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Abstract. Let G = (V,E) be a simple connected graph, then the basis number of G is denoted by
b(G) and is defined by the least positive integer k such that the graph G has a k− fold basis for it
is cycle space. In this paper we studied the basis number of Mycielski’s graph for some cog-special
graphs, and we compute the basis number of Mycielski’s graph for cog-path graph, cog-cycle graph,
cog-star graph, and cog-wheel graph.
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1. Introduction

Let G be a connected graph with edges sets {e1, e2, . . . , eq}. For each subset S of edges
of the graph G, there is a vector (a1, a2, a3, . . . , aq) corresponding to S such that ai = 1
if ei ∈ S and ai = 0 if ei /∈ S. These vectors form a vector space of dimension q on the
field Z2, called the vector space associated with the graph G and denoted by (z2)

q. The
vectors of (z2)

q that correspond to the cycles of G generate a vector subspace called the
cycles space of G and denoted by C(G). Each vector in C(G) represents either a cycle in
G or the union of separate cycles with respect to the edges.

A known corollary of graph theory is that a dimension of C(G) is q − p + 1 where p
represents the number of vertices of graph G and q the number of edges. The method for
finding the base for the cycles space of C(G) is as follows:

Let T be a generating tree for the graph G; If the edge ei belongs to G−T then T + ei
contains only one cycle, let it be Cei . Clearly, q − p + 1 of cycles Cei , where ei ∈ G − T
for i = 1, 2, . . . , q forms the base of the cycles space C(G).

The base B of cycles space C(G) is said to have a k− fold if each edge of G shows no
more than k times (iterations) in the cycles that corresponding to the vectors in the base
B.
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The basis number of the graph G is defined as the smallest integer k, such that C(G)
have a k− fold base; It is denoted by b(G). If B is the base of the cycles space C(G) and
e is an edge in G, then the fold of the edge e in B is defined the number of cycles that
exist in B and containing the edge e, and is denoted by fB(e).

In recent years, interest in the basic number has increased, we refer the reader to
references [3–6, 9, 10, 13] for more information. In this paper, we will assume that all
graphs that we encounter are finite, unguided and simple; For undefined terms, refer to
the references [7][8].

There are other types of numbers that are important in graph theory such as: detour
number [1] and number of domination [17], and graph theory has an important applications
at the present time, see [11, 14, 15].

Mycielski’s graph [16]: Let G be the graph, such that the set of its vertices is V =
{u1, u2, u3, . . . , un}, then the Mycielski’s graph for G consists of G itself as a sub graph
isomorphic with (n + 1) additional vertices, the vertex vi corresponding to ui in G, for
i = 1, 2, 3, . . . , n; and another vertex w which is adjacent to each vertex vi such that these
vertices form a sub graph isomorphic with star K(1,n); In addition, for each edge ui uj in
G, the Mycielski’s graph includes two edges ui vj and vi uj , therefore if G is a graph of
n vertices and m edges, then the Mycielski’s graph of G has 2n + 1 vertices and 3m + n
edges and is denoted by µ(G). Figure (1) represents Mycielski’s graph of the cycle C3.

Figure 1: µ(C3)

2. Main Results

2.1. Cog-Path Graph P c
m

It is a graph consists of a path Pm : u1, u2, . . . , um where m ≥ 3, with m − 1 addi-
tional vertices v1, v2, . . . , vm−1 and additional edges {uivi, viui+1, i = 1, 2, . . . ,m−1}. The
number of vertices of P c

m is 2m− 1 and the number of its edges is 3m− 3 [2].



B. M. Sulaiman, R. S. Hasan, R. A. Mustafa / Eur. J. Pure Appl. Math, 16 (2) (2023), 953-964 955

2.1.1. The Basis Number for Mycielski’s Graph of the Cog-Path µ(P c
m)

Let the vertices of the Cog path graph P c
m be u1, u2, u3, . . . , u2m−1 and the vertices opposite

to them are v1, v2, v3, . . . , v2m−1 and let the other vertex be w, from the definition of the
Mycielski’s graph, it becomes clear that the number of vertices of µ(P c

m) is 4m − 1 and
the number of its edges are 11m− 10. See Figure (2).

