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Abstract. In this paper, we introduce and do an initial investigation of a variant of Grundy hop
domination in a graph called the connected Grundy hop domination. We show that the connected
Grundy hop domination number lies between the connected hop domination and Grundy hop
domination number of a graph. In particular, we give realization results involving connected hop
domination, connected Grundy hop domination, and Grundy hop domination numbers. Moreover,
we determine the connected Grundy hop domination numbers of some graphs.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases: Connected hop domination, closed hop neighborhood sequence, con-
nected Grundy hop dominating sequence, connected Grundy hop domination number

1. Introduction

In 2014, Bresar et al. [6] introduced Grundy domination in a graph and made an initial
study of the concept. Subsequent studies on this newly defined parameter can be found in
[3], [4], [5], [7], and [12]. The study in [5] specifically gave exact formulas for the Grundy
domination numbers of Sierpinski graphs where the authors provided a linear algorithm
for determining these numbers in arbitrary interval graphs.

It is without a doubt that the concept of hop domination, just like domination, has
ably attracted a lot of researchers to study it. Some of these researchers have actually
introduced some variants of the concept by imposing additional properties on the standard
definition (see [1], [2], [9], [10], [11], [13]).
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Following the definition of Grundy domination (as a variant of the standard domination
concept), Hassan et al. in [8] introduced and studied Grundy hop domination as a variation
of hop domination. It was shown that difference of the Grundy hop domination number
and the hop domination number can be made arbitrarily large. Values of the Grundy
hop domination numbers had also been determined for some graphs under some binary
operations.

In this study, the concept of connected Grundy hop domination in a graph will be
introduced. Realization results involving connected hop domination, Grundy hop domi-
nation, and connected Grundy hop domination numbers are given. Moreover, graphs that
attain some specific values for the parameter are characterized.

2. Terminology and Notation

Let G be a simple undirected graph. Two vertices a and b of G are adjacent, or
neighbors, if ab is an edge of G. The set of neighbors of a vertex u in G, denoted by
NG(u), is called the open neighborhood of u in G. The closed neighborhood of u in G is
the set NG[u] = NG(u) ∪ {u}. If X ⊆ V (G), the open neighborhood of X in G is the set

NG(X) =
⋃
u∈X

NG(u). The closed neighborhood of X in G is the set NG[X] = NG(X)∪X.

A set D ⊆ V (G) is a dominating of G if for every v ∈ V (G) \D, there exists u ∈ D
such that uv ∈ E(G), that is, NG[D] = V (G). The domination number of G, denoted by
γ(G), is the minimum cardinality of a dominating set of G.

Let S = (v1, v2, · · · , vk) be a sequence of distinct vertices of a graph G, and let Ŝ =
{v1, v2, · · · , vk}. Then S is a legal closed neighborhood sequence if NG[vi]\

⋃i−1
j=1NG[vj ] ̸= ∅

for every i ∈ {2, · · · , k}. If, in addition, Ŝ is a dominating set of G, then S is called a
Grundy dominating sequence. The maximum length of a Grundy dominating sequence in
a graph G is called the Grundy domination number of G, and is denoted by γgr(G). We
say that vertex vi footprints the vertices from NG[vi] \ ∪i

j=1NG[vj ], and that vi is their

footprinter. Any Grundy dominating sequence S with |Ŝ| = γgr(G) is called a maximum
Grundy dominating sequence or a γgr-sequence of G. In this case, we call Ŝ a γgr-set of
G.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u in G is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X

N2
G(u). The closed hop neighborhood of X in G is the

set N2
G[X] = N2

G(X) ∪X.
A set D ⊆ V (G) is a hop dominating set of G if N2

G[D] = V (G), that is, for every
v ∈ V (G)\D, there exists u ∈ D such that dG(u, v) = 2. The minimum cardinality among
all hop dominating sets of G, denoted by γh(G), is called the hop domination number of
G. Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

A hop dominating set D is called a connected hop dominating set if ⟨D⟩ is connected.
The minimum cardinality among all connected hop dominating sets of G, denoted by
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γch(G), is called the connected hop domination number of G. Any connected hop domi-
nating set with cardinality equal to γch(G) is called a γch-set.

