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1. Introduction

K. Belleza and J.P. Vilela in their paper in 2019 [2] introduced the dual B-Algebra, its
relationship with other algebras, and its characteristics. More studies were then conducted
on the said topic. One of the recent papers published by K. Belleza and J.R. Albaracin
in 2022 [1] discussed about dual B-filters and dual B-subalgebras in a topological dual
B-algebra, wherein the researchers first constructed a congruence relation on a dual B-
algebra which is necessary in creating a natural homomorphism from one dual B-algebra
onto another; an important first step in this study.

While many other algebraic structures prepared different approaches in constructing
isomorphism to their respective algebras (see [6], [3], [5]), J. Neggers and H.S. Kim in
particular, presented a fundamental theorem of B-homomorphism for B-algebras and using
the said theorem created the 1st and 3rd isomorphism theorems for the B-algebra in 2002
[7]. Later in 2015, J.C. Endam and J.P. Vilela also provided more insights on the properties
of normal subsets of B-algebra and B-homomorphism, and presented proof for the 2nd
isomorphism theorem for the B-algebras [4].

This, in turn warrants a need for investigation of the dual B-algebra as to whether the
isomorphism theorems can be constructed within the dual B-algebra since there exists a
close relationship between the B-algebra and the dual B-algebra [2].
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2. Preliminaries

Definition 1. [2] A Dual B-Algebra, (or dB-algebra), X is a triple (X, ·, 1) where X is
a non-empty set with a binary operation “ · ” and a constant 1 satisfying the following
axioms for all x, y, z in X:

(DB1) x · x = 1; (DB2) 1 · x = x; (DB3) x · (y · z) = ((y · 1) · x) · z.

Example 1. [1] Let X = {1, a, b, c} with the binary operation · as defined in the table:

· 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Then (X, ·, 1) is a dB-algebra.

Lemma 1. [2] Let (X, ·, 1) be a dB-algebra, then for any x, y ∈ X, x · y = 1 implies x = y

Definition 2. [1] Let X be a dB-algebra and S a nonempty subset of X. Then S is
called a dual B-subalgebra, (or dB-subalgebra), of X if S itself is a dB-algebra with binary
operation of X on S.

Remark 1. [1] If S is a dB-subalgebra of X, then 1 ∈ S.

Theorem 1. [1] S is a dB-subalgebra if and only if for any x, y ∈ S, x · y ∈ S.

Example 2. Consider the dB-algebra X = {1, a, b, c} with the binary operation · as
defined in the table:

· 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

By Remark 2.6, A = (1, a) is a dB-subalgebra of X but B = (1, a, c) is not a dB-subalgebra
of X since a · c = b ̸∈ B.

Definition 3. [1] Let X be a dB-algebra. A subset F of X is called a dual B-filter, (or
dB-filter), if it satisfies the following:

(i.) 1 ∈ F ;

(ii.) for each x, y ∈ X, x · y ∈ F and x ∈ F imply y ∈ F .
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Proposition 1. [1] If F is a dB-filter of a dB-algebra X, then F is a dB-subalgebra of X.

Definition 4. [1] Let X be a dB-algebra and N a nonempty subset of X. Then N is
a normal subset of X if for any a · b, x · y ∈ N, (a · x) · (b · y) ∈ N . A dB-filter F of a
dB-algebra X is called a normal dB-filter if F is a normal subset of X. A dB-subalgebra
S of a dB-algebra X is called a normal dB-subalgebra if S is a normal subset of X.

Example 3. [1] Let X = {1, a, b, c, d, e} with the binary operation · as defined in the
table:

· 1 a b c d e

1 1 a b c d e
a b 1 a d e c
b a b 1 e c d
c c d e 1 a b
d d e c b 1 a
e e c d a b 1

Then (X, ·, 1) is a dB-algebra. So,

(a) The set A={1, a, e} is not a dB-filter since ∃e · c = a but c ̸∈ A

(b) The set B={1, c} is a dB-filter but is not normal since ∃c · 1 = a · e = c ∈ B but
(c · a) · (1 · e) = d · e = a ̸∈ B

(c) The set C={1, a, b} is a normal dB-filter.

Theorem 2. [1] Let (X, ·, 1) be a dB-algebra and S a normal dB-subalgebra of X. The
relation defined by x ∼ y if and only if x · y, y · x ∈ S is a congruence relation on X for
any x, y ∈ X.

