EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 430-439 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Some Forms of Open Multifunctions in Ideal Topological Spaces

Takashi Noiri ^{1,*}, Valeriu Popa²

 ¹ Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan
² Department of Mathematics, University of Vasile Alecsandri of Bacău, 600115 Bacău, Romania

Abstract. By using m-open multifunctions from an m-space into an m-space, we establish the unified theory for several weak forms of open multifunctions between topological spaces.

2020 Mathematics Subject Classifications: 54A05, 54C10, 54C60 Key Words and Phrases: *m*-structure, *m*-space, *m*-open multifunction, ideal

1. Introduction

The notion of ideal topological spaces is introduced in [15] and [27]. In [14], the authors introduced the notion of *I*-open sets in an ideal topological space. As generalizations of open sets and *I*-open sets, semi-*I*-open sets, pre-*I*-open sets, α -*I*-open sets, β -*I*-open sets and *b*-*I*-open sets are introduced and used to obtain decompositions of continuity.

Recently, in [24] and [25] the present authors introduced the notions of minimal structures and *m*-spaces as a generalization of topological spaces. The notion of *m*-open multifunctions is introduced in [21]. The notion of *m*-*I*-open functions is introduced in [22]. In this paper, the authors introduce a minimal structure mIO(X) determined by operations Int, Cl, Cl^{*} in an ideal topological space (X, τ, I) . By using mIO(X), the authors introduce and study the notion of *mI*-open multifunctions. As special case of *mI*-open multifunctions, we obtain semi-*I*-open functions [12], pre-*I*-open functions [2], α -*I*-open functions [2], b-*I*-open functions [3], weakly semi-*I*-open functions [9] and weakly b - Iopen functions [19].

In Section 3, we introduce the notion of an m-open multifunction from an m-space into an m-space. We obtain the characterizations of m-open multifunctions and characterize the set of all points at which a multifunction is not m-open. In the last part, a new modification of m-open multifunctions, called mI-open multifunctions, is introduced and investigated.

Email addresses: t.noiri@nifty.com (T. Noiri), vpopa@ub.ro (V. Popa)

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4691

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be α -open [20] (resp. semi-open [16], preopen [18], β -open [1], b-open [4]) if $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$ (resp. $A \subset \text{Cl}(\text{Int}(A)), A \subset \text{Int}(\text{Cl}(A)), A \subset \text{Cl}(\text{Int}(\text{Cl}(A))), A \subset \text{Int}(\text{Cl}(A)))$.

The family of all semi-open (resp. preopen, α -open, β -open, *b*-open) sets in X is denoted by SO(X) (resp. PO(X), $\alpha(X)$, $\beta(X)$, BO(X)).

Throughout the present paper, (X, τ) and (Y, σ) always denote topological spaces and $F: X \to Y$ presents a multivalued function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a subset B of a space Y by $F^+(B)$ and $F^-(B)$, respectively, that is

$$F^+(B) = \{x \in X : F(x) \subset B\}$$
 and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}.$

Definition 2. A multifunction $F : (X, \tau) \to (Y, \sigma)$ is said to be *open* [5] (resp. *semi-open* [23], *preopen* [7], α -open [6], β -open [21]) if F(U) is open (resp. semi-open, preopen, α -open, β -open) for each open set U of X.

Definition 3. A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (or briefly *m*-structure) [24], [25] on X if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) (or briefly (X, m)), we denote a nonempty set X with a minimal structure m_X on X and call it an *m*-space. Each member of m_X is said to be m_X -open (or briefly *m*-open) and the complement of an m_X -open set is said to be m_X -closed (or briefly *m*-closed).

Definition 4. Let X be a nonempty set and m_X an *m*-structure on X. For a subset A of X, the m_X -closure and the m_X -interior of A are defined in [17] as follows:

(1)
$$m_X \operatorname{Cl}(A) = \cap \{F : A \subset F, X - F \in m_X\},\$$

(2) $m_X \operatorname{Int}(A) = \bigcup \{ U : U \subset A, U \in m_X \}.$

Lemma 1. (Maki et al. [17]) Let (X, m_X) be an m-space. For subsets A and B of X, the following properties hold:

(1) $m_X \operatorname{Cl}(X - A) = X - m_X \operatorname{Int}(A)$ and $m_X \operatorname{Int}(X - A) = X - m_X \operatorname{Cl}(A)$, (2) If $(X - A) \in m_X$, then $m_X \operatorname{Cl}(A) = A$ and if $A \in m_X$, then $m_X \operatorname{Int}(A) = A$, (3) $m_X \operatorname{Cl}(\emptyset) = \emptyset$, $m_X \operatorname{Cl}(X) = X$, $m_X \operatorname{Int}(\emptyset) = \emptyset$ and $m_X \operatorname{Int}(X) = X$, (4) If $A \subset B$, then $m_X \operatorname{Cl}(A) \subset m_X \operatorname{Cl}(B)$ and $m_X \operatorname{Int}(A) \subset m_X \operatorname{Int}(B)$, (5) $A \subset m_X \operatorname{Cl}(A)$ and $m_X \operatorname{Int}(A) \subset A$, (6) $m_X \operatorname{Cl}(m_X \operatorname{Cl}(A)) = m_X \operatorname{Cl}(A)$ and $m_X \operatorname{Int}(m_X \operatorname{Int}(A)) = m_X \operatorname{Int}(A)$.

Definition 5. An *m*-structure m_X on a nonempty set X is said to have property \mathcal{B} [17] if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 1. Let (X, τ) be a topological space and $m_X = SO(X)$ (resp. PO(X), $\alpha(X)$, $\beta(X)$, BO(X)), then m_X is an *m*-structure having property \mathcal{B} .

Lemma 2. (Popa and Noiri [26]) Let (X, m_X) be an *m*-space and m_X have property \mathcal{B} . Then for a subset A of X, the following properties hold:

(1) $A \in m_X$ if and only if $m_X \text{Int}(A) = A$,

(2) A is m-closed if and only if $m_X Cl(A) = A$,

(3) $m_X \operatorname{Int}(A) \in m_X$ and $m_X \operatorname{Cl}(A)$ is m_X -closed.

3. *m***-open multifunctions**

Definition 6. Let (X, m_X) and (Y, m_Y) be two *m*-spaces. A multifunction $F : (X, m_X) \to (Y, m_Y)$ is said to be *m*-open at $x \in X$ if for each m_X -open set U containing x, there exists $V \in m_Y$ containing F(x) such that $V \subset F(U)$. If F is *m*-open at each point $x \in X$, then F is said to be *m*-open.

Theorem 1. A multifunction $F : (X, m_X) \to (Y, m_Y)$ is m-open at $x \in X$, where m_Y has property \mathcal{B} , if and only if for each m_X -open set U containing $x, x \in F^+(m_Y \operatorname{Int}(F(U)))$.

Proof. Necessity. Let U be any m_X -open set containing x. Then, there exists $V \in m_Y$ such that $F(x) \subset V \subset F(U)$ and hence $F(x) \subset m_Y \operatorname{Int}(F(U))$. Therefore, we obtain that $x \in F^+(m_Y \operatorname{Int}(F(U)))$.

Sufficiency. Suppose that $x \in F^+(m_Y \operatorname{Int}(F(U)))$ for each m_X -open set U containing x. Then $F(x) \subset m_Y \operatorname{Int}(F(U))$. Set $V = m_Y \operatorname{Int}(F(U))$, then by Lemma 2 $V \in m_Y$ and $F(x) \subset V \subset F(U)$. Therefore, F is m-open at x.

Theorem 2. A multifunction $F : (X, m_X) \to (Y, m_Y)$ is m-open, where (Y, m_Y) has property \mathcal{B} , if and only if F(U) is m_Y -open for each m_X -open set U of X.

Proof. Necessity. Let U be any m_X -open set of X and $x \in U$. Since F is m-open at $x \in X$, by Theorem 1 we have $F(x) \subset m_Y \operatorname{Int}(F(U))$ and $F(U) = m_Y \operatorname{Int}(F(U))$. By Lemma 2, F(U) is m_Y -open.

Sufficiency. Let x be an arbitrary point of X and U any m_X -open set of X containing x. Then, we have $F(x) \subset F(U) = m_Y \operatorname{Int}(F(U))$. Therefore, $x \in F^+(m_Y \operatorname{Int}(F(U)))$. By Theorem 1, F is m-open at an arbitrary point $x \in X$.

Remark 2. For a multifunction $F : (X, m_X) \to (Y, m_Y)$, let $m_X = \tau$ and $m_Y = \sigma$ (resp. SO(Y), PO(Y), $\alpha(Y)$, $\beta(Y)$), then we obtain Definition 2, that is, the definition of an open (resp. semi-open, preopen, α -open, β -open) multifunction.