Let S = (v1, v2, · · · , vk) be a sequence of distinct vertices of G and let Ŝ = {v1, · · · , vk}.
Then S is a legal closed hop neighborhood sequence of G if N2

G[vi] \ ∪i−1
j=1N

2
G[vj ] ̸= ∅ for

each i ∈ {2, · · · , k}. If, in addition, Ŝ is a hop dominating set of G, then S is called
a Grundy hop dominating sequence. The maximum length of a Grundy hop dominating
sequence in a graph G, denoted by γhgr(G), is called the Grundy hop domination number
of G. We say that vertex vi hop-footprints the vertices from N2

G[vi]\∪i
j=1N

2
G[vj ], and that

vi is their hop-footprinter. Any Grundy hop dominating sequence S with |Ŝ| = γhgr(G) is

called a maximum Grundy hop dominating sequence or a γhgr-sequence of G. In this case,

we call Ŝ a γhgr-set of G.
A Grundy hop dominating sequence S is called a connected Grundy hop dominating

sequence if ⟨Ŝ⟩ is connected. The maximum length of a connected Grundy hop dominating
sequence in a graph G, denoted by γchgr (G), is called the connected Grundy hop domination
number of G. We say that vertex vi hop-footprints the vertices from N2

G[vi] \ ∪i
j=1N

2
G[vj ],

and that vi is their hop-footprinter. Any connected Grundy hop dominating sequence S
with |Ŝ| = γchgr (G) is called a maximum connected Grundy hop dominating sequence or a

γchgr -sequence of G. In this case, we call Ŝ a γchgr -set of G.
A sequence S = (v1, v2, · · · , vk) of distinct vertices of a graph G is a co-legal closed

neighborhood sequence in G if [V (G) \ NG(vi)] \ ∪i−1
j=1[V (G) \ NG(vj)] ̸= ∅ for each

i ∈ {2, . . . , k}, i.e., S is legal closed neighborhood sequence in G. A co-legal closed
neighborhood sequence S = (v1, v2, . . . , vk) is a co-Grundy dominating sequence if V (G) =
∪k
i=1[V (G) \NG(vi)], i.e., S is Grundy dominating sequence in G. The maximum length

of a co-Grundy dominating sequence in a graph G is called the co-Grundy domination
number of G, and is denoted by γcogr(G). Clearly, γcogr(G) = γgr(G).

The shadow graph S(G) of a graph G is constructed by taking two copies of G, say G1

and G2, and then joining each vertex u ∈ G1 to the neighbors of its corresponding vertex
u′ ∈ G2.

Let G and H be two graphs. The join of G and H, denoted by G + H is the graph
with vertex set V (G+H) = V (G)∪V (H) and edge set E(G+H) = E(G)∪E(H)∪{uv :
u ∈ V (G), v ∈ V (H)}.

3. Results

Remark 1. Let G be a connected graph. Then each of the following is true.

(i) The vertex set V (G) may not form a connected Grundy hop dominating sequence.

(ii) A proper connected hop dominating set may not form a connected Grundy hop dom-
inating sequence.

(iii) A Grundy hop dominating sequence need not be a connected Grundy hop dominating
sequence.
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To see (i), consider the graph G in Figure 1. Let S = (v1, v2, v3, v4, v5, v6). Then Ŝ is a
connected hop dominating set of G. Observe that N2

G[v6] = {v3, v6} ⊆ NG[v3]. It follows
that N2

G[v6] \
⋃5

j=1N
2
G[vj ] = ∅. Hence, S is not a legal closed hop neighborhood sequence

of G. Consequently, S is not connected Grundy hop dominating sequence of G. In fact
(as to be shown later), γchgr (G) ̸= 6.

G :

v1

v2

v3

v4

v5

v6

Figure 1: A graph G where vertex set does not form a connected Grundy hop dominating sequence

For (ii), consider the graph G = C5 = [x, z, y, w, v, x]. Clearly, Ŝ = {x, y, z, w} is a
connected hop dominating set of G. Observe that N2

G[w] ⊆ N2
G[x] ∪ N2

G[y] ∪ N2
G[z]. It

follows that N2
G[w] \ [N2

G[x] ∪ N2
G[y] ∪ N2

G[z]] = ∅. Thus, S is not a legal closed hop
neighborhood sequence of G. Therefore, S is not a connected Grundy hop dominating
sequence of G.

Finally, for (iii), consider G = P5 = [v1, v2, v3, v4, v5] and let S′ = (v1, v3, v4). Clearly,
Ŝ′ is a hop dominating set of G. Observe that v5 ∈ N2

G[v3] \N2
G[v1] and v2, v4 ∈ NG[v4] \

(N2
G[v1] ∪ N2

G[v3]). It follows that S′ is a legal closed hop neighborhood sequence of G.

Thus, S′ is a Grundy hop dominating sequence of G. However, ⟨Ŝ⟩ is not connected.
Hence, S′ is not a connected Grundy hop dominating sequence of G.

Remark 2. Let G be a connected graph. Then γch(G) ≤ γchgr (G) ≤ γhgr(G) and these
bounds are tight. Moreover, both strict inequalities are attainable.

Note that the first inequality follows from the fact that every connected Grundy hop
dominating sequence induces a connected hop dominating set (by definition). Moreover,
since every connected Grundy hop dominating sequence is a Grundy hop dominating
sequence, the second inequality follows.