Definition 5. [1] Let (X, ·, 1) be a dB-algebra and S a normal dB-subalgebra of X.
Define a congruence class [x]S by [x]S = {y ∈ X|y ∼ x} and define X/S to be the set of
all congruence classes of X, that is X/S =

{
[x]S |x ∈ X

}
.

3. Results

Lemma 2. Let S be a normal dB-subalgebra of a dB-algebra (X, ·, 1) and x, y ∈ X. Then
[x]S = [y]S if and only if x ∼ y.

Proof. Suppose [x]S = [y]S . Then z ∈ [x]S implies that z ∈ [y]S . We have that
z ∼ x, z ∼ y and since ∼ is symmetric and transitive by Theorem 2, then z ∼ x, z ∼ y
implies x ∼ z, z ∼ y which implies that x ∼ y.

Now, suppose x ∼ y. Then x · y, y · x ∈ S. Let z ∈ [x]S , then z ∼ x. We have that
z ∼ x, x ∼ y implies z ∼ y which implies that z ∈ [y]S . Hence, [x]S ⊆ [y]S . Similarly, let
a ∈ [y]S , then a ∼ y. We have that a ∼ y, x ∼ y implies a ∼ y, y ∼ x which implies that
a ∼ x and so a ∈ [x]S . Thus [y]S ⊆ [x]S and it follows that [x]S = [y]S .
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Theorem 3. Let S be a normal dB-subalgebra of a dB-algebra (X, ·, 1X). Then (X/S, ∗, [1]S)
with the binary operation ∗ on X/S defined by

[x]S ∗ [y]S = [x · y]S for all x, y ∈ X

is a dB-algebra. X/S is called the quotient dB-algebra of X by S.

Proof. Let x1, x2, y1, y2 ∈ X such that [x1]S = [x2]S and [y1]S = [y2]S . Then x1 ∼ x2
and y1 ∼ y2. Since ∼ is a congruence relation, we have that x1 · y1 ∼ x2 · y2 and by
Lemma 2, [x1 · y1]S = [x2 · y2]S which implies that [x1]S ∗ [y1]S = [x2]S ∗ [y2]S . Hence ∗ is
well-defined.

Now, for all x, y, z ∈ X,

[x]S ∗ [x]S = [x · x]S = [1]S (DB1)

[1]S ∗ [x]S = [1 · x]S = [x]S (DB2)

[x]S ∗
(
[y]S ∗ [z]S

)
= [x]S ∗

(
[y · z]S

)
= [x · (y · z)]S = [((y · 1) · x) · z]S

= [(y · 1) · x]S ∗ [z]S =
(
[y · 1]S ∗ [x]S

)
∗ [z]S

=
(
([y]S ∗ [1]S) ∗ [x]S

)
∗ [z]S (DB3)

Hence, (X/S, ∗, [1]S) is a dB-algebra.

Proposition 2. Let (X, ·, 1) be a dB-algebra and S be a subset of X. Then S is a normal
dB-subalgebra of X if and only if S is a normal dB-filter of X.

Proof. Suppose S is a normal dB-filter of X. It follows from Proposition 1 and S as a
normal subset of X that S is a normal dB-subalgebra of X.

Now, suppose S is a normal dB-subalgebra of X. Let x, y ∈ X such that x · y ∈ S and
x ∈ S. Since S is a dB-subalgebra, then 1 ∈ S. Since 1, x ∈ S and S is closed by Theorem
1, we have that x · 1 ∈ S and since x · y ∈ S, it follows that (x · x) · (1 · y) ∈ S since S is
normal. Then, y = 1 ·y = 1 · (1 ·y) = (x ·x) · (1 ·y) ∈ S. Hence, S is a normal dB-filter.

Definition 6. Let (X, ·, 1X) and (Y, ∗, 1Y ) be dB-algebras. A mapping Φ : X → Y is
called a dual B-homomorphism (or dB-homomorphism), from X into Y if

Φ(x · y) = Φ(x) ∗ Φ(y)

for any x, y ∈ X.
A dB-homomorphism Φ is called dB-monomorphism, dB-epimorphism, or dB-isomorphism

(denoted by X ∼= Y ), if Φ is one-to-one, onto, or a bijection, respectively. An isomorphism
Φ : X → X is called dB-automorphism.