Figure 2: µ(P c
m)

Theorem 1. Let Pm be a path of order m ≥ 3 then b (µ(P c
m)) = 3

Proof. We can prove that for each m ≥ 3, there is a subgraph of µ(P c
m) that topo-

logically equivalent K3,3, according to Kurtowski’s Theorem [8], µ(P c
m) is not planar, and

according to McLean’s Theorem [12] we have

b (µ(P c
m)) ≥ 3 (1)

We will prove that there is a base B for the cycles space of a graph µ(P c
m) with 3-fold.

Let B be a set of cycles of µ(P c
m) which defined by the following formula:

B = ∪5
j=1Mj ∪ {C}, where

M1 = {u2i−1u2i+1v2i−1u2iv2i+1u2i−1 : i = 1, 2, 3, . . . ,m− 1},

M2 = {wv2i−1u2i+1v2iw : i = 1, 2, 3, . . . ,m− 1},

M3 = {u2i−1u2iu2i+1u2i−1 : i = 1, 2, 3, . . . ,m− 1},

M4 = {wviui+1vi+2w : i = 1, 2, 3, . . . , 2m− 3},

M5 = {uiui+1ui+2vi+1ui : i = 1, 2, 3, . . . , 2m− 3},

C = {wv1u2u1v2w}.
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In order B to be the base for the cycles space of the graph µ(P c
m), it must be |B| =

dimC(µ(P c
m)) and B must be a linearly independent set. It is known that

dimC(µ(P c
m)) = 7m− 8

|B| = | ∪5
j=1 Mj |+ 1

= 3(m− 1) + 2(2m− 3) + 1 = 7m− 8.

It remains to show that B is linearly independent cycles.
Clearly that the cycles of each M1,M2 and M3 are independent because they are

separate cycles with respect to edges; and the cycles of each M4 and M5 are independent
because it is represent the boundaries of the faces of a planar subgraph.

Now; the cycle C is independent of M5 because contains the edges wv1 and wv2 but
these edges are not available in any linear combination of cycle M5, hence M5 ∪ {C} is
linearly independent. Also, any linear combination of M5∪{C} contains the edges of type
ui ui+1,i = 1, 2, . . . , 2m − 2 and these edges are not available in any linear combination
of cycle M4, therefore M5 ∪ {C} ∪M4 is linearly independent. Further more M4 ∪M5 ∪
{C}∪M3 are independent set of cycles since any linear combination of cycles M3 contains
the edges of type u2i−1 u2i+1, i = 1, 2, . . . ,m − 1 and these edges are not available in
M4 ∪M5 ∪{C}.Also,M3 ∪M4 ∪M5 ∪{C}∪M2 are independent set of cycles because M2

contains the edges of type v2i−1 u2i+1, i = 1, 2, . . . ,m− 1 but these edges are not available
in M3 ∪M4 ∪M5 ∪ {C}.

Finally; the cycles of the set B = ∪5
j=1Mj ∪ {C} are independent since any linear

combination of cycles M1 contains the edges of type u2i−1v2i+1, i = 1, 2, . . . ,m − 1 while
these edges are not available in any linear combination of cycles M2∪M3∪M4∪M5∪{C}.

To find the fold for base B, we divide the edges of the graph µ(P c
m) into:

E1 = {uiui+1 : i = 1, 2, . . . , 2m− 2}

E2 = {uivi+1 : i = 1, 2, . . . , 2m− 2}

E3 = {v2i−1u2i : i = 1, 2, . . . ,m− 1}

E4 = {v2iu2i+1 : i = 1, 2, . . . ,m− 1}

E5 = {wvi : i = 1, 2, . . . , 2m− 1}

E6 = {u2i−1u2i+1 : i = 1, 2, . . . ,m− 1}

E7 = {u2i−1v2i+1 : i = 1, 2, . . . ,m− 1}

E8 = {v2i−1u2i+1 : i = 1, 2, . . . ,m− 1}

Now, we calculate the fold for a set of the edges of the graph µ(P c
m),

Case I: fB(µ(P c
m)(e) is less than or equal to 1 when e ∈ E7.

Case II: fB(µ(P c
m)(e) is less than or equal to 2 for all e ∈ Ei,i = 6, 8.
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Case III: fB(µ(P c
m)(e) is less than or equal to 3 for all e ∈ Ei,i = 1, 2, 3, 4, 5.

From the above three cases, it can be seen that the fold for each edge in the graph µ(P c
m)

is not more than 3 in the base B(µ(P c
m)); That is

b (µ(P c
m)) ≤ 3 (2)

From (1) and (2), we get b(µ(P c
m)) = 3.

