Results of Semigroup of Linear Operators Generating a General Class of Semilinear Initial Value Problems
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4659Keywords:
$\omega$-$OCP_n$, Strongly Elliptic, $C_0$-semigroup, Analytic SemigroupAbstract
This paper present results of ω-order preserving partial contraction mapping generating a general class of semilinear initial value problems. We consider the use of fractional powers of unbounded linear operators for its application by starting with some results concerning such fractional powers. We assume A to be the infinitesimal generator of an analytic semigroup in a Banach space X, 0 ∈ ρ(A) and defined the fractional powers of A for 0 < α ≤ 1. We also show that Aα is a closed linear operator whose domain D(Aα) ⊃ D(A) is dense in X. Finally we established that the operator is bounded, continuous and Holder continuous.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.