Theorem 3. For a multifunction $F : (X, m_X) \to (Y, m_Y)$, where m_Y has property \mathcal{B} , the following properties are equivalent:

(1) F is m-open at x;

(2) If $x \in m_X \operatorname{Int}(A)$ for any $A \in \mathcal{P}(X)$, then $x \in F^+(m_Y \operatorname{Int}(F(A)))$;

(3) If $x \in m_X \operatorname{Int}(F^+(B))$ for any $B \in \mathcal{P}(Y)$, then $x \in F^+(m_Y \operatorname{Int}(B))$;

(4) If $x \in F^{-}(m_Y \operatorname{Cl}(B))$ for any $B \in \mathcal{P}(Y)$, then $x \in m_X \operatorname{Cl}(F^{-}(B))$.

Proof. (1) \Rightarrow (2): Let $A \in \mathcal{P}(X)$ and $x \in m_X \operatorname{Int}(A)$. Then, there exists an m_X -open set U such that $x \in U \subset A$ and hence $F(x) \subset F(U) \subset F(A)$. Since F is m-open at x, by Theorem 1 and Lemma 1, we obtain $x \in F^+(m_Y \operatorname{Int}(F(U))) \subset F^+(m_Y \operatorname{Int}(F(A)))$.

 $(2) \Rightarrow (3)$: Let $B \in \mathcal{P}(Y)$ and $x \in m_X \operatorname{Int}(F^+(B))$. Then, $x \in F^+(m_Y \operatorname{Int}(F(F^+(B)))) \subset F^+(m_Y \operatorname{Int}(B))$.

(3) \Rightarrow (4): Let $B \in \mathcal{P}(Y)$ and $x \notin m_X \operatorname{Cl}(F^-(B))$. Then $x \in X - m_X \operatorname{Cl}(F^-(B)) = m_X \operatorname{Int}(X - F^-(B)) = m_X \operatorname{Int}(F^+(Y - B))$. By (3) we have $x \in F^+(m_Y \operatorname{Int}(Y - B)) = X - F^-(m_Y \operatorname{Cl}(B))$. Hence, $x \notin F^-(m_Y \operatorname{Cl}(B))$. Therefore, if $x \in F^-(m_Y \operatorname{Cl}(B))$, then $x \in m_X \operatorname{Cl}(F^-(B))$.

 $(4) \Rightarrow (1)$: Let U be any m_X -open set of X containing x and B = Y - F(U). Since $m_X \operatorname{Cl}(F^-(B)) = m_X \operatorname{Cl}(F^-(Y - F(U))) = m_X \operatorname{Cl}(X - F^+(F(U))) \subset X - m_X \operatorname{Int}(U) = X - U$ and $x \in U$, we obtain that $x \notin m_X \operatorname{Cl}(F^-(B))$. By (4), we have $x \notin F^-(m_Y \operatorname{Cl}(B)) = F^-(m_Y \operatorname{Cl}(Y - F(U))) = X - F^+(m_Y \operatorname{Int}(F(U)))$. Therefore, $x \in F^+(m_Y \operatorname{Int}(F(U)))$. By Theorem 1, F is m-open at x.

Theorem 4. For a multifunction $F : (X, m_X) \to (Y, m_Y)$, where m_Y has property \mathcal{B} , the following properties are equivalent:

(1) F is m-open;

(2) $F(m_X \operatorname{Int}(A)) \subset m_Y \operatorname{Int}(F(A))$ for any subset A of X;

(3) $m_X \operatorname{Int}(F^+(B)) \subset F^+(m_Y \operatorname{Int}(B))$ for any subset B of Y;

(4) $F^{-}(m_Y \operatorname{Cl}(B)) \subset m_X \operatorname{Cl}(F^{-}(B))$ for any subset B of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X and $x \in m_X \operatorname{Int}(A)$. Since F is m-open at each $x \in A$, by Theorem 3 $F(x) \subset m_Y \operatorname{Int}(F(A))$. Hence $F(m_X \operatorname{Int}(A)) \subset m_Y \operatorname{Int}(F(A))$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. By (2), we have $F(m_X \operatorname{Int}(F^+(B))) \subset m_Y \operatorname{Int}(F(F^+(B))) \subset m_Y \operatorname{Int}(B)$. $m_Y \operatorname{Int}(B)$. Hence, we have $m_X \operatorname{Int}(F^+(B)) \subset F^+(m_Y \operatorname{Int}(B))$.

