.635 · 0.155 0.064

DJ20(5) · · · · · ·
MID(5) · 0.009 · · · ·
NDX(5) · · · · · ·
RUT(5) · · 0.322 · −0.058 ·
SPX(5) · · · · 0.021 ·
XAU(5) −6.665 · · · −0.393 ·Table 8: Trading Results from Best 7 Subset VAR Models.

Score In-Sample % Out-Sample %

−4284.11 −3.14 17.14

−4283.64 7.40 18.16

−4277.51 3.49 5.95

−4277.35 0.09 13.38

−4276.85 13.33 15.65

−4275.28 3.27 24.73

−4274.25 10.64 28.25
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Table 9: Mean Squared Errors for S&P 500.
Step MSESUB,i MSESAT,i

10 154.2658* 322.3142

20 146.0149* 303.9236

30 148.3140* 309.1208

40 149.6718* 305.8698

50 148.4665* 309.1991

60 151.9430* 311.2008

70 155.3841* 310.0720

80 149.8774* 311.3456

90 151.9360* 309.3476

100 153.6293* 317.7458
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6. Concluding Remarks

In this paper, we have set forth the idea that the genetic algorithm, along with the appro-

priate form of ICOM P, can be used to select a vector autoregressive model that exhibits accu-

rate and efficient forecast performance. Our research suggests that, when modeling complex

vector autoregressions, a strict criterion that is robust to model misspecification is required

even when there is no sign of heteroskedasticity, non-Gaussianity, or autocorrelation in the

model residuals.

We have demonstrated our claims by creating a valuable trading model for the Standard

and Poor S&P 500 index from a universe of the first five lags of six major market indices.

In our analysis, we have assumed there are no trading fees associated with implementing

the model. Indeed, the best model switched positions (long/short) 34 times during the 60-

day testing period, so trading fees could add up quickly. There are at least two mutual fund

companies (ProFunds, Rydex) that offer market index tracking funds. They both allow daily

trading, at least they used to, so this assumption is not too wildly made. Of course, in an

effort to appropriately diversify, one would be interested in trading other indices as well.

This method would be one voice in a portfolio of models. In Table 1, we noted the high

multicollinearity between the indices modeled. A quick review of the table, however, will

show that the Amex Gold Producer index XAU was only slightly negatively correlated with

any of the others. Additionally, two lags of XAU were selected for SPX. This suggests that

a valuable modification would be to include uncorrelated, and even negatively correlated

predictors, in order to achieve a model that uses as much information as possible and is market

neutral. To operationalize these methods, several implementation modifications would have

to be made.

Past experience has shown us that over time, predictive relationships between indices

change. There was a time (1998-2002) when a very naive model based on 1, 2, or 3 lags of the

daily changes in the SPX, RUT, and MID could very effectively predict the indices daily moves.

These relationships largely broke down after that period. Additionally, it has been seen that

predictor indices can move in and out of a model quickly, even on a weekly basis. As such, this

modeling procedure would need to be retrained periodically. Secondly, a question that must

be answered is how long are the optimal training / testing periods. In this empirical work,

we demonstrated our ideas using 3 months for each. It seems unlikely that the same indices

would consistently retain their predictive power over entire quarters. It is anticipated that

better results would be achieved by retraining the model more frequently. The appropriate

training period is also an important consideration. If it is too short, the model may be unduly

influenced by unstable short-term parameter shifts; however, if the period is too long, the

model will miss trend reversals and react too slowly. We have seen economically valuable

trading models with training periods as long as a year, and as short as two weeks. These two

settings can be determined empirically using historical back-testing.

Lastly, there are computational issues to be considered with this type of model. The com-

plexity of our problem requires consideration of the feasibility of subset selection, given ex-

isting computational power. While one simulation took at most 15 minutes, obtaining results

across many simulations is recommended, due to the fact that there are 9.808×1055 possible
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subset VAR models. The 100 replications executed in approximately 24-25 hours - at most an

estimated 1,500,000 unique models were evaluated. While this seems large, it is insignifi-

cant compared to the number possible. Accelerating or distributing the computations so as to

better search the model space would be a valuable contribution.
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