The kernel of the dB-homomorphism Φ, denoted by kerΦ, is the set whose elements
of X are mapped to 1Y .



J.E. Bolima, K.B. Fuentes / Eur. J. Pure Appl. Math, 16 (1) (2023), 577-586 581

Example 4. Let (R+, ·, 1) be a dB-algebra with the binary operator · be defined as x·y = y
x

for all x, y in R+.
Define Φ : R+ → R+ by Φ(x) = x2 for all x ∈ R+.
For all x, y ∈ R+, x = y implies x2 = y2 which implies that Φ(x) = Φ(y). Hence, Φ is
well-defined.
Now,

Φ(x · y) = Φ

(
y

x

)
=

y2

x2
= x2 · y2 = Φ(x) · Φ(y)

for all x, y ∈ R+. Hence, Φ is a dB-homomorphism.
Suppose that Φ(x) = Φ(y) for all x, y ∈ R+, then x2 = y2 implies that x = y which means
Φ is one-to-one. Now, for all y ∈ R+, ∃x ∈ R+ such that x =

√
y implies x2 = y which

implies that Φ(x) = y and so Φ is onto. Consequently, Φ is a dB-automorphism.
The kernel of this dB-automorphism is

kerΦ = {x ∈ R+|Φ(x) = 1}
= {x ∈ R+|x2 = 1}
= {x ∈ R+|x = 1}
= {1}

The next corollary, which is needed for the following results, is immediate from Lemma
1 and DB1.

Corollary 1. Let (X, ·, 1) be a dB-algebra, then for any x, y ∈ X, x = y implies that
x · y = 1.

Theorem 4. Let Φ : X → Y be a dB-homomorphism, (X, ·, 1X), (Y, ∗, 1Y ) be dB-
algebras, and S ⊆ X, then

(i) Φ(1X) = 1Y

(ii) Φ is a dB-monomorphism, if and only if kerΦ = {1X}

(iii) Im(Φ) is a dB-subalgebra of Y .

(iv) kerΦ is a dB-filter of X and consequently a dB-subalgebra of X.

(v) If S is a dB-filter of X, then Φ(S) is a dB-filter of Y and consequently a dB-
subalgebra of Y .

Proof. Suppose Φ : X → Y be a dB-homomorphism and S ⊆ X,

(i) Since Φ is a dB-homomorphism and by DB1,

Φ(1X) = Φ(1X · 1X) = Φ(1X) ∗ Φ(1X) = 1Y .
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(ii) Suppose Φ is a dB-monomorphism. It follows from (i.) that 1X ∈ kerΦ. Let
x ∈ kerΦ. then Φ(x) = 1Y = Φ(1X). Since Φ is one-to-one, Φ(x) = Φ(1X) implies
x = 1X . Hence, kerΦ = {1X}. Conversely, suppose kerΦ = {1X} and x, y ∈ X such
that Φ(x) = Φ(y). By Corollary 1, Φ(x) ∗ Φ(y) = 1Y = Φ(x · y). Then x · y ∈ kerΦ.
Since kerΦ = {1X}, x · y = 1X and it follows that x = y by Lemma 1. Hence, Φ is
one-to-one i.e. Φ is a dB-monomorphism.

(iii) Let x, y ∈ Im(Φ). Then there exists a, b ∈ X such that x = Φ(a), y = Φ(b). This
implies that x ∗ y = Φ(a) ∗ Φ(b) = Φ(a · b) ∈ Im(Φ) since a · b ∈ X. Thus, Im(Φ) is
a dB-subalgebra of Y .

(iv) By Definition 6, kerΦ ⊆ X and by (i.), 1X ∈ kerΦ which also implies that kerΦ ̸= ∅.
Let x · y ∈ kerΦ and x ∈ kerΦ. Then for all y ∈ X,

Φ(y) = 1Y ∗ Φ(y) = Φ(x) ∗ Φ(y) = Φ(x · y) = 1Y .

Hence, y ∈ kerΦ and it follows that kerΦ is a dB-filter of X. Consequently, by
Theorem 1, kerΦ is a dB-subalgebra of X.