(3) \Rightarrow (4): Let *B* be any subset of *Y*. By (3), we have $X - m_X \operatorname{Cl}(F^-(B)) = m_X \operatorname{Int}(X - F^-(B)) = m_X \operatorname{Int}(F^+(Y - B)) \subset F^+(m_Y \operatorname{Int}(Y - B)) = X - F^-(m_Y \operatorname{Cl}(B)).$ Hence, $F^-(m_Y \operatorname{Cl}(B)) \subset m_X \operatorname{Cl}(F^-(B)).$

(4) \Rightarrow (1): Let U be any m_X -open set of X and B = Y - F(U). By (4), we have $F^-(m_Y \operatorname{Cl}(Y - F(U))) \subset m_X \operatorname{Cl}(F^-(Y - F(U)))$. Now, $F^-(m_Y \operatorname{Cl}(Y - F(U))) =$ $F^-(Y - m_Y \operatorname{Int}(F(U))) = X - F^+(m_Y \operatorname{Int}(F(U)))$. And also we have $m_X \operatorname{Cl}(F^-(Y - F(U))) = m_X \operatorname{Cl}(X - F^+(F(U))) \subset X - m_X \operatorname{Int}(U) = X - U$. Therefore, we obtain $U \subset F^+(m_Y \operatorname{Int}(F(U)))$ and hence $F(U) \subset m_Y \operatorname{Int}(F(U))$. Consequently, we obtain $F(U) = m_Y \operatorname{Int}(F(U))$ and F(U) is m_Y -open. Therefore, by Theorem 2 F is m-open.

For a multifunction $F : (X, m_X) \to (Y, m_Y)$, we denote $D^0(F) = \{x \in X: F \text{ is not } m \text{-open at } x\}.$

Theorem 5. For a multifunction $F : (X, m_X) \to (Y, m_Y)$, where m_Y has property \mathcal{B} , the following properties hold:

 $D^{0}(F) = \bigcup_{U \in m_{X}} \{ U - F^{+}(m_{Y} \operatorname{Int}(F(U))) \}$ = $\bigcup_{A \in P(X)} \{ m_{X} \operatorname{Int}(A) - F^{+}(m_{Y} \operatorname{Int}(F(A))) \}$

$$= \bigcup_{B \in P(Y)} \{ m_X \operatorname{Int}(F^+(B)) - F^+(m_Y \operatorname{Int}(B)) \} \\= \bigcup_{B \in P(Y)} \{ F^-(m_Y \operatorname{Cl}(B)) - m_X \operatorname{Cl}(F^-(B)) \}.$$

Proof. Let $x \in D^0(F)$. Then, by Theorem 1, there exists an m_X -open set U_0 containing x such that $x \notin F^+(m_Y \operatorname{Int}(F(U_0)))$. Hence, $x \in U_0 \cap (X - F^+(m_Y \operatorname{Int}(F(U_0)))) = U_0 - F^+(m_Y \operatorname{Int}(F(U_0))) \subset \bigcup_{U \in m_X} \{U - F^+(m_Y \operatorname{Int}(F(U)))\}.$

Conversely, let $x \in \bigcup_{U \in m_X} \{U - F^+(m_Y \operatorname{Int}(F(U)))\}$. Then, there exists $U_0 \in m_X$ such that $x \in U_0 - F^+(m_Y \operatorname{Int}(F(U_0)))$. Therefore, by Theorem 1 $x \in D^0(F)$.

For the second equation, let $x \in D^0(F)$. Then, by Theorem 3, there exists $A_1 \in \mathcal{P}(X)$ such that $x \in m_X \operatorname{Int}(A_1)$ and $x \notin F^+(m_Y \operatorname{Int}(F(A_1)))$. Therefore, $x \in m_X \operatorname{Int}(A_1) - F^+(m_Y \operatorname{Int}(F(A_1))) \subset \bigcup_{A \in P(X)} \{m_X \operatorname{Int}(A) - F^+(m_Y \operatorname{Int}(F(A)))\}$.