To see that the bounds are tight, consider G = K4. Then γch(G) = γchgr (G) = γhgr(G) =
4. For strict inequalities, consider first the graph G in Figure 2. Let S1 = {s3, s4, s5, s6}
and S2 = (s1, s2, s3, s4, s5, s6). Then it can be verified that S1 and S2 are γch- and γchgr -

sequences of G, respectively. Hence, γch(G) = 4 < 6 = γchgr (G) = 6.
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s2

s5

s1

G :

s4s3 s6

Figure 2: A graph G with γch(G) < γch
gr (G)

Lastly, consider the graphG′ in Figure 3. Let S′ = (u3, u4, u5) and S′′ = (u1, u2, u6, u7).
Then S′ and S′′ are γchgr -sequence and γhgr-sequence of G′, respectively. Hence,

γchgr (G
′) = 3 and γhgr(G

′) = 4, that is, γchgr (G
′) = 3 < 4 = γhgr(G

′).

u1

u2 u6

u7

u3 u5

u4

G′ :

Figure 3: A graph G′ with γch
gr (G

′) < γh
gr(G

′)

Proposition 1. Let G be a connected graph. Then S = (s1, s2, · · · , sk) is a legal closed
hop neighborhood sequence of G with maximum length and ⟨Ŝ⟩ connected if and only if S
is a connected Grundy hop dominating sequence of G with γchgr (G) = k.

Proof. Let S = (s1, s2, · · · , sk) be a legal closed hop neighborhood sequence of G with
maximum length k and ⟨Ŝ⟩ connected. Suppose Ŝ is not a connected hop dominating set of
G. Then there exists v ∈ V (G)\N2

G[Ŝ]. This implies that v /∈ N2
G[u] for every u ∈ Ŝ. Pick

u0 = st ∈ Ŝ such that dG(v, u0) ≤ dG(v, sj) for all j ∈ {1, 2, . . . , k}. Let [q1, q2, . . . , qm],
where q1 = u0 and qm = v, be a u0-v geodesic. Thenm ≥ 4 and q4 /∈ N2

G[u] for every u ∈ Ŝ.

Let S∗ = (s1, s2, · · · , sk, q2). Then ⟨Ŝ∗⟩ is connected and q4 ∈ N2
G[q2] \ ∪k

j=1N
2
G[si] ̸= ∅.

It follows that S∗ is a legal closed hop neighborhood sequence of G, a contradiction to the
maximality of S. Thus, Ŝ is a connected dominating set of G. Therefore, by assumption,
S is a connected Grundy hop dominating sequence of G and γchgr (G) = k.

The converse is clear.

The next result follows from Proposition 1
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Corollary 1. Let G be a connected graph and let S = (s1, s2, . . . , sm) be a legal closed hop
neighborhood sequence of G such that ⟨Ŝ⟩ is connected. Then |Ŝ| = m ≤ γchgr (G).

Theorem 1. [8] Let G be any graph on n (n ≥ 2) vertices. Then γhgr(G) = n if and only
if every component C of G is complete.

Theorem 2. Let G be a connected graph on n vertices. Then 1 ≤ γchgr (G) ≤ n. Moreover,
each of the following statements holds.

(i) γchgr (G) = 1 if and only if G is trivial.

(ii) γchgr (G) = 2 if and only if G a non-trivial graph, has no induced cycles C3 and C5,
and {a, b} is a (connected) hop dominating set for each pair of adjacent vertices
a, b ∈ V (G).

(iii) γchgr (G) = n if and only if G is complete.

Proof. Clearly, 1 ≤ γchgr (G) ≤ n.

(i) Assume that γhgr(G) = 1. Suppose on the contrary that G is non-trivial. Then

γch(G) ≥ 2. By Proposition 2, γchgr (G) ≥ 2, a contradiction. Therefore, G is trivial.
The converse is clear.

(ii) Suppose γchgr (G) = 2. Then G is non-trivial by (i). Suppose G has a triangle, say C3 =
[x, y, z, x]. Then ⟨{x, y, z}⟩ is connected and (x, y, z) is a legal closed hop neighborhood
sequence of G. By Corollary 1, γchgr (G) ≥ 3, a contradiction. Hence, G is triangle-free.
Next, suppose that G has an induced cycle C5 = [p1, p2, . . . , p5, p1]. Then (p1, p3, p2)
is a legal closed hop neighborhood sequence and ⟨{p1, p3, p2}⟩ is connected. Again, by
Corollary 1, this implies that γchgr (G) ≥ 3, a contradiction. Thus, G does not have an
induced cycle of order 5. Now let u and v be adjacent vertices. Then (u, v) is a legal
closed hop neighborhood sequence of G. By assumption and Proposition 1, {a, b} is a hop
dominating set of G.

