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Cliques and Supercliques in a Graph
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Abstract. A set S ⊆ V (G) of an undirected graph G is a clique if every two distinct vertices in
S are adjacent. A clique is a superclique if for every pair of distinct vertices v, w ∈ S, there exists
u ∈ V (G) \S such that u ∈ NG(v) \NG(w) or u ∈ NG(w) \NG(v). The maximum cardinality of a
clique (resp. superclique) in G is called the clique (resp. superclique) number of G. In this paper,
we determine the clique and superclique numbers of some graphs.
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1. Introduction

Recently, Dela Cerna and Canoy (see [3]) initiated the study of the concept of super-
clique in a graph. It is known that the superclique number of a graph is at most equal
to the clique number of the graph. Moreover, it was shown that any two positive integers
a and b with 2 ≤ a ≤ b are, respectively, realizable as the superclique number and clique
number of a connected graph. This result also implies that the difference of the clique
number and the superclique number can be made arbitrarily large. As pointed out in an
earlier study, superclique and superclique number were introduced and first used in the
study of Acal, Monsanto, Sumaoy, and Rara in [1], [14], and [21] when they investigated
some variations of resolving domination for graphs under some binary operations. Their
study was motivated by the concepts of strong resolving set, strong metric dimension, and
resolving domination which were introduced and studied in [2], [16], and [19]. These lat-
ter studies, in turn, came after Slater in [20] introduced the concepts of resolving set and
metric dimension. The same concepts were also independently investigated by Harary and
Melter in [9]. Chartrand et al. (see [4]) also studied resolving set and metric dimension of
a graph.

Domination and some variations of domination are found in [10]. Other studies on
domination are in [11], [12], [17], and [22]. Some studies involving cliques can be found in
[5], [6], [7], [8], [13], [15], [18], and [23].
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2. Terminologies and Notations

Let G = (V (G), E(G)) be a simple undirected graph. The distance between two
vertices u and v of G, denoted by dG(u, v), is equal to the length of a shortest path
connecting u and v. Any path connecting u and v of length dG(u, v) is called a u-v geodesic.
The open neighbourhood of a vertex v of G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}
and its closed neighbourhood is the set NG[v] = NG(v) ∪ {v}. The open neighbourhood of
a subset S of V (G) is the set NG(S) = ∪v∈SNG(v) and its closed neighbourhood is the set
NG[S] = NG(S) ∪ S. The degree of v, denoted by degG(v), is equal to |NG(v)|.

A set S ⊆ V (G) is a dominating set of G if NG[S] = V (G). The smallest cardinality
of a dominating set of G, denoted by γ(G), is called the domination number of G. A
dominating set of G with with cardinality γ(G) is called a γ-set of G.

A set S ⊆ V (G) is a clique in a graph G if the graph G[S] = ⟨S⟩ induced by S is
a complete subgraph of G. A clique C in G is called a superclique if for every pair of
distinct vertices u, v ∈ C, there exists w ∈ V (G) \ C such that w ∈ NG(u) \ NG(v) or
w ∈ NG(v)\NG(u). The clique number (resp. superclique number) of G, denoted by ω(G)
(resp. ωs(G)), is the largest cardinality of a clique (resp. superclique) in G. Any clique
(resp. superclique) in G with cardinality ω(G) (resp. ωs(G)) is called a maximum clique
or ω-set (resp. maximum superclique or ωs-set).

LetG andH be graphs. The edge corona G⋄H of graphsG andH is the graph obtained
by taking one copy of G and |E(G)| copies of H and joining each of the end vertices u and
v of every edge uv in G to every vertex of the copy Huv of H. ( that is forming the join
⟨{u, v}⟩+Huv for each uv ∈ E(G)). The Tensor product G⊠H of graphs G and H is the
graph with vertex set V (G)×V (H) and (u, v) is adjacent with (u′, v′) whenever uu′ ∈ E(G)
and uv′ ∈ E(H). The strong product G⊗H of graphs G and H is the graph with vertex
set V (G)× V (H) and (u, v) is adjacent with (u′, v′) whenever [uu′ ∈ E(G) and v = v′] or
[vv′ ∈ E(H) and u = u′] or [uu′ ∈ E(G) and vv′ ∈ E(H)]. We note that every non-empty
subset C of V (G)× V (H) can be expressed as C = ∪x∈S [{x} × Tx], where S ⊆ V (G) and
Tx = {a ∈ V (H) : (x, a) ∈ C} for each x ∈ S.