Conversely, $x \in \bigcup_{A \in P(X)} \{m_X \operatorname{Int}(A) - F^+(m_Y \operatorname{Int}(F(A)))\}$. Then, there exists $A_1 \in \mathcal{P}(X)$ such that $x \in m_X \operatorname{Int}(A_1) - F^+(m_Y \operatorname{Int}(F(A_1)))$. By Theorem 3, $x \in D^0(F)$.

The other equations are similarly proved.

4. Ideal topological spaces

Let (X, τ) be a topological space. The notion of ideals has been introduced in [15] and [27] and further investigated in [13]

Definition 7. A nonempty collection I of subsets of a set X is called an *ideal on* X if it satisfies the following two conditions:

(1) $A \in I$ and $B \subset A$ implies $B \in I$,

(2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

A topological space (X, τ) with an ideal I on X is called an *ideal topological space* and is denoted by (X, τ, I) . Let (X, τ, I) be an ideal topological space. For any subset A of $X, A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the *local function* of A with respect to τ and I [13]. Hereafter, $A^*(I, \tau)$ is simply denoted by A^* . It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator on X and the topology generated by Cl^* is denoted by τ^* .

Lemma 3. (Janković and Hamlett [13]) Let (X, τ, I) be an ideal topological space and A, B be two subsets of X. Then, the following properties hold:

(1) $A \subset B$ implies $\operatorname{Cl}^{\star}(A) \subset \operatorname{Cl}^{\star}(B)$,

- (2) $\operatorname{Cl}^{\star}(X) = X$ and $\operatorname{Cl}^{\star}(\emptyset) = \emptyset$,
- (3) $\operatorname{Cl}^{\star}(A) \cup \operatorname{Cl}^{\star}(B) \subset \operatorname{Cl}^{\star}(A \cup B).$

A subset A is said to be *I-open* [14] if $A \subset \text{Int}(A^*)$. As generalizations of open sets and *I*-open sets, the following subsets are introduced and investigated.

Definition 8. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be

(1) α -*I*-open [11] if $A \subset Int(Cl^{*}(Int(A)))$,

(2) semi-I-open [12] if $A \subset Cl^{\star}(Int(A))$,

(3) pre-I-open [8] if $A \subset Int(Cl^{*}(A))$,

- (4) *b-I-open* [3] if $A \subset Int(Cl^{\star}(A)) \cup Cl^{\star}(Int(A))$,
- (5) β -*I*-open [11] if $A \subset Cl(Int(Cl^{\star}(A)))$,
- (6) weakly semi-I-open [9] if $A \subset Cl^*(Int(Cl(A)))$,
- (7) weakly b-I-open [19] if $A \subset Cl(Int(Cl^*(A))) \cup Cl^*(Int(Cl(A))),$
- (8) strongly β -I-open [10] if $A \subset Cl^{*}(Int(Cl^{*}(A)))$.

Between the sets in Definition 8, we have the following relations:

DIAGRAM 1

$$\begin{array}{ccc} \operatorname{open} \Rightarrow \alpha \text{-}I\text{-}\operatorname{open} \Rightarrow \operatorname{semi-}I\text{-}\operatorname{open} \Rightarrow & & & & \\ & & & \downarrow & & \downarrow & \\ I\text{-}\operatorname{open} \Rightarrow \operatorname{pre-}I\text{-}\operatorname{open} \Rightarrow b\text{-}I\text{-}\operatorname{open} \Rightarrow & & & & \\ & & & \downarrow & & \uparrow & \\ & & & & & \\ & & & & & & \\ & & & & &$$

The family of all α -*I*-open (resp. semi-*I*-open, pre-*I*-open, *b*-*I*-open, β -*I*-open, weakly semi-*I*-open, weakly *b*-*I*-open, strongly β -*I*-open) sets in an ideal topological space (X, τ, I) is denoted by α IO(X) (resp. SIO(X), PIO(X), BIO(X), β IO(X), WSIO(X), WBIO(X), S β IO(X)).

Definition 9. By mIO(X), we denote each one of the families τ^* , $\alpha IO(X)$, SIO(X), PIO(X), BIO(X), $\beta IO(X)$, WSIO(X), WBIO(X), S $\beta IO(X)$.

Lemma 4. Let (X, τ, I) be an ideal topological space. Then, mIO(X) is an *m*-structure on X and has property \mathcal{B} .

Proof. We shall show that SIO(X) is an *m*-structure with property \mathcal{B} .