For the converse, suppose that G satisfies the given conditions. Let (v1, v2, . . . , vk) be
a γchgr -sequence of G. Suppose further that k ≥ 2. Let i ∈ {1, 2, . . . , k − 1}. Since ⟨Ŝ⟩ is
connected, there exists 1 ≤ j ≤ k, where j ̸= i, such that vivj ∈ E(G). If j < k, then
N2

G[vk] ⊆ N2
G[vi] ∪ N2

G[vj ] because {vi, vj} is a hop dominating set of G by assumption.
Thus, N2

G[vk]\∪
k−1
r=1N

2
G[vr] = ∅, a contradiction. Therefore, j = k and vivk ∈ E(G) for all

i ∈ {1, 2, . . . , k− 1}. Moreover, since G is triangle-free, ⟨Ŝ⟩ is a star. Now let w ∈ N2
G[v2].

Suppose w /∈ N2
G[v1]. Let [v2, z, w] be a v2-w geodesic. Since {v1, vk} is a hop dominating

set of G and w ∈ N2
G[v1], it follows that w /∈ N2

G[vk]. Let [vk, y, w] be a vk-w geodesic.
Since v2vk ∈ E(G) and G is tringle-free, zvk /∈ E(G); hence, y ̸= z. This implies that
[vk, v2, z, w, y, vk] is an induced cycle of G of order 5, a contradiction to an assumption.
Thus, w ∈ N2

G[v1], implying that N2
G[v2] ⊆ N2

G[v1]. This contradicts the legality property
of S. Therefore, k = 2, i.e., γchgr (G) = 2.

(iii) Suppose γchgr (G) = n. Then by Remark 2, γhgr(G) = n. Since G is connected, it follows
that G is complete by Theorem 1.
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Conversely, suppose that G is complete. Then N2
G[u] = {u} for each u ∈ V (G). Let

V (G) = {a1, a2, . . . , an}. Then

N2
G[ai] \ ∪i−1

j=1N
2
G[aj ] = {ai} \ {aj : j ̸= i} = {ai} ≠ ∅ for each i ∈ {2, 3, . . . , n}.

It follows that (a1, a2, · · · , an) is a Grundy hop dominating sequence of G. Since G is
connected, it follows that γchgr (G) = n.

The next results are immediate from Theorem 2.

Corollary 2. Let T be a non-trivial tree. Then γchgr (G) = 2 if and only if {a, b} is a
(connected) hop dominating set for each pair of adjacent vertices a, b ∈ V (T ).

Corollary 3. Let G be a connected graph on n vertices. Then γchgr (G) ≤ n− 1 if and only
if G is non-complete.

Proposition 2. Let n be any positive integer. Then each of the following holds.

(i) There exists a connected graph G such that γchgr (G)− γch(G) = n.

(ii) There exists a connected graph H such that γhgr(H)− γchgr (H) = n.

Proof. For (i), consider the graph G given in Figure 4. Let S1 = {u, vn+2} and
S2 = (v1, v2, · · · , vn+2). Then S1 and S2 are γch-set and γchgr -sequence of G, respectively.

Hence, γch(G) = 2 and γchgr (G) = n+ 2. Consequently, γchgr (G)− γch(G) = n+ 2− 2 = n.

v1

v3

v2
vn+2G : u

. .
.

Figure 4: A graph G with γch
gr (G)− γch(G) = n

For (ii), consider the graph H given in Figure 5. Let S′ = (v1, u, w) and
S′′ = (v1, v2, . . . , vn+2, u). Then S′ and S′′ are γchgr - and γhgr-sequences of H, respectively.

Therefore, γchgr (H) = 3 and γhgr(H) = n+3. Consequently, γhgr(H)−γchgr (H) = n+3−3 = n.
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H :

. . .

v1

v2

v3

vn+2

vn+1

u w

Figure 5: A graph H with γh
gr(H)− γch

gr (H) = n

This proves the assertion.

Corollary 4. Let G be a connected graph. Then γchgr (G) − γch(G) and γhgr(G) − γchgr (G)
can be made arbitrarily large.

Next, we give a more general result (than Proposition 2) involving the connected hop
domination, connected Grundy hop domination and Grundy hop domination parameters.

Theorem 3. Let a and b be positive integers such that 3 ≤ a ≤ b. Then each of the
following holds.

(i) There exists a connected graph G such that γch(G) = a and γchgr (G) = b.

(ii) There exists a connected graph G′ such that γchgr (G
′) = a and γhgr(G

′) = b.

Proof. For a = b, consider G = Ka. Then γch(G) = a = γchgr (G) = γhgr(G). Suppose
now that a < b.

For (i), let m = b− a and consider the following cases:
Case 1: a is odd.