3. Results

The first result is found in [3]. Recall that two adjacent vertices v and w of a graph G
are true twins if NG[v] = NG[w].

Theorem 1. Let G be any graph. Then each of the following statements holds:

(i) G admits a superclique and 1 ≤ ωs(G) ≤ ω(G).

(ii) ωs(G) = 1 if and only if every component of G is complete.

(iii) ωs(G) = ω(G) if and only if G has a maximum clique containing no true twin
vertices.

Theorem 2. Let G be a nontrivial connected graph and H be any graph. Then S is clique
in G ⋄H if and only if one of the following holds:
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(i) S is a clique in G.

(ii) S is clique in Huv for some uv ∈ E(G).

(iii) S = Suv∪D, where Suv is a clique in Huv and ∅ ̸= D ⊆ {u, v} for some uv ∈ E(G).

Proof. Suppose S is a clique in G ⋄ H. If S ⊆ V (G), then S is a clique in G and
(i) holds. Suppose that S ⊆ V (Huv) for some uv ∈ E(G). Since S is a clique in G ⋄H,
Suv is a clique in Huv. Hence, (ii) holds. Suppose now that D = S ∩ {u, v} ≠ ∅ and
Suv = S ∩ V (Huv) ̸= ∅ for some uv ∈ E(G). Then clearly, Suv is a clique in Huv and
S = Suv ∪D. Thus, (iii) holds.

The converse is clear.

The next result is immediate from Theorem 2.

Corollary 1. Let G be a nontrivial connected graph and let H be any graph. Then

ω(G ⋄H) = max{ω(G), ω(H) + 2}.

Theorem 3. Let G be a nontrivial connected graph such that G ̸= K2 and let H be any
graph. Then S is superclique in G ⋄H if and only if one of the following holds:

(i) S is a clique in G.

(ii) S is superclique in Huv for some uv ∈ E(G).

(iii) S = Suv ∪ D for some uv ∈ E(G), where Suv is a superclique in Huv and D is
a nonempty subset of {u, v} such that D = {u} if degG(v) = 1 and D = {v} if
degG(u) = 1.

Proof. Suppose S is a superclique in G ⋄H. Then S is a clique in G ⋄H. If S ⊆ V (G)
or S ⊆ V (Huv) for some uv ∈ E(G), then S is a clique in G or Huv, respectively, by (i)
and (ii) of Theorem 2. Suppose S = Suv for some uv ∈ E(G) and let a, b ∈ Suv. Since S
is a superclique in G ⋄H, there exists c ∈ V (G ⋄H) \ S such that c ∈ NG⋄H(a) \NG⋄H(b)
or c ∈ NG⋄H(b) \NG⋄H(a). This implies that c ∈ V (Huv) \Suv and c ∈ NHuv(a) \NHuv(b)
or c ∈ NHuv(b) \ NHuv(a). Hence, Suv is a superclique in Huv, showing that (i) or (ii)
holds.

Next, suppose that S ∩ {u, v} ̸= ∅ and S ∩ V (Huv) ̸= ∅ for some uv ∈ V (G). Then
S = Suv ∪D, where Suv is a clique in Huv and ∅ ̸= D ⊆ {u, v} for some uv ∈ E(G), by
Theorem 2(iii). Again, since S is a superclique in G ⋄ H, Suv is a superclique in Huv.
Suppose now that degG(u) = 1 or degG(v) = 1, say degG(v) = 1. Pick any x ∈ Suv. Then
NG⋄H(x)∩ [V (G ⋄H) \ S] = NG⋄H(u)∩ [V (G ⋄H) \ S]. Thus, u /∈ D. Therefore, |D| = 1.
In particular, D = {u} showing that (iii) holds.

