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Abstract. A set S C V(G) of an undirected graph G is a locating-dominating set of G if for
each v € V(G) \ S, there exists w € S such tha vw € E(G) and Ng(z) NS # Ng(y) N S for
any two distinct vertices  and y in V(G) \ S. S is a stable locating-dominating set of G if it
is a locating-dominating set of G and S\ {v} is a locating-dominating set of G for each v € S.
The minimum cardinality of a stable locating-dominating set of G, denoted by vsrp(G), is called
the stable locating-domination number of G. In this paper, we investigate this concept and the
corresponding parameter for edge corona and lexicographic product of graphs.
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1. Introduction

Let G = (V(G), E(Q)) be an undirected graph. The distance between two vertices
u and v of G, denoted by dg(u,v), is equal to the length of a shortest path connecting
u and v. Any path connecting u and v of length dg(u,v) is called a u-v geodesic.The
neighborhood of v € V(G) is the set Ng(v)= {z € V(G) : zv € E(G)}. The degree of
v € V(G), denoted by dega(v), is equal to the cardinality of Ng(v) and the mazimum
degree of G is A(G)= max {dega(x) : x € E(G)}. A vertex v of G is a leaf if dega(v) =
1. A vertex u of G is a support if uv € E(G) for some leaf v of G. A connected graph
G of order n > 3 is point distinguishing if for any two distinct vertices v and v of G,
Nglu] # Nglv]. It is totally point determining if for any two distinct vertices u and v of
G, Ng(u) # Ng(v) and Ng[u] # Ng[v]. These concepts are defined and studied in [7] and
[21].
A subset S of V(G) is a dominating set of G if for every v € V(G) \ S, there exists
u € S such that zv € E(G). S is a locating set in G if Ng(u) NS # Ng(v) NS for every
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two distinet vertices u,v € V(G) \ S. A locating set S is said to be a strictly locating
set if Ng(u)nNS # S for all w € V(G) \ S. A locating set (strictly locating set) S is a
stable locating set (resp. stable strictly locating set) if S\ {v} is a locating (resp. strictly
locating) set for each v € S. A locating (resp. strictly locating ) set S of V(G) which is
also a dominating set is called a locating-dominating (resp. strictly locating-dominating)
set of G. A locating-dominating (strictly locating-dominating) set S is a stable locating-
dominating (resp. stable strictly locating-dominating) set of G if S\ {v} is a locating-
dominating (resp. strictly locating-dominating) set of G for each v € S. The minimum
cardinality of a locating (strictly locating, stable locating, stable strictly locating) set
of G is denoted by In(G) (resp. sin(G), sbin(G) , sbsin(G)). Any locating (strictly
locating, stable locating, stable strictly locating) set of G with cardinality (n(G) (resp.
sin(G), sbin(G), sbsin(@)) is called an In-set (resp. sin-set, sbln-set, sbsin-set) of G. The
minimum cardinality of a locating-dominating (resp. strictly locating-dominating, stable
locating-dominating, stable strictly locating-dominating) set of G is denoted by ~5(G)
(resp. vsL.(G), ¥s£.(G), Vss.(G)). Any locating-dominating (strictly locating-dominating,
stable locating-dominating, stable strictly locating-dominating) set of G with cardinality
YL(G) (resp. vsL.(G), vsn.(G), vss.(G)) is called an ~yr-set (resp. ysr-set, ysr-set, Vssr-set)
of G.

Domination and some variations of the concept are found in the book by Haynes et
al. (see [9]). Other variations of domination can be found in [2], [3], [4], [5], [11], [12],
[16], and [18]. The concepts of locating, stricly locating, locating-dominating, and strictly
locating-dominating, and the associated parameters are studied in [6], [8], [10], [13], [14],
[15], [17], [19], [20]. The concept of stable locating-dominating and related concepts are
studied in [1].

Let G and H be any two graphs. The edge corona GoH is the graph obtained by taking
one copy of G and |E(G)| copies H and joining each end vertices u and v of every edge uv to
every vertex of the copy H" of H (i.e. forming the join ({u,v})+H"" for each uv € E(G)).
The lexicographic product G[H] is the graph with vertex-set V(G[H]) = V(G) x V(H) and
edge-set E(G[H]) satisfying the following conditions: (x,u)(y,v) € E(G[H]) if and only if
either zy € E(G) or x =y and uv € E(H). It is easily observed that for any non-empty
subset C of V(G[H]) = V(G) x V(H), this set can be expressed as C = Uzes({z} x Ty),
where S C V(G) and T, C V(H) for each x € S. Set S = Cg = {z € V(GQ) : (z,a) €
C for some a € V(H)} is called the G-projection of C. Moreover, for each z € S,
T.={acV(H): (z,a) € C}.

