
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 2, 2023, 724-735
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Non-existence of Positive Integer Solutions of the
Diophantine Equation px + (p+ 2q)y = z2, where p, q and

p+ 2q are Prime Numbers

Suton Tadee1, Apirat Siraworakun1,∗

1 Department of Mathematics, Faculty of Science and Technology,
Thepsatri Rajabhat University, Lopburi 15000, Thailand

Abstract. The Diophantine equation px + (p + 2q)y = z2, where p, q and p + 2q are prime
numbers, is studied widely. Many authors give q as an explicit prime number and investigate
the positive integer solutions and some conditions for non-existence of positive integer solutions.
In this work, we gather some conditions for odd prime numbers p and q for showing that the
Diophantine equation px + (p + 2q)y = z2 has no positive integer solution. Moreover, many
examples of Diophantine equations with no positive integer solution are illustrated.
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1. Introduction

Studying non-negative integer solutions of the Diophantine equation px + qy = z2,
where p and q are prime numbers, has been done in numerous ways. One of them is
that p and q are given as explicit prime numbers. For example, in [4] and [5], Kumar,
Gupta and Kishan showed that the Diophantine equations 61x+67y = z2, 67x+73y = z2,
31x + 41y = z2 and 61x + 71y = z2 have no non-negative integer solution and Burshtein
[3] revealed that the Diophantine equations 2x + 11y = z2 and 19x + 29y = z2 have no
positive integer solutions (x, y, z).

Many researchers studied the Diophantine equation by considering q = p+k, where k is
an even number. In [2], Burshtein investigated the solutions of the Diophantine equation
px + (p + 6)y = z2, where p and p + 6 are primes and x + y = 2, 3, 4. Gupta, Kumar
and Kishan [6] studied the Diophantine equation px + (p + 6)y = z2, where p and p + 6
are sexy primes with p = 6n + 1 and n is a natural number. Burshtein [1] showed that
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the Diophantine equation px + (p + 4)y = z2, where p > 3 and p + 4 are primes, has no
positive integer solutions (x, y, z). In addition, Rao [10] studied the Diophantine equation
3x + 7y = z2. Neres [9] investigated the Diophantine equation px + (p + 8)y = z2, where
p > 3 and p + 8 are primes. Moreover, Tadee ([13], [14]) has given the solutions of the
Diophantine equations px + (p + 10)y = z2 and px + (p + 14)y = z2, where p, p + 10 and
p+ 14 are primes.

In [7], Mina and Bacani use the concepts of Legendre symbol and Jacobi symbol
to find some condition for non-existence of solutions of the Diophantine equations of
the form px + qy = z2n. Two years later, the solutions of the Diophantine equation
px + (p+ 4k)y = z2, where k is a natural number and p, p+ 4k are prime numbers, were
investigated [8].

The goal of this article is to give some conditions on primes p and q to show that the
Diophantine equation px+(p+2q)y = z2, where p, q and p+2q are prime numbers, has no
positive integer solution. Moreover, the forms of odd prime numbers p, when q is a prime
number, are investigated and many examples of Diophantine equations with no positive
integer solution are demonstrated.

2. Preliminaries

First, we recall some elementary definitions and theorems in number theory. See [11]
for instance.

Definition 1. Let n be a positive integer. The Euler phi-function ϕ(n) is defined to be
the number of positive integers not exceeding n that are relatively prime to n.

Definition 2. Let a and n be relatively prime integers with a ̸= 0 and n > 0. The least
positive integer x such that ax ≡ 1 (mod n) is called the order of a modulo n and is
denoted by ordna.

Theorem 1. (Fermat’s Little Theorem). If p is a prime number and a is an integer with
p ∤ a, then ap−1 ≡ 1 (mod p).

Definition 3. Let r and n be relatively prime integers with n > 0. The integer r is called
a primitive root modulo n if ordnr = ϕ(n).

Theorem 2. Every prime number has a primitive root.

The concepts of quadratic residue and Legendre symbol have important roles in this
paper.

Definition 4. Let a and m be positive integers with (a,m) = 1. We say that a is a
quadratic residue of m if the congruence x2 ≡ a (mod m) has a solution. Otherwise, a is
a quadratic nonresidue of m.
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Definition 5. Let p be an odd prime number and a be an integer with p ∤ a. The Legendre
symbol (ap ) is defined by(

a

p

)
=

{
1 if a is a quadratic residue of p

−1 if a is a quadratic nonresidue of p.