For the converse, suppose first that (i) holds. Let u, v ∈ S with u ̸= v. Since G
is connected and G ̸= K2, degG(u) ≥ 2 or degG(v) ≥ 2. Assume that degG(u) ≥ 2.
Let w ∈ NG(u) \ {v} and pick any q ∈ V (Huw). Then q ∈ V (G ⋄ H) \ S and q ∈
NG⋄H(u)\NG⋄H(v). Therefore, S is a superclique in G⋄H. Next, suppose that (ii) holds.
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Since S is a superclique in Huv, it is a superclique in G ⋄H. Finally, suppose that (iii)
holds. By Theorem 2(iii), S is a clique in G ⋄H. Let x, y ∈ S with x ̸= y. If x, y ∈ Suv,
then there exists z ∈ V (Huv \ Suv) ⊆ V (G ⋄H) \ S such that z ∈ NHuv(x) \NHuv(y) or
z ∈ NHuv(y) \NHuv(x) because Suv is a superclique in Huv. Therefore, z ∈ V (G ⋄H) \ S
and z ∈ NG⋄H(x) \ NG⋄H(y) or z ∈ NG⋄H(y) \ NG⋄H(x). Suppose x ∈ D and y ∈ Suv.
Assume, without lost of generality, that x = u. Then degG(u) ≥ 2. Let w ∈ NG(u) \ {v}.
Then w ∈ V (G ⋄H) \ S and w ∈ NG⋄H(x) \NG⋄H(y). Lastly, suppose that x, y ∈ D . In
particular, let x = u and y = v. Then, by assumption, degG(u) ≥ 2 and degG(v) ≥ 2.
Let z ∈ NG(u) \ {v} and choose any p ∈ V (Huz). Then p ∈ V (G ⋄ H) \ S and p ∈
NG⋄H(x) \NG⋄H(y). Therefore, in either case, S is a superclique in G ⋄H.

Corollary 2. Let G be a nontrivial connected graph such that G is not a star and let H
be any graph. Then

ωs(G ⋄H) = max{ω(G), ωs(H) + 2}.

Proof. Let S be a maximum clique in G and let u, v ∈ V (G) with degG(u) ≥ 2
and degG(v) ≥ 2 (these vertices exist because G is not a star). Let Suv be a maximum
superclique in Huv. Then S and S∗ = Suv ∪ {u, v} are supercliques in G ⋄H by Theorem
3. This implies that

ωs(G ⋄H) ≥ max{|S|, |S∗|} = max{ω(G), ωs(H) + 2}.

On the other hand, if S0 is a maximum superclique in G ⋄H, then S0 is a clique in G
or S0 = Suv ∪D for some uv ∈ E(G) satisfying the conditions in Theorem 3(iii). Hence,

ωs(G ⋄H) = |S0| ≤ max{ω(G), ωs(H) + 2},

establishing the desired equality.

Theorem 4. Let G = K1,m = ⟨v0⟩+Km, where m ≥ 2, and let H be any graph. Then S
is a superclique in G ⋄H if and only if one of the following holds:

(i) S is a clique in G.

(ii) S is a superclique in Huv0 for some u ∈ V (G) \ {v0}.

(iii) S = Suv0 ∪ {v0} for some u ∈ V (G) \ {v0}, where Suv0 is a superclique in Huv0.

Proof. Suppose S is a superclique in G ⋄H. Then (i), (ii), or (iii) holds by Theorem
3.

The converse also follows from Theorem 3.

Corollary 3. Let G = K1,m, where m ≥ 2, and let H be any graph. Then

ωs(G ⋄H) = ωs(H) + 1.
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Proof. Clearly, ω(G) = 2. Since ωs(H) ≥ 1, it follows that ω(G) ≤ ωs(H) + 1. The
desired equality now follows from Theorem 4.

Theorem 5. Let G and H be nontrivial connected graphs. Then C = ∪x∈S({x} × Tx),
where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a clique in G ⊠H if and only if the
following statements hold:

(i) S is a clique in G.

(ii) |Tx| = 1 for each x ∈ S, Tx ̸= Ty if x ̸= y, and ∪x∈STx is a clique in H.

Proof. Suppose C is a clique in G⊠H. Let x, y ∈ S such that x ̸= y and let a ∈ Tx and
b ∈ Ty. Then (x, a)(y, b) ∈ C and (x, a) ̸= (y, b). It follows that (x, a)(y, b) ∈ E(G ⊠H).
Hence, xy ∈ E(G), showing that S is a clique in G. Thus, (i) holds.

Next, let x ∈ S and suppose that |Tx| ≥ 2. Let p, q ∈ Tx such that p ̸= q. Then
(x, p)(x, q) ∈ C and (x, p) ̸= (x, q). Since C is a clique in G⊠H, (x, p)(x, q) ∈ E(G⊠H)
which is not possible. It follows that |Tx| = 1 for each x ∈ S. Now, let s, t ∈ ∪x∈STx such
that s ̸= t. Then s ∈ Tv and t ∈ Tw for some v, w ∈ S with v ̸= w. Since (v, s), (w, t) ∈ C
and C is a clique in G ⊠ H, (v, s)(w, t) ∈ E(G ⊠ H). This implies that st ∈ E(H).
Therefore, ∪x∈STx is a clique in H, showing that (ii) holds.