2.2. Cog-Cycle Graph Cc
m

It is a graph conclude from a cycle Cm : u1, u2, . . . , um where m ≥ 3, by adding
m vertices and 2m edges of the form v1, v2, . . . , vm and {uivi, ui+1vi : i = 1, 2, . . . ,m},
respectively, where um+1 ≡ u1. It is clear that the number of vertices of a graph Cc

m is
2m and the number of edges is 3m [2].

2.2.1. The Basis Number for Mycielski’s Graph of the Cog-Cycle µ(Cc
m)

Let the vertices of the cog-cycle graph Cc
m are u1, u2, . . . , u2m where m ≥ 3, and the

corresponding vertices are v1, v2, . . . , v2m and let the other vertex be w. From the definition
of the Mycielski’s graph we have the number of vertices of the graph µ(Cc

m) is 4m+1 and
the number of its edges is 11m.

Theorem 2. Let Cm be a cycle of order m ≥ 3 then b(µ(Cc
m)) = 3

Proof. We can prove that for each m ≥ 3, there is a subgraph of µ(Cc
m) that topo-

logically equivalent K3,3, according to Kurtowski’s Theorem [8] µ(Cc
m) is not planar, and

according to McLean’s Theorem [12] we have

b (µ(Cc
m)) ≥ 3 (3)

We will prove that there is a base B for the cycles space of the graph µ(Cc
m) with 3-fold.

Let B be a set of cycles of µ(Cc
m) which defined by the following formula:

B = B(µ(P c
m)) ∪M,where M = {M1,M2, . . . ,M8}

Where B(µ(P c
m)) is the base for Michelsky’s graph of the cog-path P c

m, which defined in
the previous theorem, also M is a set of cycles of the graph µ(Cc

m) defined as the following
formula:

M1 = u1u2m−1u2mu1,

M2 = u1u2m−1v2mu1,

M3 = u1u2m−1v2m−2wv2mu1,

M4 = u1u2mv2m−1u1,
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M5 = u1u2mv1u3u1,

M6 = u2m−2u2m−1u2mv2m−1u2m−2,

M7 = v1u2m−1u2mv1,

M8 = v2mu2m−1u2m−3v2m−1wv2m.

In order B to be the base for the cycles space of graph µ(Cc
m) must be |B| =

dimC(µ(Cc
m)), and B must be a linearly independent set of cycles. It is known that

dim C(µ(Cc
m)) = 11m− (2m+ 1) + 1 = 7m, and

|B| = |B(µ(P c
m))|+ |M |

= (7m− 8) + 8 = 7m

It remains to show that B is linearly independent.
It is known that B(µ(P c

m)) is linearly independent because it is represent the base of
the cycles space of µ(P c

m). In addition, the cycles set M is linearly independent because
one of them cannot be written as a linear combination of the other cycles.

Finally, the set of cycles B = B(µ(P c
m)) ∪ {M1,M2, . . . ,M8} is independent because

any linear combination of Mi’s cycles, i = 1, 2, . . . , 8 contains at least one new edge of type
u1u2m−1, u1u2m, u2m−1u2m, u1v2m−1, u1v2m, v1u2m−1, v1u2m, u2m−1v2m, v2m−1u2m, wv2m while
these edges are not exist in any linear combination for cycles of B(µ(P c

m)).
To find the fold for the base B we divide the edges of the graph µ(Cc

m) into:

E1 = E(µ(P c
m))− E2

E2 = {u1u3, v1u3, u2m−3u2m−1, u2m−2u2m−1, u2m−2v2m−1, v2m−2u2m−1, wv2m−2, wv2m−1}

E3 = {u1u2m−1, u1u2m, u2m−1u2m, u1v2m−1, u1v2m, v1u2m−1, v1u2m, u2m−1v2m, v2m−1u2m, wv2m}

Now, we calculate the fold for a set of the edges of the graph µ(Cc
m), We note that

fB(µ(Cc
m))(e) is less than or equal to 3 for all e ∈ Ei, i = 1, 2, 3, thus the fold for each edge

in the graph µ(Cc
m) is not more than 3 in the base B(µ(Cc

m)); That is

b (µ(Cc
m)) ≤ 3 (4)

From (3) and (4), we get b(µ(CC
m)) = 3.