Some properties of Legendre symbol are given in Theorems 3 and 4.

Theorem 3. Let p be an odd prime number and a, b be integers with p ∤ a and p ∤ b. The
following statements hold.

(i) If a ≡ b (mod p), then
(
a
p

)
=

(
b
p

)
.

(ii)
(
ab
p

)
=

(
a
p

)(
b
p

)
;

(iii)
(
a2

p

)
= 1.

Theorem 4. (The Law of Quadratic Reciprocity). Let p and q be distinct odd prime
numbers. Then (

p
q

)(
q
p

)
= (−1)(

p−1
2 )( q−1

2 ).

The following theorem shows the form of odd prime number p in the Legendre symbol(
2
p

)
.

Theorem 5. Let p be an odd prime number. Then(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

Theorem 6. Let p and q be distinct odd prime numbers.

(i) If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(
p
q

)
=

(
q
p

)
.

(ii) If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then
(
p
q

)
= −

(
q
p

)
.

Theorem 7. Let a1, a2, a3, . . . , an be integers and m1,m2,m3, . . . ,mn be positive integers.
Then, the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)

...

x ≡ an (mod mn)

has a solution if and only if (mi,mj)|(ai − aj) for all pairs of integer (i, j).
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In 2004, Siraworakun investigated the forms of odd prime numbers p in Legendre

symbol
(
q
p

)
, where q is an odd prime number, in his unplublished senoir project. We

review some important results in Theorem 8 - 11.

Theorem 8. Let p be an odd prime number. Then there is no a primitive root modulo p
in the form n2, where n is a natural number with n < p.

Proof. Assume that there is a primitive root n2
0 modulo p, where n0 is a natural number

with n0 < p. Then (n2
0)

p−1 ≡ 1 (mod p). So (np−1
0 )2 ≡ 1 (mod p). Thus, np−1

0 ≡ 1

(mod p) or np−1
0 ≡ −1 (mod p). If np−1

0 ≡ 1 (mod p), then (n2
0)

p−1
2 ≡ 1 (mod p). It

contradicts to the order of n2
0 modulo p. Hence, np−1

0 ≡ −1 (mod p). Since n0 < p, it
contradicts to Fermat ’s Little Theorem. Therefore, there is no a primitive root modulo p
in the form n2, where n is a natural number with n < p.

Theorem 9. Let p be an odd prime number and r be a primitive root modulo p. Then
r2, r4, r6, . . . , rp−1 are quadratic residues of p and r1, r3, r5, . . . , rp−2 are quadratic non-
residues of p.

Proof. It is obvious that r2, r4, r6, . . . , rp−1 are quadratic residues of p. Since r is a
primitive root modulo p and Theorem 8, there is no a natural number n0 with n0 < p such

that n2
0 ≡ r (mod p). Then

(
r
p

)
= −1. By Theorem 3(ii), (iii), we have

(
r3

p

)
=

(
r5

p

)
=

· · · =
(
rp−2

p

)
= −1 . Hence, r1, r3, r5, . . . , rp−2 are quadratic nonresidues of p.

To find the forms of odd prime numbers p in Legendre symbol
(
q
p

)
, where q is an

odd prime number, we use the Chinese Remainder Theorem for solving the system of
congruences.

Theorem 10. Let p and q be distinct odd prime numbers with q ≡ 1 (mod 4). Then(
q

p

)
=

{
1 if p ≡ q + rS1q + rS1 (mod 2q)

−1 if p ≡ q + rS2q + rS2 (mod 2q)
,

where S1 ∈ {2, 4, 6, . . . , q− 1}, S2 ∈ {1, 3, 5, . . . , q− 2} and r is a primitive root modulo q.

Proof. Since q ≡ 1 (mod 4), we have
(
q
p

)
=

(
p
q

)
by Theorem 6(i). Let r be a primitive

root modulo q. By Theorem 9, we obtain that(
p

q

)
=

{
1 if p ≡ rS1 (mod q)

−1 if p ≡ rS2 (mod q)
,

where S1 ∈ {2, 4, 6, . . . , q − 1} and S2 ∈ {1, 3, 5, . . . , q − 2}.
Case 1.