2. Results

Throughout, we denote by £(G) the set containing all leaves of a graph G.
The first result is found in [1].

Theorem 1. Let G be graph without isolated vertices. Then G has a stable strictly locating
set if and only if v(G) # 1.
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Theorem 2. Let G be a connected graph of order m > 3 and let H be any non-trivial
connected graph. Then C is a locating-dominating set of G ¢ H if and only if C' =
AU [Uypep(a)Suw] and satisfies the following conditions:

(i) ACV(G).

(17) For each uv € E(G),

L(G) # 2.

(731) For each uv € E(G) withv € Aandu ¢ A, if x € V(H")\ Syp and Nyuv(z) NSy =
@, then for each w € Ng(v)\ {u} and for each y € V(H™")\ Sy, it holds that w € A
or Nyws(y) N Sy # D

Proof. Suppose C' is a locating-dominating set of G o H. Let A = C N V(G) and
Suw = CNV(H"™) for each uv € E(G). Then C = AU [Uyep(q)Sw) and (i) holds. Let
uv € E(G). Since C is a locating set of G o H, Sy, # @. Let x,y € V(H") \ Sy with
x #yand let S = AN{u,v}. Since C is a locating set,

[Npuo (2) N Sup] US = Nagorr () NC # Naorr(y) N C = [Nguo(y) N Sup] U S.

This implies that Nguwe(x) N Syy # Npuo(y) N Syy, showing that Sy, is a locating set of
H"". Suppose u,v ¢ A. Since C' is a dominating set of G ¢ H, Sy, is a dominating set of
V(H"’. Hence, (a) and (b) hold. Next, suppose that uv € E(G) and v € L(G) \ A. Let
S*=AN{u} and let z € V(H"") \ Sy. Again, since C is a locating set,

[N (2) N Sup] U S* = Naorr (2) N C # Neop(v) N C = Syy U S,

This implies that [Nguv(z) N Syy] # Suw, showing that Sy, is a strictly locating set of H"V.
If S* = @ (that is, u ¢ A), then Sy, is a dominating set of V(H""). Thus, (c) and (d)
hold.

Finally, let wv € E(G) with v € A and u ¢ A. Suppose x € V(H") \ Sy, and
Npyuv(z) N Syy = @. Then Ngou(x) N C = {v}. Let w € Ng(v) \ {u} and let y €
V(H"Y)\ Syy. Suppose w ¢ A. Then Ngom(y) NC = [Ngwo(y) N Sye] U{v}. Since C is a
locating set of Go H, Ngop () NC # Ngom(y)NC. This implies that Ngwe (y) NSy # <,
showing that (7i7) holds.

For the converse, suppose that C' has the form described and satisfies (7), (i7), and
(#i1). Let z € V(G o H) \ C and let wv € E(G) such that z € ({u,v}) + H*". If 2z = u
or z = v, then there exists t € Sy, C C such that z € Ngom(t) by (ii)(a). Suppose
z€ V(H")\ Sy fuec Aorve A thenuz € E(GoH)orvz € E(GoH). If u,v ¢ A,
then there exists s € Sy, N Ngom(2) by (i7)(b). Hence, C is a dominating set of G ¢ H.



G. Malacas, S. Canoy, Jr., E. Chacon / Eur. J. Pure Appl. Math, 16 (1) (2023), 479-490 482

Next, let p,q € V(GoH)\C with p # ¢q and let uwv, zy € E(G) such that p € ({u,v})+H™
and g € ({z,y}) + H*. Consider the following cases:

Case 1. The edges uv and xy are non-adjacent (i.e., they do not share a common vertex).

Neaor(p) N C # Ngor(q) N C. Suppose that p ¢ {u,v} and ¢ ¢ {x,y}. Then p €
V(H") \ Syy and q € V(H™) \ Sgy. Since Ngou(p) N C C V({{u,v}) + H*) and
Neor(q) NC SV ({z,y}) + H™), it follows that Ngop(p) N C' # Naor(q) N C.