(1) It is obvious that by Lemma 3 $\operatorname{Cl}^*(\operatorname{Int}(\emptyset)) = \operatorname{Cl}^*(\emptyset) = \emptyset$ and $\operatorname{Cl}^*(\operatorname{Int}(X)) = \operatorname{Cl}^*(X) = X$. Hence, $\operatorname{SIO}(X)$ is an *m*-structure.

(2) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any family of semi-*I*-open sets. Then, for each $\alpha \in \Delta$, by Lemma 3 we have $A_{\alpha} \subset \operatorname{Cl}^{\star}(\operatorname{Int}(A_{\alpha})) \subset \operatorname{Cl}^{\star}(\operatorname{Int}(\cup \{A_{\alpha} : \alpha \in \Delta\}))$. Therefore, $\cup \{A_{\alpha} : \alpha \in \Delta\} \subset \operatorname{Cl}^{\star}(\operatorname{Int}(\cup \{A_{\alpha} : \alpha \in \Delta\}))$ and hence $\cup \{A_{\alpha} : \alpha \in \Delta\} \in \operatorname{SIO}(X)$. Hence $\operatorname{SIO}(X)$ has property \mathcal{B} .

For other families, the proofs are similar.

Definition 10. Let (X, τ, I) be an ideal topological space. For a subset A of X, $mCl_I(A)$ and $mInt_I(A)$ are defined as follows:

(1) $m\operatorname{Cl}_{I}(A) = \cap \{F : A \subset F, X \setminus F \in \operatorname{mIO}(X)\},\$

(2) $m \operatorname{Int}_{I}(A) = \bigcup \{ U : U \subset A, U \in \operatorname{mIO}(X) \}.$

Let (X, τ, I) be an ideal topological space and mIO(X) the *m*-structure on X. If mIO(X) = τ^* (resp. α IO(X), SIO(X), PIO(X), BIO(X), β IO(X), WSIO(X), WBIO(X), S β IO(X)), then we have the following:

(1) $m\operatorname{Cl}_{I}(A) = \operatorname{Cl}^{*}(A)$ (resp. $\alpha \operatorname{Cl}_{I}(A)$, $s\operatorname{Cl}_{I}(A)$, $p\operatorname{Cl}_{I}(A)$, $b\operatorname{Cl}_{I}(A)$, $\beta \operatorname{Cl}_{I}(A)$, $ws\operatorname{Cl}_{I}(A)$, $ws\operatorname{Cl}_{I}(A)$, $ws\operatorname{Cl}_{I}(A)$, $ws\operatorname{Cl}_{I}(A)$, s

(2) $\operatorname{mInt}_{I}(A) = \operatorname{Int}^{*}(A)$ (resp. $\alpha \operatorname{Int}_{I}(A)$, $s \operatorname{Int}_{I}(A)$, $p \operatorname{Int}_{I}(A)$, $\beta \operatorname{Int}_{I}(A)$, $\beta \operatorname{Int}_{I}(A)$, $w s \operatorname{Int}_{I}(A)$, $w b \operatorname{Int}_{I}(A)$, $s \beta \operatorname{Int}_{I}(A)$).

5. *mI*-open multifunctions

Definition 11. Let (X, m_X) be an *m*-space and (Y, τ, I) be an ideal topological space. A multifunction $F : (X, m_X) \to (Y, \tau, I)$ is said to be *mI-open* at $x \in X$ if for each m_X -open set U containing x, there exists $V \in mIO(Y)$ containing F(x) such that $V \subset F(U)$. If F is *mI*-open at each point $x \in X$, then F is said to be *mI-open*.

Then $F : (X, m_X) \to (Y, \tau, I)$ is *mI*-open at $x \in X$ (resp. on X) if and only if $F : (X, m_X) \to (Y, mIO(X))$ is *m*-open at $x \in X$ (resp. on X). Therefore, by the results of Section 3, we obtain the following properties of *mI*-open multifunctions.

Theorem 6. A multifunction $F : (X, m_X) \to (Y, \tau, I)$ is mI-open at $x \in X$ if and only if for each m_X -open set U containing $x, x \in F^+(m \operatorname{Int}_I(F(U)))$.

Proof. The proof follows from Theorem 1 and Lemma 4.

Theorem 7. A multifunction $F : (X, m_X) \to (Y, \tau, I)$ is mI-open if and only if F(U) is mI-open for each m_X -open set U of X.

Proof. The proof follows from Theorem 2 and Lemma 4.