(
q
p

)
= 1. Then

(
p
q

)
= 1. Thus, p ≡ rS1 (mod q). Since p ≡ 1 (mod 2) and

by the Chinese Remainder Theorem, we obtain that p ≡ q + rS1q + rS1 (mod 2q).
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Case 2.
(
q
p

)
= −1. Then

(
p
q

)
= −1. Thus, p ≡ rS2 (mod q). Since p ≡ 1 (mod 2)

and by the Chinese Remainder Theorem, we obtain that p ≡ q + rS2q + rS2 (mod 2q).

Theorem 11. Let p and q be distinct odd prime numbers with q ≡ 3 (mod 4). Then(
q

p

)
=

{
1 if p ≡ 3q + 4n0r

S1 , − 3q + 4n0r
S2 (mod 4q)

−1 if p ≡ 3q + 4n0r
S2 , − 3q + 4n0r

S1 (mod 4q)
,

where S1 ∈ {2, 4, 6, . . . , q− 1}, S2 ∈ {1, 3, 5, . . . , q− 2}, r is a primitive root modulo q and

n0 =
q + 1

4
.

Proof. Let r be a primitive root modulo q. By Theorems 6 and 9, we obtain that

(
q

p

)
=


(
p
q

)
if p ≡ 1 (mod 4)

−
(
p
q

)
if p ≡ 3 (mod 4)

and (
p

q

)
=

{
1 if p ≡ rS1 (mod q)

−1 if p ≡ rS2 (mod q)
,

where S1 ∈ {2, 4, 6, . . . , q−1} and S2 ∈ {1, 3, 5, . . . , q−2}. Since q ≡ 3 (mod 4), we choose

an integer n0 =
q + 1

4
. Then q = 4n0 − 1. Thus 3q ≡ 1 (mod 4) and 4n0 ≡ 1 (mod q).

In the following cases, the systems of congruences are solved by the Chinese Remainder
Theorem.

Case 1.
(
q
p

)
= 1.

Case 1.1
(
q
p

)
=

(
p
q

)
and

(
p
q

)
= 1. Then p ≡ 1 (mod 4) and p ≡ rS1 (mod q). Thus,

p ≡ 3q + 4n0r
S1 (mod 4q).

Case 1.2
(
q
p

)
= −

(
p
q

)
and

(
p
q

)
= −1. Then p ≡ 3 (mod 4) and p ≡ rS2 (mod q).

Thus, p ≡ −3q + 4n0r
S2 (mod 4q).

Case 2.
(
q
p

)
= −1.

Case 2.1
(
q
p

)
=

(
p
q

)
and

(
p
q

)
= −1. Then p ≡ 1 (mod 4) and p ≡ rS2 (mod q).

Thus, p ≡ 3q + 4n0r
S2 (mod 4q).

Case 2.2
(
q
p

)
= −

(
p
q

)
and

(
p
q

)
= 1. Then p ≡ 3 (mod 4) and p ≡ rS1 (mod q) .

Thus, p ≡ −3q + 4n0r
S1 (mod 4q).

Moreover, Siraworakun has given the forms of prime numbers p in Legendre symbol(
2q
p

)
, where q is a prime number.
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Theorem 12. Let p and q be distinct odd prime numbers with q ≡ 1 (mod 4). Then(
2q

p

)
= 1 if p ≡ q2 + 8n1r

S1 , − q2 + 8n1r
S1 , 3q2 + 8n1r

S2 ,−3q2 + 8n1r
S2 (mod 8q),(

2q

p

)
= −1 if p ≡ q2 + 8n1r

S2 ,−q2 + 8n1r
S2 , 3q2 + 8n1r

S1 ,−3q2 + 8n1r
S1 (mod 8q),

where S1 ∈ {2, 4, 6, . . . , q− 1}, S2 ∈ {1, 3, 5, . . . , q− 2}, r is a primitive root modulo q and

if
q − 1

4
is an even number, then n1 =

−q + 1

8
, and if otherwise, then n1 =

3q + 1

8
.

Proof. By Theorem 3(ii), we have
(
2q
p

)
=

(
2
p

)(
q
p

)
. Let r be a primitive root modulo q.