Suppose that p € {u,v} or ¢ € {z,y}. Since Sy, € Ngom(p) and Szy C Ngom(q),

Case 2. The edges wv and zy are distinct and adjacent.

We may assume that x = u. If p € {u,v} or ¢ € {z,y}, then Ngor(p) NC # Ngor(q) NC
(as in Case 1). So suppose that p ¢ {u,v} and ¢ ¢ {z,y}. If Nguw(p) N Sy # & or
Npzv(y) N Syy # @, then Ngor(p) NC # Ngor(q) N C. Suppose that Nyuwe (p) NSy, = @
or Nyay(y) NSy =@. If u€ A, then y € A or v € A by (4ii). Suppose that u ¢ A. Then
by (it)(b), y,v € A. Since v € Ngou(p) N C, y € Ngor(y) N C, and y # v, it follows that
Ngor(p) NC # Ngor(q) N C.

Case 3. The edges wv and zy are the same.

We may assume that x = w and y = v. Suppose first that p = v and ¢ = v. Since G
is connected and G # Ka, we may assume that there exists w € V(G) \ {u,v} such that
vw € E(G). Because @ # Syw C (Naor(q) NC\ (Ngor (p) N C), we have Ngom(p) N C #
Ngon(q)NC. Suppose that p,q € V(H")\ Syy. By (ii)(a), Neon(p) NC # Ngon(q)NC.
Finally, suppose that p € V(H") \ Sy, (or ¢ € V(H") \ Sy) and ¢ € {u,v} (resp.
p € {u,v}). We may assume without loss of generality that ¢ = u. Consider the following
subcases:

Subcase 1. u,v ¢ L(G).

Then there exist a,b € V(G) such that au,bv € E(G). Since Sq, C Ngom(q) N C and
Sau N Ngor(p) = @, Naor(p) NC # Ngon(q) NC.

Subcase 2. v € L(G) or v € L(G).

By (ii)(c) and (ii)(d), Syy is a strictly locating set of V(H""). It follows that Nguv(p) N
Suv 7# Sup- Since Syy € Ngor(q) NC, Ngor(p) NC # Ngor(q) N C.

Accordingly, C' is locating-dominating set of G o H. O

A set S C V(G) is a vertex cover of G if for every uv € E(G), u € Sorv € S. A
vertex cover S is a perfect vertex cover of G if for each v € S and for each pair of distinct
edges uv and wv of G, u € S or w € S. The smallest size of a perfect vertex cover of
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G, denoted by 5,(G), is called the the perfect vertex covering number of G. Any perfect
vertex cover of G of size ,(G) is called a [3,-set or a minimum perfect vertex cover of G.

Example 1. 3,(K,) =n—1 for each n > 2.

Corollary 1. Let G be a connected graph of order m > 3 and let H be any non-trivial
connected graph.

(1) If L(G) = @, then

1L(G o H) < min{f5,(G) + [E(G)|In(H), |E(G)|yL(H)}-

(17) If L(G) # @, then

VL(G o H) < min{f5,(G) + |E(G)|sin(H), |E(G)|ysL(H)}

Proof. (i) Suppose that L(G) = @. Let Si be a 5,-set of G and let Sy, be a minimum
locating set of H"Y for each uv € E(G). Then C1 = S U [Uyuepe)Suw)] is a locating
dominating set of G o H by Theorem 2. Hence, v,(G o H) < |C1| = B,(G) + |E(G)|In(H).
Now, let Ly, be a yr-set of H"" for each uv € E(G). Then Cy = UwveE(G) Luv 1s a locating
dominating set of GoH by Theorem 2. This implies that v.,(GoH) < |Cs| = |E(G)|yL(H).
Therefore, (i) holds.