Conversely, suppose that C satisfies (i) and (ii). Let (v, p), (w, q) ∈ C such that
(v, p) ̸= (w, q). If v = w, then p ̸= q and p, q ∈ Tv contrary to the assumption that
|Tx| = 1 for all x ∈ S. Thus, v ̸= w and p ̸= q. Since S and ∪x∈STx are cliques in G and
H, respectively, vw ∈ E(G) and pq ∈ E(H). Thus, (v, p), (w, q) ∈ E(G ⊠H). Therefore,
C is a clique in (G⊠H).

Corollary 4. Let G and H be nontrivial connected graphs. Then

ω(G⊠H) = min{ω(G), ω(H)}.

Proof. Let S and D be maximum cliques in G and H. Suppose first that ω(G) =
|S| ≤ |D| = ω(H). Let D′ ⊆ D such that |S| = |D′|. Let S = {v1, v2, . . . , vk} and
D′ = {a1, a2, . . . , ak}. Set Tvj = {aj} for each j ∈ [k]. Then C = ∪k

j=1({vj} × Tvj ) is a
clique in G ⊠H by Theorem 5. Consequently, ω(G ⊠H) ≥ |C| = |S| = ω(G). A similar
argument can be used to show that ω(G⊠H) ≥ |D| = ω(G) if |D| ≤ |S|.

Suppose now that C0 = ∪x∈S0({x} ×Rx) is a maximum clique in G⊠H. Then S is a
clique in G, |Rx| = 1 for each x ∈ S, Rx ̸= Ry if x ̸= y, and ∪x∈SRx is a clique in H by
Theorem 5. It follows that

ω(G⊠H) = |C0| =
∑
x∈S

|Rx| = |S| = | ∪x∈S Rx| ≤ min{ω(G), ω(H)}.

This establishes the desired equality.
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Theorem 6. Let G and H be nontrivial connected graphs such that G ̸= K2 or H ̸= K2.
Then C = ∪x∈S({x} × Tx), where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a
superclique in G⊠H if and only if it is a clique.

Proof. Since every superclique is a clique, it remains to show that the converse is true.
To this end, suppose that C is a clique in G⊠H. Then C satisfies (i) and (ii) of Theorem 5.
Let (v, p), (w, q) ∈ C such that (v, p) ̸= (w, q). Then (v, p), (w, q) ∈ C. Hence, vw ∈ E(G)
and pq ∈ E(H). Suppose G ̸= K2. Since G is connected, degG(v) ≥ 2 or degG(w) ≥ 2.
Assume that degG(v) ≥ 2 and let z ∈ NG(v) \ {w}. Since C is a clique and (z, q)(w, q) /∈
E(G⊠H), it follows that (z, q) /∈ C. Hence, (z, q) ∈ NG⊠H((v, p)) \NG⊠H((w, q)). Next,
suppose that H ̸= K2. Then degH(p) ≥ 2 or degH(q) ≥ 2. Assume that degH(p) ≥ 2
and let t ∈ NH(p) \ {q}. Since C is a clique and (w, t)(w, q) /∈ E(G ⊠H), it follows that
(w, t) /∈ C. Hence, (w, t) ∈ NG⊠H((v, p))\NG⊠H((w, q)). In either case, C is a superclique
in G⊠H.

It is clear that ωs(K2 ⊠K2) = ωs(K2 ∪K2) = 1.

Corollary 5. Let G and H be nontrivial connected graphs such that G ̸= K2 or H ̸= K2.
Then

ωs(G⊠H) = ω(G⊠H) = min{ω(G), ω(H)}.

Theorem 7. Let G and H be nontrivial connected graphs. Then C = ∪x∈S({x} × Tx),
where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a clique in G ⊗H if and only if the
following statements hold:

(i) S is a clique in G.

(ii) Tx is a clique in H for each x ∈ S.

(iii) ∪x∈STx is a clique in H.

Proof. Suppose C is a clique in G⊗H. Let x, y ∈ S such that x ̸= y and let a ∈ Tx and
b ∈ Ty. Then (x, a)(y, b) ∈ C and (x, a) ̸= (y, b). By assumption, (x, a)(y, b) ∈ E(G⊗H).
This implies that xy ∈ E(G), showing that (i) is true.