By Theorems 5 and 10, we know that(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

and (
q

p

)
=

{
1 if p ≡ q + rS1q + rS1 (mod 2q)

−1 if p ≡ q + rS2q + rS2 (mod 2q)
,

where S1 ∈ {2, 4, 6, . . . , q − 1} and S2 ∈ {1, 3, 5, . . . , q − 2}. Since q ≡ 1 (mod 4), we have
q = 4k + 1 for some integer k. Then q2 ≡ 1 (mod 8). If k is even, then k = −2l for
some integer l. It leads to 8l − 1 = −q. Otherwise, q = 8s + 5 for some integer s, so

8(3s + 2) − 1 = 3q. Choose n1 =
−q + 1

8
, when k is even and otherwise, n1 =

3q + 1

8
.

Thus, 8n1 ≡ 1 (mod q). In the following cases, we use the Chinese Remainder Theorem
for solving the systems of congruences.

Case 1.
(
2q
p

)
= 1.

Case 1.1
(
2
p

)
= 1 and

(
q
p

)
= 1. Then p ≡ ±1 (mod 8) and p ≡ q + rS1q + rS1

(mod 2q). So p ≡ rS1 (mod q). It implies that p ≡ q2 + 8n1r
S1 (mod 8q) or p ≡ −q2 +

8n1r
S1 (mod 8q).

Case 1.2
(
2
p

)
= −1 and

(
q
p

)
= −1. Then p ≡ ±3 (mod 8) and p ≡ q + rS2q + rS2

(mod 2q). So p ≡ rS2 (mod q). It implies that p ≡ 3q2 + 8n1r
S2 (mod 8q) or p ≡

−3q2 + 8n1r
S2 (mod 8q).

Case 2.
(
2q
p

)
= −1.

Case 2.1
(
2
p

)
= 1 and

(
q
p

)
= −1. Then p ≡ ±1 (mod 8) and p ≡ q + rS2q + rS2

(mod 2q). So p ≡ rS2 (mod q). It implies that p ≡ q2 + 8n1r
S2 (mod 8q) or p ≡ −q2 +

8n1r
S2 (mod 8q).

Case 2.2
(
2
p

)
= −1 and

(
q
p

)
= 1. Then p ≡ ±3 (mod 8) and p ≡ q + rS1q + rS1

(mod 2q). So p ≡ rS1 (mod q). It implies that p ≡ 3q2 + 8n1r
S1 (mod 8q) or p ≡

−3q2 + 8n1r
S1 (mod 8q).
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Theorem 13. Let p and q be distinct odd prime numbers with q ≡ 3 (mod 4). Then(
2q

p

)
= 1 if p ≡ q2 + 32n0n1r

S1 ,−q2 + 32n0n1r
S2 , 3q2 + 32n0n1r

S1 ,−3q2 + 32n0n1r
S2 (mod 8q),(

2q

p

)
= −1 if p ≡ q2 + 32n0n1r

S2 ,−q2 + 32n0n1r
S1 , 3q2 + 32n0n1r

S2 ,−3q2 + 32n0n1r
S1 (mod 8q),

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root modulo q,

n0 =
q + 1

4
and if

q − 3

4
is an even number, then n1 =

5q + 1

8
, and if otherwise, then

n1 =
q + 1

8
.

Proof. By Theorem 3(ii), we have
(
2q
p

)
=

(
2
p

)(
q
p

)
. Let r be a primitive root modulo q.

By Theorems 5 and 11, we know that(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

and (
q

p

)
=

{
1 if p ≡ 3q + 4n0r

S1 , − 3q + 4n0r
S2 (mod 4q)

−1 if p ≡ 3q + 4n0r
S2 , − 3q + 4n0r

S1 (mod 4q)
,

where S1 ∈ {2, 4, 6, . . . , q− 1}, S2 ∈ {1, 3, 5, . . . , q− 2}, r is a primitive root modulo q and

n0 =
q + 1

4
. Since q ≡ 3 (mod 4), we have q = 4k + 3 for some integer k. Then q2 ≡ 1

(mod 8). If k is even, then k = 2l for some integer l. It leads to 8(5l + 2) − 1 = 5q.

Otherwise, q = 8s+ 7 for some integer s, so 8(s+ 1)− 1 = q. Choose n1 =
5q + 1

8
, when

k is even and otherwise, n1 =
q + 1

8
. Thus, 8n1 ≡ 1 (mod q). In the following cases, the

systems of congruences are solved by the Chinese Remainder Theorem and Theorem 7.