Consider the graph G given in Figure 6, where ⟨{y1, y2, · · · , ym−1, w}⟩ is complete.
One can verify that S1 = (v1, v2, . . . , va} and S2 = (y1, y2, · · · , ym−1, w, va, va−1 · · · , v1)
are γch- and γchgr -sequences of G, respectively. Hence, γch(G) = a and γchgr (G) = m+a = b.
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. . .v1 v2 va−1 va

y1

w
ym−1

...G :

y2

v3

Figure 6: A graph G with γch(G) < γch
gr (G)

Case 2: a is even.
Consider the graph G′ given in Figure 7, where ⟨{y1, y2, · · · , ym−1, w}⟩ is complete.

One can verify that S′ = {v1, v2, . . . , va} and S′′ = (y1, y2, . . . , ym−1, w, va, va−1 . . . , v1) are
γch- and γchgr -sequences of G

′, respectively. Thus, γch(G
′) = a and γchgr (G

′) = m+ a = b.

. . .v1 v2 va−1 va

y1

w
ym−1

...G′ :

y2

v3 va−2

Figure 7: A graph G′ with γch(G
′) < γch

gr (G
′)

For (ii), let m = b − a + 1. Consider the graph H given in Figure 8. One can verify
that C ′ = {x1, x2, · · · , xa) and C ′′ = (x1, x2, · · · , xa−1, y1, y2, · · · , ym) are γchgr -sequence

and γhgr-sequence of H, respectively. Therefore, γchgr (H) = a and γhgr(H) = m+ a− 1 = b.
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H :

.
.
.

y1

y2

ym

x1 x2 x3 xa−1 xa. . .

Figure 8: A graph H with γch
gr (H) < γh

gr(H)

This proves the assertion.

Proposition 3. [8] For any positive integer n ≥ 2,

γhgr(Pn) =

{
2 if n = 2, 3

n− 2 if n ≥ 4.

Proposition 4. For any positive integer n ≥ 2,

γchgr (Pn) =

{
2 if n = 2, 3

n− 2 if n ≥ 4.

Proof. Let Pn = [v1, v2, · · · , vn]. Clearly, γchgr (Pn) = 2 for n = 2, 3. Next, suppose that
n ≥ 4. Let S′ = (v1, v2 · · · , vn−2). Clearly, S′ is a connected Grundy hop dominating
sequence of Pn. Thus, γchgr (Pn) ≥ n − 2. Since γhgr(Pn) = n − 2 for all n ≥ 4, it follows

that γchgr (Pn) ≤ n − 2 for all n ≥ 4 by Remark 2. Consequently, γchgr (Pn) = n − 2 for all
n ≥ 4.

Proposition 5. Let G be a connected graph of order n. If |N2
G[v]| ≥ m for every v ∈ V (G),

then γchgr (G) ≤ n− (m− 1).

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose γchgr (G) = k, say S = (s1, s2, · · · , sk) is a
connected Grundy hop dominating sequence of G. Assume s1 = vi for some i ∈ {1, . . . , n}.
Then |N2

G[s1]| = |N2
G[vi]| ≥ m by assumption. It follows that there are at most n − m

remaining vertices of G that could be hop footprinted by the next terms of S. Therefore,
γchgr (G) = k ≤ n−m+ |{vi}| = n−m+ 1 = n− (m− 1).

The next result follows immediately form Proposition 5.

Corollary 5. Let G be a connected graph on n vertices. If |N2
G[u]| = 3 for every u ∈ V (G),

then γchgr (G) ≤ n− 2.
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Proposition 6. [8] For any positive integer n ≥ 3,

γhgr(Cn) =


3 if n = 3

2 if n = 4

n− 4 if n ≥ 6 and even

n− 2 if n ≥ 5 and odd.

Proposition 7. For any positive integer n ≥ 3,

γchgr (Cn) =


2 if n = 4

3 if n = 3, 5

n− 4 if n ≥ 6 and even

n− 3 if n ≥ 7 and odd

Proof. Let G = Cn = [v1, v2, · · · , vn, v1]. Clearly, γchgr (C3) = 3 = γchgr (C5) and

γchgr (C4) = 2. Suppose that n ≥ 6 and is even. Let S = (v1, v2, · · · , vn−4). Then N2
G[v2] \

N2
G[v1] = {v2, v4, vn} ≠ ∅ and vi+2 ∈ N2

G[vi]\∪
i−1
j=1N

2
G[vj ] for all i ∈ {3, 4, · · · , n−4}. It fol-

lows that S is a connected Grundy hop dominating sequence. Hence, γchgr (Cn) ≥ |Ŝ| = n−4.

Now, since γhgr(Cn) = n − 4 for even integers n ≥ 6, it follows that γchgr (Cn) ≤ n − 4 by

Proposition 2. Consequently, γchgr (Cn) = n− 4 for all even integers n ≥ 6.
Next, suppose that n ≥ 7 and is odd. Let S = (v1, v3, · · · , vn−4, vn−3, vn−5, · · · , v2).