Let x ∈ S and let p, q ∈ Tx such that p ̸= q. Then (x, p)(x, q) ∈ C and (x, p) ̸= (x, q).
Since C is a clique in G⊗H, (x, p)(x, q) ∈ E(G⊗H). Adjacency in G⊗H would imply that
pq ∈ E(H). This shows that Tx is a clique in H as asserted in (ii). Next, let s, t ∈ ∪x∈STx

such that s ̸= t. If s, t ∈ Tx for x ∈ S, then st ∈ E(H) because Tx is a clique. Suppose
s ∈ Tv and t ∈ Tw for some v, w ∈ S with v ̸= w. Since S is a clique in G, vw ∈ E(G).
Also, since C is a clique in G⊗H, (v, s)(w, t) ∈ E(G⊗H). Consequently, st ∈ E(H) by
the definition of the adjacency in G⊗H. This proves (iii).

For the converse, suppose that C satisfies (i), (ii), and (iii). Let (x, p), (y, q) ∈ C such
that (x, p) ̸= (y, q). If x = y, then p ̸= q and p, q ∈ Tx. It follows from (ii) that pq ∈ E(H).
Hence, (x, p)(y, q) ∈ E(G ⊗ H). Suppose now that x ̸= y. Then xy ∈ E(G) by (i). If
p = q, then (x, p)(y, q) ∈ E(G ⊗ H) by the definition of G ⊗ H. Suppose p ̸= q. The
assumption that (iii) holds would imply that Tx ∪ Ty is a clique in H. Thus, pq ∈ E(G)
and (x, p)(y, q) ∈ E(G⊗H). This proves that C is a clique in G⊗H.
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Corollary 6. Let G and H be nontrivial connected graphs. Then

ω(G⊗H) = ω(G)ω(H).

Proof. Let S and D be maximum cliques in G and H, respectively. Set Tx = D for
each x ∈ S. Then C = ∪x∈S({x} × Tx) = S × D is a clique in G ⊗ H by Theorem 7.
Therefore, ω(G⊗H) ≥ |C| = |S||D| = ω(G)ω(H).

Next, suppose that C0 = ∪x∈S0({x} × Rx) is a maximum clique in G ⊗H. Then C0

satisfies properties (i), (ii), and (iii) of Theorem 7. It follows that

ω(G⊗H) = |C0| =
∑
x∈S0

|Rx| ≤ |S0|ω(H) ≤ ω(G)ω(H).

This establishes the desired equality.

Theorem 8. Let G and H be non-trivial connected graphs. Then C = ∪x∈S({x} × Tx),
where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a superclique in G⊗H if and only if
it satisfies the following conditions:

(i) S is a clique in G.

(ii) Tx is a superclique in H for each x ∈ S.

(iii) ∪x∈STx is a clique in H.

(iv) For each distinct pairs of vertices v, w ∈ S such that Tw ∩ Tv ̸= ∅, there exists
u ∈ V (G) \ S such that u ∈ NG(v) \NG(w) or u ∈ NG(w) \NG(v).

(v) For each pair of distinct vertices v, w ∈ S such that NG[v] = NG[w], and for each
distinct vertices a and b such that a ∈ Tv and b ∈ Tw, there exists c ∈ V (H) such
that [c /∈ Tv and c ∈ NH(a) \NH(b)] or [c /∈ Tw and c ∈ NH(b) \NH(a)].

Proof. Suppose C is superclique in G⊗H. Since C is a clique, each Tx is clique in H,
and (i) and (iii) hold by Theorem 7. Let x ∈ S and p, q ∈ Tx such that p ̸= q. Since Tx

is a clique, pq ∈ E(H). Also, since C is a superclique in ⊗H, we may assume that there
exists (u, t) ∈ V (G⊗H) \C such that (u, t) ∈ NG⊗H((x, p)) \NG⊗H((x, q)). Suppose first
that u ̸= x. Then ux ∈ E(G). If p = t, then (u, t)(x, q) ∈ E(G ⊗ H), a contradiction.
Thus, pt ∈ E(H) because (u, t) ∈ NG⊗H((x, p)). Since (u, t) /∈ NG⊗H((x, q)), t ̸= q and
tq /∈ E(H). This implies that t ∈ V (H) \ Tx and t ∈ NH(p) \ NH(q). Next, suppose
that u = x. Then pt ∈ E(H) and qt /∈ E(H). It follows that t ∈ V (H) \ Tx and
t ∈ NH(p)\NH(q). In either case, Tx is a superclique in H, showing that (ii) holds. Next,
suppose that v, w ∈ S such that v ̸= w and Tv∩Tw ̸= ∅, say p ∈ Tv∩Tw. Again, since C is
a superclique and (v, p), (w, p) ∈ C, we may assume that there exists (z, s) ∈ V (G⊗H)\C
such that (z, s) ∈ NG⊗H((v, p)) \NG⊗H((w, p)). Suppose z = v. Then ps ∈ E(H) because
(z, s) ∈ NG⊗H((v, p)). Further, since vw ∈ E(G), (z, s) ∈ NG⊗H((w, p)), a contradiction.
Thus, z ̸= v. This implies that zv ∈ E(G). Suppose zw ∈ E(G). If p = s, then
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(z, s) ∈ NG⊗H((w, p)). If p ̸= s, then ps ∈ E(H) since (z, s) ∈ NG⊗H((v, p)). Hence,
(z, s) ∈ NG⊗H((w, p)). In either case, we get a contradiction. Therefore, zw /∈ E(G), that
is, z ∈ V (G) \ S and z ∈ NG(v) \NG(w), showing that (iv) holds.