Case 1.
(
2q
p

)
= 1.

Case 1.1
(
2
p

)
= 1 and

(
q
p

)
= 1. Then p ≡ ±1 (mod 8) and p ≡ 3q + 4n0r

S1 ,−3q +

4n0r
S2 (mod 4q). So p ≡ 4n0r

S1 , 4n0r
S2 (mod q). Since (8, 4q) = 4 and q ≡ 3 (mod 4),

we get that 4 ∤ (−3q+4n0r
S2)−1 and 4 ∤ (3q+4n0r

S1)+1. Hence, the system of congruences
p ≡ 1 (mod 8) and p ≡ −3q + 4n0r

S1 (mod 4q) and the system of congruences p ≡ −1
(mod 8) and p ≡ 3q + 4n0r

S1 (mod 4q) have no solution. Thus, p ≡ q2 + 32n0n1r
S1

(mod 8q) or p ≡ −q2 + 32n0n1r
S2 (mod 8q).

Case 1.2
(
2
p

)
= −1 and

(
q
p

)
= −1. Then p ≡ ±3 (mod 8) and p ≡ 3q+4n0r

S2 ,−3q+

4n0r
S1 (mod 4q). So p ≡ 4n0r

S2 , 4n0r
S1 (mod q). Since (8, 4q) = 4 and q ≡ 3 (mod 4),

we get that 4 ∤ (3q+4n0r
S2)−3 and 4 ∤ (−3q+4n0r

S1)+3. Hence, the system of congruences
p ≡ 3 (mod 8) and p ≡ 3q + 4n0r

S2 (mod 4q) and the system of congruences p ≡ −3
(mod 8) and p ≡ −3q + 4n0r

S1 (mod 4q) have no solution. Thus, p ≡ 3q2 + 32n0n1r
S1

(mod 8q) or p ≡ −3q2 + 32n0n1r
S2 (mod 8q).
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Case 2.
(
2q
p

)
= −1.

Case 2.1
(
2
p

)
= 1 and

(
q
p

)
= −1. Then p ≡ ±1 (mod 8) and p ≡ 3q+4n0r

S2 ,−3q+

4n0r
S1 (mod 4q). So p ≡ 4n0r

S2 , 4n0r
S1 (mod q). Since (8, 4q) = 4 and q ≡ 3 (mod 4),

we get that 4 ∤ (−3q+4n0r
S1)−1 and 4 ∤ (3q+4n0r

S2)+1. Hence, the system of congruences
p ≡ 1 (mod 8) and p ≡ −3q + 4n0r

S1 (mod 4q) and the system of congruences p ≡ −1
(mod 8) and p ≡ 3q + 4n0r

S1 (mod 4q) have no solution. Thus, p ≡ q2 + 32n0n1r
S2

(mod 8q) or p ≡ −q2 + 32n0n1r
S1 (mod 8q).

Case 2.2
(
2
p

)
= −1 and

(
q
p

)
= 1. Then p ≡ ±3 (mod 8) and p ≡ 3q+4n0r

S1 ,−3q+

4n0r
S2 (mod 4q). So p ≡ 4n0r

S1 , 4n0r
S2 (mod q). Since (8, 4q) = 4 and q ≡ 3 (mod 4),

we get that 4 ∤ (3q+4n0r
S1)−3 and 4 ∤ (−3q+4n0r

S1)+3. Hence, the system of congruences
p ≡ 3 (mod 8) and p ≡ 3q + 4n0r

S1 (mod 4q) and the system of congruences p ≡ −3
(mod 8) and p ≡ −3q + 4n0r

S2 (mod 4q) have no solution. Thus, p ≡ 3q2 + 32n0n1r
S2

(mod 8q) or p ≡ −3q2 + 32n0n1r
S1 (mod 8q).

3. Main Results

In this section, we study the Diophantine equation px+(p+2q)y = z2, where p, q and
p+ 2q are prime numbers. Thus, p is an odd prime number with (p, q) = 1. For the case
q = 2, Burshtein [1] showed that the Diophantine equation px+(p+4)y = z2, where p > 3
and p + 4 are primes, has no non-negative solution. Moreover, Rao [10] investigated the
same equation, when q = 2 and p = 3. From now on, x, y are positive integers and p, q
are distinct odd prime numbers.