Theorem 8. For a multifunction $F : (X, m_X) \to (Y, \tau, I)$, the following properties are equivalent:

(1) F is mI-open at x;

(2) If $x \in m_X \operatorname{Int}(A)$ for $A \in \mathcal{P}(X)$, then $x \in F^+(m \operatorname{Int}_I(F(A)))$;

(3) $x \in m_X \operatorname{Int}(F^+(B))$ for $B \in \mathcal{P}(Y)$, then $x \in F^+(m \operatorname{Int}_I(B))$;

(4) If $x \in F^-(m\operatorname{Cl}_I(B))$ for $B \in \mathcal{P}(Y)$, then $x \in m_X\operatorname{Cl}(F^-(B))$.

Proof. The proof follows from Theorem 3 and Lemma 4.

Theorem 9. For a multifunction $F : (X, m_X) \to (Y, \tau, I)$, the following properties are equivalent:

(1) F is mI-open;

(2) $F(m_X \operatorname{Int}(A)) \subset m \operatorname{Int}_I(F(A))$ for any subset A of X;

(3) $m_X \operatorname{Int}(F^+(B)) \subset F^+(m \operatorname{Int}_I(B))$ for any subset B of Y;

(4) $F^{-}(m\operatorname{Cl}_{I}(B)) \subset m_{X}\operatorname{Cl}(F^{-}(B))$ for any subset B of Y.

Proof. The proof follows from Theorem 4 and Lemma 4.

For a multifunction $F : (X, m_X) \to (Y, \tau, I)$, we denote $D_I^0(F) = \{x \in X: F \text{ is not } mI\text{-open at } x\}.$

Theorem 10. For a multifunction $F : (X, m_X) \to (Y, \tau, I)$, the following properties hold: $D_I^0(F) = \bigcup_{U \in m_X} \{U - F^-(m \operatorname{Int}_I(F(U)))\}$ $= \bigcup_{A \in P(X)} \{m_X \operatorname{Int}(A) - F^+(m \operatorname{Int}_I(F(A)))\}$ $= \bigcup_{B \in P(Y)} \{m_X \operatorname{Int}(F^+(B)) - F^+(m \operatorname{Int}_I(B))\}$ $= \bigcup_{B \in P(Y)} \{F^-(m \operatorname{Cl}_I(B)) - m_X \operatorname{Cl}(F^-(B))\}.$

REFERENCES

Proof. The proof follows from Theorem 5 and Lemma 4.

Remark 3. 1) Let $F : (X, \tau) \to (Y, \sigma, J)$ be a multifunction, where (X, τ) is a topological space. Since $m_X = \mathrm{SO}(X)$ (resp. $\mathrm{PO}(X)$, $\alpha(X)$, $\beta(X)$, $\mathrm{BO}(X)$) is an *m*-structure having property \mathcal{B} , an *mJ*-open multifunction $F : (X, m_X) \to (Y, \sigma, J)$ is defined and it is equivalent to an *m*-open multifunction $F : (X, m_X) \to (Y, \mathrm{mJO}(Y))$. For example, let $m_X = \mathrm{SO}(X)$ and $\mathrm{mJO}(Y) = \mathrm{SJO}(Y)$, then an *m*-open multifunction $F : (X, \mathrm{SO}(X)) \to$ $(Y, \mathrm{SJO}(Y))$ is defined and we obtain the properties from the results of Sections 3 and 5.

2) An *mIJ*-open multifunction $F : (X, \tau, I) \to (Y, \sigma, J)$ is defined by (i) an *mJ*-open multifunction $F : (X, \text{mIO}(X)) \to (Y, \sigma, J)$ or (ii) an *m*-open multifunction $F : (X, \text{mIO}(X)) \to (Y, \text{mJO}(Y))$.

For example, let mIO(X) = SIO(X) and mJO(Y) = SJO(Y), then an *m*-open multifunction $F : (X, SIO(X)) \to (Y, SJO(Y))$ is defined and we obtain the properties from the results of Sections 3 and 5.

Corollary 1. For a multifunction $F : (X, \tau, I) \to (Y, \sigma, J)$, the following properties are equivalent:

(1) $F : (X, \tau, I) \to (Y, \sigma, J)$ is mIJ-open; (2) $F : (X, SIO(X)) \to (Y, \sigma, J)$ is mJ-open; (3) $F : (X, SIO(X)) \to (Y, SJO(Y))$ is m-open; (4) $F(sInt_I(A)) \subset sInt_J(F(A))$ for any subset A of X; (5) $sInt_I(F^+(B)) \subset F^+(sInt_J(B))$ for any subset B of Y; (6) $F^-(sCl_J(B)) \subset sCl_I(F^-(B))$ for any subset B of Y.