(v) Let S be a dB-filter of X, then 1X ∈ S and by (i.), Φ(1X) = 1Y ∈ Φ(S). Now,
for all x, y ∈ X such that x ∈ S and x · y ∈ S implies that Φ(x) ∈ Φ(S) and
Φ(x) ∗Φ(y) = Φ(x · y) ∈ S. Since S is a dB-filter of X, then y ∈ S also implies that
Φ(y) ∈ Φ(S). Hence, Φ(S) is a dB-filter of Y . Consequently, by Theorem 1, Φ(S) is
a dB-subalgebra of Y .

Theorem 5. Let S be a normal dB-subalgebra (normal dB-filter) of a dB-algebra (X, ·, 1).
Then the mapping Φ : (X, ·, 1) → (X/S, ∗, [1]S) given by Φ(x) = [x]S for all x ∈ X is a
dB-epimorphism and kerΦ = S. The mapping Φ in this case is called the natural dB-
homomorphism of X onto X/S.

Proof. Let x, y ∈ X such that x = y which by Corollary 1, x · y = 1 ∈ S and
y · x = 1 ∈ S. Then x ∼ y implies [x]S = [y]S which implies that Φ(x) = Φ(y). Hence, Φ
is well-defined.

Now, let a, b ∈ X. Then Φ(a · b) = [a · b]S = [a]S ∗ [b]S = Φ(a) ∗Φ(b). This shows that
Φ is a dB-homomorphism. Since Φ(X) =

{
Φ(a) : a ∈ X

}
=

{
[a]S : a ∈ X

}
= X/S, it

shows that Φ is onto and so Φ is a dB-epimorphism.
To show that kerΦ = S, let x ∈ kerΦ. Then [x]S = Φ(x) = [1]S and so x ∼ 1. It

follows that x · 1 ∈ S and 1 · x ∈ S. Since 1 ∈ S and S is also a dB-filter by Proposition
2, then x ∈ S and so kerΦ ⊆ S. Now, let x ∈ S. By Remark 1, 1 ∈ S, and since S is
closed by Theorem 1, 1 · x ∈ S and x · 1 ∈ S. Then x ∼ 1, and so [x]S = [1]S . Since
Φ(x) = [x]S = [1]S , then x ∈ kerΦ. This implies that S ⊆ kerΦ and it follows that
kerΦ = S.

Lemma 3. Let f : (X, ·, 1X) → (Y, ∗, 1Y ) and g : (Y, ∗, 1Y ) → (Z, ∗′, 1Z) be dB-
homomorphisms, then g ◦ f : (X, ·, 1X) → (Z, ∗′, 1Z) is also a dB-homomorphism (◦ is
the usual composition of functions).
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Proof. Let x, y ∈ X. Since f and g are dB-homomorphisms, then

(g ◦ f)(x · y) = g
(
f(x · y)

)
= g

(
f(x) ∗ f(y)

)
= g

(
f(x)

)
∗′ g

(
f(y)

)
= (g ◦ f)(x) ∗′ (g ◦ f)(y).

Hence, g ◦ f is a dB-homomorphism.

Theorem 6. Fundamental Theorem of dB-homomorphism for dB-Algebras
Let Φ be a dB-homomorphism of a dB-algebra (X, ·, 1X) onto a dB-algebra (Y, ∗, 1Y ),

S ⊆ kerΦ be a normal dB-subalgebra (normal dB-filter) of X, and g be the natural dB-
homomorphism of X onto (X/S, θ, [1]S). Then there exists a unique dB-homomorphism h
of X/S onto Y such that Φ = h ◦ g. Furthermore, h is one-to-one if and only if S = kerΦ.

Proof. Define the map h : X/S → Y by h
(
[x]S

)
= Φ(x) for all [x]S ∈ X/S.

Let [x]S , [y]S ∈ X/S such that [x]S = [y]S . Then x ∼ y, so x · y ∈ S and y · x ∈ S.
Since S ⊆ kerΦ, x · y ∈ kerΦ and y · x ∈ kerΦ. Thus Φ(x) ∗ Φ(y) = Φ(x · y) = 1Y and
Φ(y) ∗Φ(x) = Φ(y ·x) = 1Y . By Lemma 1, Φ(x) = Φ(y) and so h

(
[x]S

)
= h

(
[y]S

)
. Hence,

h is well-defined.
Let [x]S , [y]S ∈ X/S. Then

h
(
[x]Sθ[y]S

)
= h

(
[x · y]S

)
= Φ(x · y) = Φ(x) ∗ Φ(y) = h

(
[x]S

)
∗ h

(
[y]S

)
.