Lemma 1. Let x be an even number. If the Diophantine equation px+(p+2q)y = z2 has
a positive integer solution, then 2q ≡ 1 (mod p).

Proof. Assume that the Diophantine equation px + (p + 2q)y = z2 has a positive
integer solution. Since x is even, there exists a positive integer k such that x = 2k.
Thus, (p + 2q)y = z2 − p2k = (z − pk)(z + pk). Since p + 2q is a prime number, we have
z− pk = (p+2q)u and z+ pk = (p+2q)y−u, where u is a non-negative integer. So y > 2u
and 2pk = (p+ 2q)u((p+ 2q)y−2u − 1). Since p and p+ 2q are prime numbers, we obtain
that u = 0 and so 2pk = (p+ 2q)y − 1 = (p+ 2q − 1)((p+ 2q)y−1 + (p+ 2q)y−2 + · · ·+ 1).
Hence p|(p+ 2q − 1). Therefore 2q ≡ 1 (mod p).

Lemma 2. Let x be an odd number. If the Diophantine equation px + (p+ 2q)y = z2 has

a positive integer solution, then
(
2q
p

)
= 1.

Proof. Assume that the Diophantine equation px + (p + 2q)y = z2 has a positive
integer solution. Then px ≡ z2 (mod p + 2q). By Division Algorithm, we can write
x = (p + 2q − 1)m + l, where m and l are integers with 0 ≤ l < p + 2q − 1. Since x is
odd, we obtain l is odd. By Theorem 1, we obtain that pp+2q−1 ≡ 1 (mod p + 2q). So
p(p+2q−1)m+l ≡ pl (mod p+2q). Then px ≡ pl (mod p+2q). Thus, z2 ≡ pl (mod p+2q).



S. Tadee, A. Siraworakun / Eur. J. Pure Appl. Math, 16 (2) (2023), 724-735 732

Hence,
(

pl

p+2q

)
= 1. Since l is an odd number, we obtain

(
p

p+2q

)
= 1 by Theorem 3(ii).

By Theorem 4, we obtain
(

p
p+2q

)(
p+2q
p

)
= (−1)(

p−1
2 )( p+2q−1

2 ) = 1. Thus,
(
p+2q
p

)
= 1.

By Theorem 3(i), we have
(
2q
p

)
=

(
p+2q
p

)
. Then

(
2q
p

)
= 1.

From above lemmas, we have the following result.

Theorem 14. Let p and q be distinct prime numbers with 2q ̸≡ 1 (mod p) and
(
2q
p

)
= −1.

Then the Diophantine equation px + (p+ 2q)y = z2 has no positive integer solution.

By applying Theorems 12 and 14, the forms of odd prime number p are identified,
when q ≡ 1 (mod 4).

Theorem 15. Let q be a prime number such that q ≡ 1 (mod 4). If p is a prime number
with 2q ̸≡ 1 (mod p) and satisfies any of the following conditions:

(i) p ≡ q2 + 8n1r
S2 (mod 8q),

(ii) p ≡ − q2 + 8n1r
S2 (mod 8q),

(iii) p ≡ 3q2 + 8n1r
S1 (mod 8q), or

(iv) p ≡ − 3q2 + 8n1r
S1 (mod 8q),

where S1 ∈ {2, 4, 6, . . . , q−1}, S2 ∈ {1, 3, 5, . . . , q−2}, r is a primitive root modulo q, and

if
q − 1

4
is an even number, then n1 =

−q + 1

8
, and if otherwise, then n1 =

3q + 1

8
. Then,

the Diophantine equation px + (p+ 2q)y = z2 has no positive integer solution.

Example 1. Let q = 17 and r = 3. Then r is a primitive root of q and n1 =
−17 + 1

8
= −2

since
17− 1

4
is an even number. Consider a prime number p that satisfies any of the

following congruences:

(i) p ≡ 289 + (−16) · (3)S2 (mod 136),

(ii) p ≡ − 289 + (−16) · (3)S2 (mod 136),

(iii) p ≡ 867 + (−16) · (3)S1 (mod 136), or

(iv) p ≡ − 867 + (−16) · (3)S1 (mod 136),

where S1 ∈ {2, 4, 6, 8, 10, 12, 14, 16} and S2 ∈ {1, 3, 5, 7, 9, 11, 13, 15}. Thus,

p ≡ ±7,±13,±19,±21,±23,±31,±35,±39,±41,±43,±53,±57,±59,±63,±65,±67 (mod 136).