(#7) Suppose that L(G) # @. Let S be a fBp-set of G and let S}, be a minimum strictly
locating set of H"" for each uv € E(G). Then C3 = S U [Uyyep()Sy, is a locating domi-
nating set of Go H by Theorem 2. Hence, v (Go H) < |C3] = 5,(G) + |E(G)|sin(H). Let
Ry be a ygp-set of H* for each uv € E(G). Then Cy = Uyyep(q) Ruv is a locating dom-
inating set of G H by Theorem 2. This implies that v, (G ¢ H) < |Cy| = |E(G)|vsL(H),
showing that (¢7) holds. O

Remark 1. The bounds in Corollary 2 are sharp.
Indeed, it can be verified that
VL(K3 0 Ps) = [E(K3) |y (Ps) = 6 < 8 = [p(K3) + [E(K3)[In(Fs),
YL(K3 0 P3) = Byp(K3) + |[E(K3)|ln(Ps) =5 < 6 = |E(K3)|vL(P3),
YL(P3 o P3) = |E(P3)|ysp(Ps) =4 < 6 = Bp(P3) + |E(Ps)|sln(Ps), and
VL(Py o Ps) = Bp(Py) + |E(Py)[sln(Ps) = 8 <9 = |E(Py)|ysL(Ps)-

Theorem 3. Let G be a connected graph of order m > 3 and let H be any non-trivial
connected graph. Then C is a stable locating-dominating set of G ¢ H if and only if
C = AU [Uypep@)Suw] and satisfies the following conditions:

(i) ACV(G).
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(74) For each uwv € E(G),

(a)
(0)
(c)

(d) Sy is a stable strictly locating-dominating set of H"Y whenever u,v ¢ A and

{u,v} N L(G) # .

Suv is a stable locating set of H"Y;
Suy 18 a stable locating-dominating set of H** whenever u,v ¢ A;
Suv is a stable strictly locating set of H"? for each v € L(G) with v ¢ A; and

(#7i) For each w € A and for each z € Ng(w), we have:

(a) Suy is a strictly locating set of H*" whenever w € L(G) and

(b) S.u is a strictly locating-dominating set of H** whenever z ¢ A and {z,w} N
L(G) # 2.

(iv) For each zw € E(G) with z € A and w ¢ A, if x € V(H*") \ [Sw \ {p}] for
P € Sz and Ngzw () N (S \ {p}) = &, then for each y € Ng(2) \ {w} and for each
q € V(HY?)\ Sy, it holds that y € A or Ngv=(q) NSy, # @.

Proof. Suppose C' is a stable locating-dominating set of G ¢ H. Let A = C NV (G)
and Sy, = CNV(H") for each uv € E(G). Then C = AU [Uyyep(q)Suw] and (i) holds.
Let zy € E(G). By Theorem 2(ii)(a), Sgy is a locating set of H*Y. Let p € S;,. Then by
assumption, C'\ {p} = AU [Uype[p(@)\{ay})Suv] U (Szy \ {P}) is a locating-dominating set of
GoH. It follows from Theorem 2(i7)(a) that Sy, \ {p} is a locating set of H*Y. If x,y ¢ A,
then Sgy \ {p} is a locating-dominating set of H*¥ by Theorem 2(i7)(b). If one of x and
y, say € L(G) \ A, then Sy, \ {p} is a strictly locating set of H*Y by Theorem 2(ii)(c).
Morover, if z,y ¢ A and € L(G) or y € L(G), then Sy, is a strictly locating-dominating
set of H*Y by Theorem 2(ii)(d). Therefore, (a), (b), (¢), and (d) hold.

Next, let w € A and let z € Ng(w). Since C is a stable locating-dominating set of
GoH,

C \ {U}} = (A \ {w}) U [UU’UEE(G)S’U’U}

is a locating-dominating set of G H. It follows from (c) and (d) of Theorem 2 that S, is
a strictly locating set of H*" whenever w € L(G) and S, is a strictly locating-dominating
set of H*" whenever z ¢ A (hence, z ¢ A\ {w}) and {z,w} N L(G) # @. This shows that
(7i7) holds.

Finally, let zw € F(G) with z € A and w ¢ A. Let p € S,,,. Then, again,

C\{p} = AU [Unve[@)\{zw}] Suv]) U (Szw \ {P})

is a locating-dominating set of G ¢ H. Hence, by Theorem 2(iii), statement (iv) holds.
For the converse, suppose that C has the given form and satisfies (i), (i¢), (i) and
(v). By (i) and (di), it follows that (i) and (i7) of Theorem 2 are satisfied by C. Let
zw € E(G) with z € Aand w ¢ A. Let x € V(H?*")\ Szp. Then z € V(H*™)\ [Szw \ {P}]
for p € S.u. Suppose Npgzw(x) N Sz = @. Then Npyz=w(z) N (S \ {p}) = @. Hence,
by (iv), for each y € Ng(z) \ {w} and for each ¢ € V(HY?) \ Sy, it holds that y € A or
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Nrv=(q) N Sy, # @. Thus, (iii) of Theorem 2 also holds for C. Therefore, C' is a locating
dominating set of G o H. Let ¢ € C and let wv € E(G) such that ¢ € V({({u,v}) + H*).
Suppose first that p € {u,v}. Then

Cr = C\ {p} = (A\ {p}) U [queE(G)Suv]-
Accordingly, C is a stable locating-dominating set of G ¢ H. O

The next two results follow from Theorem 3.