For the converse, suppose that C satisfies (i), (ii), (iii), and (iv). Then C is a clique
by Theorem 7. Let (x, a), (z, b) ∈ C such that (x, a) ̸= (z, b). Consider the following cases:

Case 1. x = z.
Then a, b ∈ Tx and a ̸= b Since Tx is a clique, ab ∈ E(H). Moreover, since Tx is a su-
perclique, we may assume that there exists p ∈ V (H) \ Tx such that p ∈ NH(a) \NH(b).
Hence, (x, p) ∈ V (G⊗H) \ C and (x, p) ∈ NG⊗H((x, a)) \NG⊗H((x, b)).

Case 2. x ̸= z.
Then xz ∈ E(G) because S is a clique in G. Suppose a = b. Then a ∈ Tx ∩ Tz. By (iv),
we may assume that there exists y ∈ V (G) \ S such that y ∈ NG(x) \ NG(z). It follows
that (y, a) ∈ V (G ⊗H) \ C and (y, a) ∈ NG⊗H(x, a) \NG⊗H(z, b). Finally, suppose that
a ̸= b. Then ab ∈ E(G) by (iii). Suppose NG[x] ̸= NG[z]. We may assume that there
exists v ∈ NG(x) \ NG(z). Clearly, v ∈ V (G) \ S. Hence, (v, a) ∈ V (G ⊗ H) \ C and
(v, a) ∈ NG⊗H(x, a) \NG⊗H(z, b). If NG[x] = NG[z], then there exists c ∈ V (H) such that
[c ∈ V (H)\Tx and c ∈ NH(a)\NH(b)] or [c ∈ V (H)\Tz and c ∈ NH(b)\NH(a)] by property
(v). Assume that c ∈ V (H) \ Tx and c ∈ NH(a) \NH(b). Then (x, c) ∈ V (G⊗H) \C and
(x, c) ∈ NG⊗H(x, a) \NG⊗H(z, b).

Accordingly, C is a superclique in G⊗H.

Corollary 7. Let G and H be non-trivial connected graphs. Then

ωs(G)ωs(H) ≤ ωs(G⊗H) ≤ ω(G)ωs(H).

Moreover, if ωs(G) = ω(G), then ωs(G⊗H) = ωs(G)ωs(H).

Proof. Let S and D be ωs-sets in G and H, repectively. Set Tx = D for each x ∈ S.
Then C = ∪x∈S({x} × Tx) = S ×D is a superclique in G⊗H by Theorem 8. Therefore,
ωs(G⊗H) ≥ |C| = |S||D| = ωs(G)ωs(H).

On the other hand, suppose that C ′ = ∪x∈S′({x} ×Dx) is an ωs-set in G⊗H. Then
S′ is a clique in G and each Dx is a superclique in H by Theorem 8. It follows that
ωs(G⊗H) = |C ′| ≤ ω(G)ωs(H). This proves the assertion.

Example 1. For any two positive integers m ≥ 3 and n ≥ 3,

ωs(Pm ⊗ Pn) = 4 = ωs(Pm)ωs(Pn) = ω(Pm)ωs(Pn).

Note that
ωs(P2 ⊗ P3) = ωs(P2)ωs(P3) = 2 ̸= 4 = ω(P2)ωs(P3).
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4. Conclusion

Cliques and supercliques in the edge corona, Tensor product, and strong product of two
graphs have been characterized and the corresponding clique and supercliques numbers
have been described. These concepts can be studied further for other graphs. Moreover,
it may be interesting to investigate the complexity of the superclique problem.
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