2.3. Cog-Star Graph Sc
m

It is a graph consisted of a star graph Sm : u1, u2, . . . , um−1, um, where m ≥ 4 with
m−1 of additional vertices v1, v2, . . . , vm−2, vm−1 and additional edges {uivi+1, uivi+2, i =
1, 2, . . . ,m− 1}, where vm+1 ≡ v2 [2].

It is clear that the number of vertices of a graph Sc
m is 2m−1 and the number of edges

is 3m− 3.
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2.3.1. The Basis Number for Mycielski’s Graph of the Cog-Star µ(Sc
m)

Let the vertices of the cog-star graph Sc
m are u1, u2, . . . , u2m−1 and the corresponding

vertices are v1, v2, . . . , v2m−1 and the other vertex is w.
By Mycielski’s definition, it turns out that the number of vertices of µ(Sc

m) is 4m− 1
and the number of its edges is 11m− 10.

Theorem 3. Let Sm be a star of order m ≥ 4 then b(µ(Sc
m)) = 3.

Proof. We can prove that for each m ≥ 4, there is a subgraph of µ(Sc
m) that topo-

logically equivalent K3,3, according to Kurtowski’s Theorem [8], µ(Sc
m) is not planar and

according to McLean’s Theorem [12] we have

b (µ(Sc
m)) ≥ 3 (5)

Let B be a set of cycles of µ(Sc
m) which defined by the following formula:

B = B(µ(Sc
m)) = ∪5

i=1Si ∪ {C1, C2, C3, C4, C5, C6}

Where

S1 = {uiui+1ui+2vi+1ui : i = 1, 2, 3, . . . , 2m− 3},

S2 = {wviui+1vi+2w : i = 1, 2, 3, . . . , 2m− 3},

S3 = {u2m−1viui+1vi+2u2m−1, i = 2, 4, 6, . . . , 2m− 4},

S4 = {u2m−1uiv2m−1ui+2u2m−1, i = 2, 4, 6, . . . , 2m− 6},

S5 = {u2m−1viwvi+1ui+2u2m−1, i = 2, 4, 6, . . . , 2m− 6},

C1 = u2m−2u1u2u2m−1u2m−2,

C2 = u2m−2v1wv2m−1u2m−2,

C3 = v2m−2u1u2m−2u2m−1v2m−2,

C4 = v1u2m−2u1v2m−2wv1,

C5 = v2m−2u1v2wv2m−2,

C6 = u2m−1v2m−4wv2m−3u2m−4u2m−1

In order B to be the base for the cycles space of the graph µ(Sc
m), it must be |B| =

dim C(µ(Sc
m)), and B must be a linearly independent set of cycles. It is known that

dim C(µ(Sc
m)) = 7m− 8, and |B| = |B(µ(Sc

m))| = | ∪5
i=1 Si|+ |{C1, C2, C3, C4, C5, C6}| =

(7m− 14)+ 6 = 7m− 8, since |S1| = |S2| = 2m− 3 and |S3| = m− 2, |S4| = |S5| = m− 3.
It remains to show that B is linearly independent.

It is clear that each of S1, S2, S3, S4 and S5 is linearly independent because it is rep-
resent the boundaries of the faces of a planar subgraph. S1 ∪ S2 is linearly independent
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because any linear combination of S2 contains edges of type wvi, i = 1, 2, . . . , 2m−1, which
are not found in any linear combination of S1. Also, S3∪S4 is linearly independent because
any linear combination of S4 contains edges of type u2m−1ui, i = 2, 4, . . . , 2m−4, which are
not found in any linear combination of S3. In addition, S3∪S4∪S5 is linearly independent
since any linear combination of S5 contains edges of type wvi, i = 2, 4, . . . , 2m− 1, which
are not found in any linear combination of S3∪S4. Also, (S1∪S2)∪(S3∪S4∪S5) is linearly
independent because S3 ∪ S4 ∪ S5 contains edges of type u2m−1ui, i = 2, 4, . . . , 2m − 4,
which are not found in any linear combination of S1 ∪ S2.