Corollary 2. Let G be a connected graph of order m > 3 with L(G) = @ and let H be any
non-trivial connected graph. If C' = U,,eg(q)Sur and Sy, is a stable locating-dominating
set of H" for each uwv € E(G), then C is a stable locating-dominating set of G o H. In
particular,

Ys£.(G o H) < |E(G)|ysn(H).

Proof. Since L(G) = @ and Sy, is a stable locating-dominating set of H"? for each
w € E(G), C = Uyyepq)Suw satisfies the conditions in Theorem 3. Thus, C' is a stable
locating-dominating set of G o H and vs.(G o H) < |C| = |E(G)|ys.(H). O

Corollary 3. Let G be a connected graph of order m > 3 with L(G) # @ and let H
be any non-trivial connected graph with v(H) # 1. If C = Uyep@)Suw and Sy is a
stable strictly locating-dominating set of H" for each uwv € E(G), then C is a stable
locating-dominating set of G H. Moreover,

Ys0.(G o H) < |C| = |E(G)|vssL(H).

Proof. By Theorem 1 and the assumption that v(H) # 1, H admits a stable strictly
locating-dominating set. Since Sy, is a stable strictly locating-dominating set of H*V for
each wv € F(G) and L(G) # @, C = Uyep@)Suw satisfies the conditions in Theorem
3. Hence, C is a stable locating-dominating set of G ¢ H and ~s,(G o H) < |C| =
|E(G)|vssL(H). 0

The next result is found in [15].

Theorem 4. Let G and H be non-trivial connected graphs such that A(H) < |V(H)|—2.
Then C = U ({z} x T}), where S C V(G) and T,, C V(H) for each z € S, is a locating-

x€S
dominating set of G [H] if and only if the following hold.
(1) S=V(Q).

(13) T, is a locating set in H for every z € V(G).

(¢43) Ty or T, is strictly locating in H whenever x and y are adjacent vertices of G with
Nelz] = Nelyl-
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(iv) Ty or Ty is a dominating set in H whenever « and y are distinct non-adjacent vertices
of G with Ng(z) = Ng(y).

Theorem 5. Let G and H be non-trivial connected graphs with A(H) < |V(H)| — 2.

Then C' = U ({z} x T;), where S C V(G) and T, C V(H) for each = € S, is a stable

x€S
locating-dominating set of G [H]| if and only if each of the following conditions hold.

(i) S=V(QG).
(17) Ty is a stable locating set in H for every z € V(G).

(797) If = and y are adjacent vertices of G with Ng[x] = Ngly] and one, say T, is not
strictly locating, then T}, is a stable strictly locating set of H.

(tv) If z and y are distinct non-adjacent vertices of G with Ng(z) = Ng(y) and one, say
T, is not a dominating set, then T}, is a stable dominating set of H.

Proof. Suppose C' is a stable locating-dominating set of G [H]. By Theorem 4, S =
V(G) and Ty is a locating set of H for each x € V(G). Let z € S and let a € T,. By
assumption, C'\{(z,a)} = [ U ({z} xTy)]U[{z} x (T: \ {a})] is a locating-dominating

zeS\{z}
set of G[H]. By Theorem 4(ii), T, \ {a} is a locating set of H. This implies that T} is a
stable locating set of H. Thus, (ii) holds.

Suppose now that = and y are adjacent vertices of G with Ng[x] = Ngly]. Suppose
that one, say T} is not a strictly locating set of H. By Theorem 4(iii), T} is a strictly
locating set of H. Let p € T),. Since

C\{wpr=1 U (= xTul{y} < (T,\ {p})]

zeS\{y}

is a locating-dominating set of G[H] and T}, is not strictly locating, it follows from Theorem
4(i13) that T, \ {p} is strictly locating. Therefore, T, is a stable strictly locating set of H,
showing that (7i7) holds.