Then S is a maximum connected Grundy hop dominating sequence of Cn. Hence,
γchgr (G) = n− 3 for all n ≥ 7 and odd.

Lemma 1. [11] Let G be a non-trivial connected graph and let G1 and G2 be two copies
of G in the graph S(G). If w ∈ V (G1) and w′ ∈ V (G2) is the corresponding vertex of w,
then

N2
S(G)[w] = N2

G1
[w] ∪N2

G2
[w′] = N2

S(G)[w
′].

In what follows, if G1 and G2 are copies of G in the shadow graph S(G), and
D ⊆ V (G1), and Q ⊆ V (G2), then the sets D′ and Q′ are given by D′ = {v′ ∈ V (G2) :
v ∈ D} and Q′ = {w ∈ V (G1) : w ∈ Q}.

Theorem 4. Let G be a non-trivial connected graph and let G1 and G2 be copies of G in
the shadow graph S(G). Then C is a connected hop dominating set of S(G) if and only if
one of the following conditions holds:

(i) C is a connected hop dominating set in G1.

(ii) C is a connected hop dominating set in G2.

(iii) C = CG1 ∪ CG2 such that CG1 ∪ C ′
G2

and C ′
G1

∪ CG2 are connected hop dominating
sets of G1 and G2, respectively.
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Proof. Let CG1 = C ∩ V (G1) and CG2 = C ∩ V (G2). If CG2 = ∅, then C = CG1 is
a connected hop dominating set of G1. If CG1 = ∅, then C = CG2 is a connected hop
dominating set of G2. Hence, (i) or (ii) holds. Next, suppose CG1 ̸= ∅ and CG2 ̸= ∅.
Let x ∈ V (G1) \ (CG1 ∪ C ′

G2
). Then x ∈ V (S(G)) \ C. Since C is a hop dominating of

S(G), there exists y ∈ C such that dS(G)(x, y) = 2. If y ∈ CG1 , then we are done. Suppose
y ∈ CG2 , say y = z′, where z ∈ V (G1). Then z ∈ C ′

G2
and dS(G)(x, y) = dG1(x, z) = 2 by

Lemma 1. Therefore, CG1 ∪ C ′
G2

is a hop dominating set of G1. Clearly, ⟨CG1 ∪ C ′
G2

⟩ is
connected. Consequently, CG1 ∪ C ′

G2
is a connected hop dominating set of G1. Similarly,

C ′
G1

∪ CG2 is a connected hop dominating set of G2. Hence, (iii) holds.
Conversely, suppose (i) holds. Let a ∈ V (S(G)) \ C. If a ∈ V (G1), then there exists

b ∈ C such that dG1(a, b) = dS(G)(a, b) = 2. Suppose a ∈ V (G2), say a = u′, where
u ∈ V (G1). If u ∈ C, then dG1(a, u) = dS(G)(a, u) = 2. If u /∈ C, then there exists v ∈ C
such that dG1(u, v) = 2. It follows that dS(G)(a, u) = dS(G)(u

′, v) = 2. Therefore, C is a
hop dominating set of S(G). Clearly, ⟨C⟩ is connected. Consequently, C is a connected
hop dominating set of S(G). Similarly, if (ii) holds, then C is a connected hop dominating
set of S(G). Next, suppose that (iii) holds. Let x ∈ V (S(G)) \ C. Then x /∈ CG1 ∪ CG2 .
Suppose x ∈ V (G2) \ CG2 , say x = y′, where y ∈ V (G1). Then y /∈ C ′

G2
. If y ∈ CG1 , then

dS(G)(x, y) = dS(G)(y
′, y) = 2. Suppose y /∈ CG1 . Since CG1 ∪ C ′

G2
is a hop dominating

set of G1, there exists w ∈ CG1 ∪ C ′
G2

such that dG1(w, y) = 2 = dS(G)(w, y). If w ∈ CG1 ,
then w ∈ C and dS(G)(w, y

′) = 2 by Lemma 1. If w ∈ C ′
G2

, then w′ ∈ CG2 ⊆ C and
dG2(w

′, y′) = dS(G)(w
′, y′) = 2 by Lemma 1. Therefore, C is a hop dominating set of

S(G). Clearly, ⟨C⟩ is connected. Consequently, C is a connected hop dominating set of
S(G).

The next result follows from Theorem 4.

Corollary 6. Let G be a non-trivial connected graph and let G1 and G2 be copies of G in
the shadow graph S(G). Then γch(S(G)) = γch(G).

Theorem 5. Let G be a non-trivial connected graph and let G1 and G2 be copies of G
in the shadow graph S(G). If S is a connected Grundy hop dominating sequence of G1

or G2, then S is a connected Grundy hop dominating sequence of S(G). In particular,
γchgr (G) ≤ γchgr (S(G)).