Finally, (∪5
i=1Si)∪ ({C1, C2, C3, C4, C5, C6}) is linearly independent because any linear

combination of {C1, C2, C3, C4, C5, C6} contains edges of type u2m−2u1, v2m−2v1, which
are not found in any linear combination of ∪5

i=1Si.
To find the fold for the base B we divide the edges of the graph µ(Sc

m) into:

E1 = {uiui+1, i = 2, 3, . . . , 2m− 3},

E2 = {uivi+1, i = 2, 3, . . . , 2m− 5} ∪ {u2m−3v2m−2}

E3 = {viui+1, i = 1, 2, . . . , 2m− 3} ∪ {u2m−1vj , j = 2, 4, . . . , 2m− 6}

E4 = {wvi, i = 3, 4, . . . , 2m− 5}

E5 = {u2m−1ui, i = 4, 6, . . . , 2m− 6} ∪ {v2m−1uj , j = 2, 4, . . . , 2m− 4}

E6 = {v2m−2u1, u2m−2u1, u2m−2v1}

E7 = {u2m−2v2m−1, u1u2, wv2m−1, u2m−1u2, u1v2}

E8 = {wv1, wv2m−2, u2m−2u2m−1}

E9 = {wv2, wv2m−4, wv2m−3, u2m−4v2m−3, u2m−1u2m−4, u2m−1v2m−2, u2m−1v2m−4}

Now, we calculate the fold for a set of the edges of the graph µ(Sc
m),

Case I: fB(µ(Sc
m))(e) is equal to 2 for all e ∈ Ei, i = 1, 7.

Case II: fB(µ(Sc
m))(e) is less than or equal to 3 for all e ∈ Ei, i = 2, 3, 4, 5, 6, 8, 9.

From the above two cases, it can be seen that the fold for each edge in the graph µ(Sc
m)

is not more than 3 in the base B(µ(Sc
m)); That is

b (µ(Sc
m)) ≤ 3 (6)

From (5) and (6), we get b(µ(Sc
m)) = 3.

2.4. Cog-Wheel Graph W c
m

It is a graph consisted of a wheel Wm : u1, u2, . . . , um where m ≥ 4, by adding m− 1
vertices and 2m−2 edges of the form v1, v2, . . . , vm−1 and {viui, viui+1 : i = 1, 2, . . . ,m−1}
respectively, where um ≡ u1. It is clear that the number of vertices of a graphW c

m is 2m−1
and the number of edges is 4m− 4 [2].
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2.4.1. The Basis Number for Mycielski’s Graph of the Cog-Wheel µ(W c
m)

Let the vertices of the cog-wheel graph wc
m are u1, u2, . . . , u2m−1 and the corresponding

vertices are v1, v2, . . . , v2m−1 and the other vertex is w, since the number of vertices of
cog-wheel is 2m−1 and the number of its edges is 4(m−1), then by Mycielski’s definition,
it turns out that the number of vertices of µ(wc

m) is 4m − 1 and the number of its edges
is 14m− 13.

Theorem 4. Let Wm be a wheel of order m ≥ 5 then b(µ(W c
m)) = 3.

Proof. We can prove that for each m ≥ 5, there is a subgraph of µ(W c
m) that topo-

logically equivalent K3,3, according to Kurtowski’s Theorem [8] µ(W c
m) is not planar and

according to McLean’s Theorem [12] we have

b (µ(W c
m)) ≥ 3 (7)

We will prove that there is a base B for the cycles space of the graph µ(W c
m) of 3-fold.

Let B be a set of cycles of µ(W c
m) which defined by the following formula:

B = B(µ(P c
m)) ∪ (∪3

i=1Si) ∪ {C1, C2, C3}

Where B(µ(P c
m)) is the base for Michelsky’s graph of the cog-path, m ≥ 5 and

S1 = {u2m−1viui+2u2m−1 : i = 1, 3, 5, . . . , 2m− 5},

S2 = {v2m−1uiui+2v2m−1 : i = 1, 3, 5, . . . , 2m− 5},

S3 = {u2m−1uivi+2u2m−1 : i = 1, 3, 5, . . . , 2m− 5},

C1 = v2m−1u1u2m−3v2m−1,

C2 = u1v2m−3u2m−5u2m−1u1

C3 = u2m−3v1u2m−1u1u2m−3,

In order B to be the base for the cycles space of the graph µ(W c
m), it must be |B| =

dim C(µ(W c
m)), and B must be a linearly independent set of cycles.