By Theorem 15, we obtain that the Diophantine equation px + (p + 34)y = z2 has no
positive integer solution. For example, 7x + 41y = z2, 13x + 47y = z2, 19x + 47y = z2,
53x + 87y = z2 and 67x + 101y = z2.
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Example 2. Let q = 5 and r = 2. Then r is a primitive root of q and n1 =
3(5) + 1

8
= 2

since
5− 1

4
is an odd number. Consider a prime number p that satisfies any of the following

congruences:

(i) p ≡ 25 + (16) · (2)S2 (mod 40),

(ii) p ≡ − 25 + (16) · (2)S2 (mod 40),

(iii) p ≡ 75 + (16) · (2)S1 (mod 40), or

(iv) p ≡ − 75 + (16) · (2)S1 (mod 40),

where S1 ∈ {2, 4} and S2 ∈ {1, 3}. Therefore, p ≡ ±7,±11,±17,±19 (mod 40). By
Theorem 15, we obtain that the Diophantine equation px + (p+ 10)y = z2 has no positive
integer solution. For example, 7x+17y = z2, 19x+29y = z2 (Burshtein [3]), 61x+71y = z2

(Kumar [5]), 73x + 83y = z2 and 97x + 107y = z2.

From Theorems 13 and 14, the forms of odd prime number p can be obtained, when
q ≡ 3 (mod 4).

Theorem 16. Let p and q be distinct prime numbers such that q ≡ 3 (mod 4) and 2q ̸≡ 1
(mod p). If p satisfies any of the following conditions:

(i) p ≡ q2 + 32n0n1r
S2 (mod 8q),

(ii) p ≡ − q2 + 32n0n1r
S1 (mod 8q),

(iii) p ≡ 3q2 + 32n0n1r
S2 (mod 8q), or

(iv) p ≡ − 3q2 + 32n0n1r
S1 (mod 8q),

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root modulo q,

n0 =
q + 1

4
and if

q − 3

4
is an even number, then n1 =

5q + 1

8
, and if otherwise, then

n1 =
q + 1

8
. Then, the Diophantine equation px + (p + 2q)y = z2 has no positive integer

solution.

Example 3. Let q = 3 and r = 2. Then r is a primitive root of q, S1 = 2, S2 = 1,

n0 =
3 + 1

4
= 1 and n1 =

5(3) + 1

8
= 2 since

3− 3

4
is an even number. Consider a prime

number p that satisfies any of the following congruences:

(i) p ≡ 9 + (64) · (2)1 (mod 24),

(ii) p ≡ − 9 + (64) · (2)2 (mod 24),

(iii) p ≡ 27 + (64) · (2)1 (mod 24), or
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(iv) p ≡ − 27 + (64) · (2)2 (mod 24).

Thus, p ≡ ±7,±11 (mod 24). By Theorem 16, we obtain that the Diophantine equa-
tion px + (p + 6)y = z2 has no positive integer solution. For example, 7x + 13y = z2,
11x + 17y = z2, 13x + 19y = z2, 17x + 23y = z2 and 61x + 67y = z2(Kumar [4]).

Example 4. Let q = 7 and r = 3. Then r is a primitive root of q, n0 = 7+1
4 = 2 and

n1 =
7 + 1

8
= 1 since

7− 3

4
is an odd number. Consider a prime number p that satisfies

any of the following congruences:

(i) p ≡ 49 + 64(3S2) (mod 56),

(ii) p ≡ − 49 + 64(3S1) (mod 56),

(iii) p ≡ 147 + 64(3S2) (mod 56), or

(iv) p ≡ − 147 + 64(3S1) (mod 56),

where S1 ∈ {2, 4, 6} and S2 ∈ {1, 3, 5}. Thus, p ≡ ±3,±15,±17,±19,±23,±27 (mod 56).
By Theorem 16, we obtain that the Diophantine equation px + (p + 14)y = z2 has no
positive integer solution. For example, 3x + 17y = z2(Sroysang [12]), 17x + 31y = z2,
23x + 37y = z2, 29x + 43y = z2, and 53x + 67y = z2.
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