Proof. Suppose S = (v1, v2, . . . , vk) is a connected Grundy hop dominating sequence of
G1. Then Ŝ is a connected hop dominating set of G1. Hence, Ŝ is a connected hop domi-
nating set of S(G) by Theorem 4. Let i ∈ {2, 3, . . . , k}. Since N2

G1
[vi]∩(∪i−1

j=1N
2
G2

[v′j ]) = ∅
and N2

G2
[v′i] ∩ (∪i−1

j=1N
2
G1

[vj ]) = ∅, Lemma 1 implies that

N2
S(G)[vi] \ ∪

i−1
j=1N

2
S(G)[vj ] = (N2

G1
[vi] \ (∪i−1

j=1N
2
G1

[vj ]) ∪ (N2
G2

[v′i] \ (∪i−1
j=1N

2
G2

[v′j ]).

By the legality property of S,

∅ ̸= N2
G1

[vi] \ ∪i−1
j=1N

2
G1

[vj ] ⊆ N2
S(G)[vi] \ ∪

i−1
j=1N

2
S(G)[vj ].
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Thus, S is a legal closed hop neighborhood sequence in S(G), showing that S is a con-
nected Grundy hop dominating sequence in S(G). Similarly, S is a connected Grundy hop
dominating sequence in S(G) if S is a connected Grundy hop dominating sequence in G2.
Therefore, γchgr (G) ≤ γchgr (S(G)).

Lemma 2. Let G be a connected graph of order n. If |NG[v]| ≥ k for every v ∈ V (G),
then γgr(G) ≤ n− (k − 1).

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose γgr(G) = t, say S = (s1, s2, · · · , st) is
a Grundy dominating sequence of G. Then |NG[s1]| ≥ k by assumption. It follows that
there are at most n − k remaining vertices of G that could be footprinted by the next
terms of S. Therefore, γcgr(G) = t ≤ n− k + 1.

Proposition 8. Let n be a positive integer. Then

γgr(Pn) =


1, n = 1,

2, n = 2, 3

3, n ≥ 4.

Proof. Clearly, for n = 1 and n = 2, 3, γgr(Pn) = 1 and γgr(Pn) = 2, respectively. Let
{v1, v2, · · · , vn} be a vertex set of G = Pn. Let = {v2, v4, v3}. Notice that S is a Grundy
dominating sequence of G. Hence, γgr(G) ≥ 3.
Now, notice that |NG[vi]| = n − 2 for every i, where i ̸= 1, n. Fix i. If we let vi to be
the first element of a Grundy dominating sequence S′, then there are only two remaining
vertices which are not in NG[vi]. Thus, γgr(G) ≤ 3. Therefore, γhgr(G) = 3.

Proposition 9. Let n be a positve integer. Then

γgr(Cn) =


3, n = 3,

2, n = 4

3, n ≥ 5.

Proof. Clearly, for n = 3 and n = 4, γgr(Cn) = 3 and γgr(Cn) = 2, respectively. Let
{v1, v2, · · · , vn} be a vertex set of G = Cn. Let = {v1, v3, v2}. Notice that S is a Grundy
dominating sequence of G. Hence, γgr(G) ≥ 3.
Now, notice that |NG[vi]| = n−2 for every i ∈ {1, · · · , n}. Fix i. If we let vi to be the first
element of a Grundy dominating sequence S′, then there are only two remaining vertices
which are not in NG[vi]. Thus, γgr(G) ≤ 3. Therefore, γgr(G) = 3.

The next result is the correction of a result found in an earlier paper of the authors in
[8].

Theorem 6. Let G and H be two graphs and let C be a sequence of distinct vertices of
G +H. Then C is a legal closed hop neighborhood sequence in G +H if and only if one
of the following holds:

(i) C is a co-legal closed neighborhood sequence in G.
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(ii) C is a co-legal closed neighborhood sequence in H.

(iii) The subsequences CG and CH of C, where Ĉ = ĈG ∪ ĈH , are co-legal closed neigh-
borhood sequences of G and H, respectively.

Proof. Assume that C = (a1, a2, · · · , am) is a legal closed hop neighborhood sequence of
G+H. If Ĉ ⊆ V (G), then N2

G[ai] = N2
G+H [ai] = V (G)\NG(ai) for each i ∈ {1, 2, . . . ,m}.

Thus, by the legality condition property of C,

[V (G) \NG(ai)] \ ∪i−1
j=1[V (G) \NG(aj)] ̸= ∅ for each i ∈ {2, 3, . . . ,m}.