Clearly, dim C(µ(W c
m)) = 10m− 11, and since

|B| = |B(µ(P c
m))|+ | ∪3

i=1 Si|+ |{C1, C2, C3}|

= 7m− 8 + 3m− 6 + 3 = 10m− 11

Now, it remains to show that B is linearly independent.
It is known that B(µ(P c

m)) is linearly independent because it is represent the base
of the cycles space of µ(P c

m). Note that each of S1, S2andS3 is linearly independent be-
cause it is represent the boundaries of the faces of a planar subgraph. Now, S1 ∪ S2

is linearly independent because any linear combination of S2 contains edges of type
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uiui+2, i = 1, 3, 5, . . . , 2m− 3, which are not found in any linear combination of S1. Now,
S1 ∪ S2 ∪ S3 is linearly independent because any linear combination of S3 contains edges
of type uivi+2, i = 1, 3, . . . , 2m − 5, which are not found in any linear combination of
S1 ∪ S2. In addition, {C1, C2, C3} is linearly independent because we cannot write any
one of them as a linear combination of the others cycles. Now, (∪3

i=1Si)∪ ({C1, C2, C3}) is
linearly independent because any linear combination of {C1, C2, C3} contains at least one
of the edges u1u2m−3, u1v2m−3, v1u2m−3, which are not found in any linear combination of
∪3
i=1Si.
Finally, the set of cycles B = B(µ(P c

m))∪ (∪3
i=1Si)∪ ({C1, C2, C3}) is linearly indepen-

dent because any linear combination of cycles in (∪3
i=1Si) ∪ ({C1, C2, C3}) contains edges

of type u2m−1ui, i = 1, 3, . . . , 2m − 5, which are not found in any linear combination in
B(µ(P c

m)), therefore B(µ(W c
m)) is linearly independent.

To find the fold for the base B we divide the edges of the graph µ(W c
m) into:

E1 = {uiui+1, i = 1, 2, . . . , 2m− 2}

E2 = {uivi+1, viui+1, i = 1, 2, . . . , 2m− 2}

E3 = {wvi, i = 1, 2, . . . , 2m− 1}

E4 = {uivi+2, i = 1, 3, . . . , 2m− 3}

E5 = {viui+2, i = 1, 3, . . . , 2m− 3}

E6 = {uiui+2, i = 1, 3, . . . , 2m− 3}

E7 = {u2m−1ui, i = 1, 3, . . . , 2m− 5}

E8 = {v2m−1ui, u2m−1vi, i = 1, 3, . . . , 2m− 5}

E9 = {u1v2m−3, v1u2m−3, u1u2m−3}

Now, we calculate the fold for a set of the edges of the graph µ(W c
m),

Case I: fB(µ(W c
m))(e) is less than or equal to 2 for all e ∈ Ei, i = 8, 9.

Case II: fB(µ(W c
m))(e) is less than or equal to 3 for all e ∈ Ei, i = 1, 2, . . . , 7.

From the above two cases, it can be seen that the fold for each edge in the graph
µ(W c

m) is not more than 3 in the base B(µ(W c
m)); That is

b(µ(W c
m)) ≤ 3 (8)

From (7) and (8), we get b(µ(W c
m)) = 3.

3. Conclusion

After studying the basis number of Mycielski ’s graph for some cog-graphs, we con-
cluded that b(µ(G)) = 3, where G are cog-path graph, cog-cycle graph, cog-star graph
and cog-wheel graph.



REFERENCES 963

Acknowledgements

Authors sincerely thank Ministry of Higher Education and Scientific Research Ministry,
University of Mosul, College Computer Sciences and Mathematics for their continued
support to make this study as successful as it is.

References

[1] Ahmed M Ali and Ali A Ali. The connected detour numbers of special classes of
connected graphs. Journal of Mathematics, 2019:1–9, 2019.

[2] AM Ali, AA Ali, and TH Ismail. Hosoya polynomial and wiener indices of distances
in graphs. LAP LAMPART Academic Publishing GmbH & Co, 2011.

[3] Salar Y Alsardary and Ali A Ali. The basis number of some special non-planar graphs.
Czechoslovak Mathematical Journal, 53(2):225–240, 2003.

[4] Maref Y Alzoubi and Mohammed MM Jaradat. On the basis number of the compo-
sition of different ladders with some graphs. International Journal of Mathematics
and Mathematical Sciences, 2005(12):1861–1868, 2005.

[5] Maref Y Alzoubi and Mohammed MM Jaradat. The basis number of the cartesian
product of a path with a circular ladder, a möbius ladder and a net. Kyungpook
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