Proof. The proof easily follows from Theorem 9.

References

- M.E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud. β-open sets and βcontinuous mappings. Bull. Fac. Sci. Assiut Univ., 12:77–90, 1983.
- [2] A. Açıkgöz, T. Noiri, and S. Yüksel. On α-I-continuous functions and α-I-open functions. Acta Math. Hungar., 105 (1-2):27–37, 2004.
- [3] M. Akdağ. On b-I-open sets and b-I-continuous functions. Int. J. Math. Math. Sci., 2007:Article ID 75721, 2007.
- [4] D. Andrijević. On b-open sets. Mat. Vesnik, 48:59–64, 1996.
- [5] T. Bânzaru. Topologies on spaces of subsets and multivalued mappings. Mathematical Monographs, University of Timişoara, 1997.
- [6] J. Cao and I. L. Reilly. α-continuous and α-irresolute multifunctions. Math. Bohemica, 121:415–424, 1996.

- [7] J. Cao and I. L. Reilly. On pairwise almost continuous multifunctions and closed graph. *Indian J. Math.*, 38:1–17, 1996.
- [8] J. Dontchev. On pre-I-open sets and a decomposition of I-continuity. Banyan Math. J., 2, 1996.
- [9] E. Hatır and S. Jafari. On weakly semi-*I*-open sets and other decomposition of continuity via ideals. *Sarajevo J. Math.*, 14:107–114, 2006.
- [10] E. Hatır, A. Keskin, and T. Noiri. On a new decomposition of continuity via idealization. JP J. Geometry Topology, 3 (1):53-64, 2003.
- [11] E. Hatır and T. Noiri. On decompositions of continuity via idealization. Acta Math. Hungar., 96 (4):341–349, 2002.
- [12] E. Hatır and T. Noiri. On semi-*I*-open sets and semi-*I*-continuous functions. Acta Math. Hungar., 107 (4):345–353, 2005.
- [13] D. Janković and T. R. Hamlett. New topologies from old via ideals. Amer. Math. Monthly, 97:295–310, 1990.
- [14] D. Janković and T. R. Hamlett. Compatible extensions of ideals. Boll. Un. Mat. Ital., (7) 6-B:453-465, 1992.
- [15] K. Kuratowski. Topology. Academic Press, New York, 1966.
- [16] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70:36–41, 1963.
- [17] H. Maki, K. C. Rao, and A. Nagoor Gani. On generalizing semi-open and preopen sets. Pure Appl. Math. Sci., 49:17–29, 1999.
- [18] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt., 53:47–53, 1982.
- [19] J. M. Mustafa, S. Al Ghour, and K.Al Zoubi. Weakly b-I-open sets and weakly b-I-continuous functions. Ital. J. Pure Appl. Math., 30:23–32, 2013.
- [20] O. Njåstad. On some classes of nearly open sets. Pacific J. Math., 15:961–970, 1965.
- [21] T. Noiri and V. Popa. Minimal structures, *m*-open multifunctions and bitopological spaces. J. Pure Math., 24:1–12, 2007.
- [22] T. Noiri and V. Popa. On some forms of open functions in ideal topological spaces. Sci. Stud. Res. Ser. Math. Inform., 29(1):103–112, 2019.
- [23] V. Popa, Y. Küçük, and T. Noiri. On upper and lower preirresolute multifunctions. *Pure Appl. Math. Sci.*, 44:5–16, 1997.

- [24] V. Popa and T. Noiri. On M-continuous functions. Anal. Univ. "Dunărea de Jos", Galați, Ser. Mat. Fiz. Mec. Teor., 18 (23):31–41, 2000.
- [25] V. Popa and T. Noiri. On the definitions of some generalized forms of continuity under minimal conditions. Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22:9–18, 2001.
- [26] V. Popa and T. Noiri. A unified theory of weak continuity for functions. Rend. Circ. Mat. Palermo (2), 51:439–464, 2002.
- [27] R. Vaidyanathaswani. The localization theory in set-topology. Proc. Indian Acad. Sci., 20:51–61, 1945.