Thus, h is a dB-homomorphism.
Since Φ is onto, for all y ∈ Y there exists x ∈ X such that Φ(x) = y. As h

(
[x]S

)
= Φ(x)

for all [x]S ∈ X/S, it follows that there exists [x]S ∈ X/S such that h
(
[x]S

)
= y for all

y ∈ Y . Hence, h is onto.
Suppose h′ : X/S → Y is another function such that Φ = h′ ◦ g. Let [x]S ∈ X/S,

then h′
(
[x]S

)
= h′

(
g(x)

)
= (h′ ◦ g)(x) = Φ(x) = h

(
[x]S

)
. Thus, h′

(
[x]S

)
= h

(
[x]S

)
for all

[a]S ∈ X/S, i.e. h is unique.
Now, to show that h is one-to-one if and only if S = kerΦ, suppose h is one-to-one and

x ∈ kerΦ. Then h
(
[x]S

)
= Φ(x) = 1Y = h

(
[1]S

)
and since h is one-to-one, [x]S = [1]S . It

follows that x ∼ 1X , and so x · 1X ∈ S and 1X · x ∈ S. Since 1X ∈ S and S is a dB-filter,
x ∈ S. Thus, kerΦ ⊆ S and since S ⊆ kerΦ by hypothesis, kerΦ = S.

Suppose that kerΦ = S and [x]S , [y]S ∈ X/S such that h
(
[x]S

)
= h

(
[y]S

)
. Then

Φ(x) = Φ(y). By Corollary 1, 1Y = Φ(x) ∗ Φ(y) = Φ(x · y) which implies that x · y ∈
kerΦ = S. Similarly, 1Y = Φ(y) ∗Φ(x) = Φ(y ·x) implies that y ·x ∈ S. Hence, x ∼ y and
it follows that [x]S = [y]S , showing that h is one-to-one.

Theorem 7. First Isomorphism Theorem for the dB-Algebra
Let Φ be a dB-homomorphism of a dB-algebra (X, ·, 1X) into a dB-algebra (Y, ∗, 1Y ),

then (X/ kerΦ, θ, [1]kerΦ)
∼= Φ(X).

Proof. Let S = kerΦ, g be the natural dB-homomorphism from X onto X/S, the
mapping f : X/S → Φ(X) be defined by f

(
[x]S

)
= Φ(x) for all [x]S ∈ X/S, and recall

that Φ(X) is a dB-subalgebra of Y by Theorem 4 (iii) which implies that Φ(X) has the
same binary operator as Y .
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Let [x]S , [y]S ∈ X/S such that [x]S = [y]S . Then x ∼ y and it follows that x · y ∈ S
and y · x ∈ S. Since S = kerΦ, Φ(x · y) = Φ(x) ∗ Φ(y) = 1Y = Φ(y) ∗ Φ(x) = Φ(y · x) and
by Lemma 1, Φ(x) = Φ(y) which is f

(
[x]S

)
= f

(
[y]S

)
. Hence, f is well-defined.

Let [x]S , [y]S ∈ X/S. Then

f
(
[x]Sθ[y]S

)
= f

(
[x · y]S

)
= Φ(x · y) = Φ(x) ∗ Φ(y) = f

(
[x]S

)
∗ f

(
[y]S

)
Thus, f is a dB-homomorphism.

Let [x]S , [y]S ∈ X/S such that f
(
[x]S

)
= f

(
[y]S

)
. Then Φ(x) = Φ(y). It follows

that 1Y = Φ(x) ∗ Φ(y) = Φ(x · y) which implies that x · y ∈ kerΦ = S. Similarly,
1Y = Φ(y) ∗ Φ(x) = Φ(y · x) implies that y · x ∈ S. Thus, x ∼ y which implies that
[x]S = [y]S , so f is one-to-one.

Let y ∈ Φ(X), then there exists x ∈ X such that y = Φ(x) and [x]S ∈ X/S. Then
f
(
[x]S

)
= Φ(x) = y. Hence, f is onto and consequently, f is a dB-isomorphism. .

Proposition 3. Suppose f : (G, ·, 1G) → (G/H1, ∗, [1]H1
) is a dB-epimorphism of dB-

algebras. If H2 is a normal dB-subalgebra of G, then f(H2) is a normal dB-subalgebra of
G/H1.