Next, suppose that x and y are distinct non-adjacent vertices of G with Ng(z) =
N¢(y). Suppose that one, say T} is not a dominating set of H. Then T}, is a dominating
set of G by Theorem 4(iv). Let ¢ € T},. Since

C\{way=1 U (= xT)IUl{y} x (T,)\ {a})]

zeS\{y}

is a locating-dominating set of G[H] and T} is not a dominating set of G, Ty, \ {¢} is a
dominating set of H by Theorem 4(iv). This shows that T}, is a stable dominating set of
H. Thus, (iv) holds.

For the converse, suppose that C' satisfies (), (i7), (¢i7) and (iv). Then C satisfies the
conditions (), (it), (i74) and (iv) of Theorem 4. Hence, C' is a locating-dominating set of
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G[H]. Let (y,a) € C. Then

C=C\{w,a)} =1 |J (a} xT)IUly} x (Ty\ {a})].

zeS\{y}

By (ii), T, \ {a} is a locating set and T, are stable locating sets of H for each z € S\ {y}.
This would also imply that Cf, = §* = S = V(G). Let x and z be adjacent vertices of G
with Ng[z] = Nglz]. If T, is strictly locating, then we are done. So suppose that T} is
not strictly locating. Then by (iii), T, is a stable strictly locating set. Hence, if z # y,
then T, is strictly locating and, if z = y, then T}, \ {a} is strictly locating. Finally, let u
and w be distinct non-adjacent vertices of G with Ng(u) = Ng(w). If T, is dominating
is a dominating set, then we are done. Suppose T is not a dominating set in H. Then
by (iv), T\ is a stable dominating set of H. This implies that T}, is a dominating set if
w # y and Ty \ {a} is a dominating set if w = y. Therefore, C* is a locating-dominating
set of G[H]. Accordingly, C is a stable locating-dominating set of G[H]. O

Given a non-trivial connected graph H, we denote by ~j (H) the smallest size of a
dominating stable locating set of H, i.e.,

vi(H) = min{|S| : S is a dominating stable locating set of H}.

Any dominating stable locating set of H of size vj (H) is called a 7;j-set of H. Note that
since V(H) is a dominating stable locating set, it follows that H admits a dominating
stable locating set.

Consider the graph H in Figure 1 below. Clearly, S = {c,d, e} is a dominating stable
locating set of H and ~}(H) = |S| = 3.

a d
o se
O—¢
b c
Figure 1

Corollary 4. Let G and H be non-trivial connected graphs. If G is point determining,
then

VsL(G[H]) < [V(G) v (H).

Proof. Let D be a ~j-set of H and let T, = D for each x € V(G). Then C =

U ({x} x T,) is a stable locating-dominating set of G[H] by Theorem 5. Thus,
zeV(G)
1sL(GIH]) < |C] = [V(G) |y (H). O
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Note that the bound in Corollary 4 is tight. To see this, consider the graph H in
Figure 1. It can easily be verified that vs7,(P3[H]) =9 = 3.3 = |V(P3)|vi(H).

The next result follows from Theorem 5.

Corollary 5. Let G be a connected totally point determining graph and let H be any
non-trivial connected graph. Then C' = U ({z} x T;), where S C V(G) and T,, C V(H)

z€S
for each x € S, is a ysz-set of G [H] if and only if S = V(G) and T} is an sbin-set of H

for every = € V(G). In particular,
VsL(G[H]) = [V(G)|sbin(H).

Proof. By Theorem 5, C' = U ({z} x Ty), where is a ysr-set of G [H] if and only if

TES
S =V(G) and T, is an sbln-set of H for every x € V(G). Now, let D be an sbin-set of

H and let T, = D for each z € V(G). Then Cy = U ({z} x T) is a ysz-set of G [H].

zeV(G)
Therefore, vs1,(G[H]) = |C| = |[V(G)|sbin(H). O

3. Conclusion

The locating dominating sets in the edge corona of graphs were characterized and
bounds for its locating-domination number were obtained. The stable locating-dominating
sets in the edge corona and lexicographic products of graphs were also characterized. Tight
bounds for their stable locating-domination numbers were determined. A further study of
stable locating-domination in other graphs is highly recommended. It is not yet known if
the stable locating dominating set problem is NP-complete.
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