It follows that C is a co-legal closed neighborhood sequence in G. Hence, (i) holds.
Similarly, if Ĉ ⊆ V (H), then (ii) holds. Next, suppose that Ĉ∩V (G) ̸= ∅ and Ĉ∩V (H) ̸=
∅. Let CG and CH be subsequences of C such that ĈG = Ĉ ∩V (G) and ĈH = Ĉ ∩V (H).
Let CG = (an1 , an2 , . . . , ant) and CH = (am1 , am2 , . . . , amr). Note that N

2
G+H [anj ] ⊆ V (G)

for all j ∈ {1, 2, . . . , t} and N2
G+H [ams ] ⊆ V (H) for all s ∈ {1, 2, . . . , r}. Since C is a

connected legal closed hop neighborhood sequence in G+H, it follows that

[V (G) \NG(ani)] \ ∪i−1
j=1[V (G) \NG(anj )] = N2

G+H [ani ] \ ∪i−1
j=1N

2
G+H [anj ] ̸= ∅

for all i ∈ {2, 3, . . . , t}. Hence, CG is a co-legal closed neighborhood sequence in G. Simi-
larly, CH is a co-legal closed neighborhood sequence in H. Therefore, (iii) holds.

For the converse, suppose (i) or (ii) holds. Then C is a legal closed hop neigh-
borhood sequence in G + H. Suppose (iii) holds. Let C = (a1, a2, · · · , am) and let
CG = (an1 , an2 , . . . , ant) and CH = (am1 , am2 , . . . , amr). Let i ∈ {2, 3, . . . ,m}. Suppose
ai ∈ ĈG. Then ai = ank

for some k ∈ {1, 2, . . . , t}. Since CG is a co-legal closed neighbor-
hood sequence in G,

N2
G+H [ai] \ ∪i−1

j=1N
2
G+H [aj ] = N2

G+H [ank
] \ ∪k−1

p=1N
2
G+H [anp ]

= [V (G) \NG(ank
)] \ ∪k−1

p=1[V (G) \NG(anp)] ̸= ∅.

If ai ∈ ĈH , then ai = amq for some q ∈ {1, 2, . . . ,m}. Since CH is a co-legal closed
neighborhood sequence in H,

N2
G+H [ai] \ ∪i−1

j=1N
2
G+H [aj ] = N2

G+H [amq ] \ ∪
q−1
r=1N

2
G+H [amr ]

= [V (H) \NH(amq)] \ ∪
q−1
r=1[V (H) \NH(amr)] ̸= ∅.

This shows that C is a legal closed hop neighborhood sequence in G+H.

Theorem 7. Let G and H be two graphs and let C be a sequence of distinct vertices of
G + H. Then C is a connected Grundy hop dominating sequence in G + H if and only
if the subsequences CG and CH of C, where Ĉ = ĈG ∪ ĈH , are co-Grundy dominating
sequences in G and H, respectively.

Proof. Suppose C is a connected Grundy hop dominating sequence in G +H. Since
C is a legal closed hop neighborhood sequence and Ĉ is a connected hop dominating set
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in G+H, it follows that C satisfies (iii) of Theorem 6. Hence, the subsequences CG and
CH of C, where Ĉ = ĈG ∪ ĈH , are co-legal closed neighborhood sequences in G and H,
respectively. Since Ĉ is a hop dominating set in G + H, V (G) = ∪v∈CG

[V (G) \ NG(v)]
and V (H) = ∪w∈CH

[V (H) \ NH(w)]. Thus, CG and and CH are co-Grundy dominating
sets in G and H, respectively.

Conversely, suppose that the subsequences CG and CH of C, where Ĉ = ĈG ∪ ĈH , are
co-Grundy dominating sequences in G and H, respectively. By Theorem 6, C is a legal
closed hop neighborhood sequence in G + H. Since CG and CH co-Grundy dominating
sequences in G and H, respectively, Ĉ is a hop dominating set. Moreover, because ⟨Ĉ⟩ is
connected, C is a connected Grundy hop dominating sequence in G+H.

The following result follows from Theorem 7, Proposition 8, and Proposition 9.

Corollary 7. Let G and H be graphs. Then

γchgr (G+H) = γcogr(G) + γcogr(H).

In particular, each of the following holds.

(i) γchgr (K1 +G) = 1 + γcogr(G).

(ii) γchgr (Km,n) = 2 for m,n ≥ 1.

(iii) γchgr (Wn) = 4 for all n ≥ 5.

(iv) γchgr (Fn) = 4 for all n ≥ 4.

(v) γchgr (Pn + Pm) = 6 for all n,m ≥ 4.

(vi) γchgr (Cn + Cm) = 6 for all n,m ≥ 5.

(vii) γchgr (Pn + Cm) = 6 for all n ≥ 4 and m ≥ 5.

4. Conclusion

In this study, connected Grundy hop domination numbers of some graphs are deter-
mined. Realization results involving connected hop domination, Grundy hop domination,
and connected Grundy hop domination numbers are given. For the shadow graph S(G)
of a non-trivial graph G, it is conjectured that γchgr (S(G)) = γchgr (G). Connected Grundy
hop domination can still be studied further.
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