Proof. It follows from Theorem 4 (iii) that f(H2) is a dB-subalgebra of G/H1. Now to
show that f(H2) is normal, let [x]H1

∗ [y]H1
, [a]H1

∗ [b]H1
∈ f(H2) for any [x]H1

, [y]H1
, [a]H1

,
and [b]H1

∈ G/H1. Since f is onto, then there exists j, k, l,m ∈ G such that f(j) = [x]H1
,

f(k) = [y]H1
, f(l) = [a]H1

, f(m) = [b]H1
. Suppose j ·k, l·m ∈ H2. Then (j ·l)·(k ·m) ∈ H2

since H2 is normal, which then implies that f
(
(j · l) · (k ·m)

)
∈ f(H2). It follows that

f
(
(j · l) · (k ·m)

)
= f(j · l) ∗ f(k ·m) =

(
f(j) ∗ f(l)

)
∗
(
f(k) ∗ f(m)

)
=

(
[x]H1

∗ [a]H1

)
∗
(
[y]H1

∗ [b]H1

)
Thus, f(H2) is normal and consequently, f(H2) is a normal dB-subalgebra of G/H1.

Theorem 8. Third Isomorphism Theorem for the dB-Algebra
Let f be a natural dB-homomorphism of a dB-algebra (G, ·, 1G) onto a dB-algebra

(G/H1, ∗, [1]H1
), H2 be a normal dB-subalgebra of G such that ker f = H1 ⊆ H2,

and g, g′ be the natural dB-homomorphisms of G onto (G/H2, ·′, [1]H2
) and G/H1 onto

((G/H1)/(H2/H1), ∗′, [1]H2/H1
), respectively. Then there exists a unique dB-isomorphism

h of G/H2 onto (G/H1)/(H2/H1), that is G/H2
∼= (G/H1)/(H2/H1), where g

′ ◦ f = h◦ g.

Proof. Since f(H2) is a normal dB-subalgebra of G/H1 by Proposition 3, we have that
f(H2) = ker g′ by Theorem 5.

Suppose a ∈ H2, then f(a) ∈ f(H2) which implies that f(a) ∈ ker g′. Then

(g′ ◦ f)(a) = g′
(
f(a)

)
= g′

(
[1]H1

)
=

[
[1]H1

]
H2/H1

by Theorem 4 (i). This implies that a ∈ ker(g′ ◦ f) and so, H2 ⊆ ker(g′ ◦ f).
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Conversely, suppose a ∈ ker(g′ ◦ f), then

(g′ ◦ f)(a) = g′
(
f(a)

)
= g′

(
[a]H1

)
=

[
[a]H1

]
H2/H1

= [1]H2/H1
.

By Theorem 4 (i), we have that

g′
(
[1]H1

)
=

[
[1]H1

]
H2/H1

= [1]H2/H1
.

Then [1]H1
∼ [a]H1

. This implies that [a]H1
∗′ [1]H1

∈ H2/H1 and [1]H1
∗′ [a]H1

∈ H2/H1

which by DB2 implies that [a]H1
∈ H2/H1. It follows that f(a) ∈ H2/H1 = ker g′

by Theorem 5 and so, f(a) ∈ f(H2). Since f is onto, there exists x ∈ H2 such that
f(x) = f(a) implies [x]H1

= [a]H1
which implies that x ∼ a. So, x · a ∈ H1 and a · x ∈ H1.

Since H1 ⊆ H2, x · a ∈ H2 and a · x ∈ H2 and it follows that since H2 is also a normal
dB-filter by Proposition 2, a ∈ H2. This implies that ker(g′ ◦ f) ⊆ H2, and consequently
ker(g′ ◦ f) = H2.

By Theorem 6, there exists a unique dB-isomorphism h of G/H2 onto (G/H1)/(H2/H1)
such that g′ ◦ f = h ◦ g.

4. Conclusion

In this paper, it is shown that the necessary and sufficient condition for a db-filter to
be a db-subalgebra and vice versa is normality. Using the quotient dB-algebra, along with
some properties (such as normality) of the dB-filter, dB-subalgebra, and dB-homomorphism
presented in the paper, the natural dB-homomorphism is determined; this then led to the
creation of the fundamental theorem of dB-homomorphisms for dB-algebras. Following
the aforementioned theorem, the first and third isomorphism theorems for the dB-algebra
are constructed.
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