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Abstract. In this paper, an n-th order neutral nonlinear differential equation is studied. By
using the Banach contraction principle, some sufficient conditions are established for the existence
of nonoscillatory solutions of nonlinear n-th order neutral differential equation. An example is
included to illustrate the results obtained.
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1. Introduction

This paper is concerned with nonoscillatory solutions of nonlinear n-th order neutral
differential equation of the form

[r(t)[x(t)− p(t)x(t− τ)](n−1)]′ + (−1)n[f1(t, x(σ1(t)))− f2(t, x(σ2(t)))− g(t)] = 0, (1)

where n ≥ 2 is an integer, τ > 0, p, σi, g ∈ C([t0,∞),R), r ∈ C([t0,∞), (0,∞)) and
limt→∞ σi(t) = ∞, i = 1, 2.

Throughout this article, we assume that fi(t, x) ∈ C([t0,∞)×R,R) is a nondecreasing
in x for i = 1, 2, xfi(t, x) > 0 for x ̸= 0, i = 1, 2, and satisfies

|fi(t, x)− fi(t, y)| ≤ qi(t)|x− y| for t ∈ [t0,∞) and x, y ∈ [a, b], (2)

where qi ∈ C([t0,∞), (0,∞)), i = 1, 2, and [a, b] (0 < a < b or a < b < 0) is any closed
interval. Furthermore, suppose that∫ ∞

t0

∫ s

t0

sn−2

r(s)
qi(u)duds < ∞, i = 1, 2, (3)
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∫ ∞

t0

∫ s

t0

sn−2

r(s)
|fi(u, d)|duds < ∞ for some d ̸= 0, i = 1, 2, (4)

and ∫ ∞

t0

∫ s

t0

sn−2

r(s)
|g(u)|duds < ∞ (5)

hold.
Oscillation and nonoscillation phenomena appear in different models from real world

applications; see, for instance, oscillatory and nonoscillatory solutions may appear in im-
pulsive partial neutral differential equations from mathematical biology, we refer to the
papers [11, 12, 16] where impulsive effects are modelled by external sources complementing
partial differential equations involving taxis mechanisms, and arising in biomathematics.
We also refer the reader to the papers [9, 14, 15] for the oscillation and asymptotic behav-
ior of solutions to various classes of neutral differential equations. In particular, Zhou and
Zhang [21] and Candan [4] studied existence of nonoscillatory solutions of higher order
neutral differential equations of the form

dn

dtn
[x(t) + cx(t− τ)] + (−1)n+1 [P (t)x(t− σ)−Q(t)x(t− δ)] = 0 (6)

and

[r(t)[x(t) + P (t)x(t− τ)](n−1)]′

+ (−1)n[Q1(t)g1(x(t− σ1))−Q2(t)g2(x(t− σ2))− f(t)] = 0, (7)

respectively. Later, Çına et al.[8] studied the existence of nonoscillatory solutions of non-
linear second order neutral differential equation with forcing term of the form(

r(t) (x(t)− p(t)x(t− τ))′
)′
+ f1(t, x(σ1(t)))− f2(t, x(σ2(t))) = g(t).

Motivated by the idea of [4, 8, 21], the goal of this paper is to present some sufficient
conditions for the existence of nonoscillatory solutions of (1). For related studies on the
existence of nonoscillatory solutions of second or higher order neutral differential and
difference equations the reader is referred to the papers [3, 5–7, 17–20] and books [1, 2,
10, 13].

Let T0 = min{t1 − τ, inf
t≥t1

σ1(t), inf
t≥t1

σ2(t)} for t1 ≥ t0. By a solution of equation (1),

we mean a function x ∈ C([T0,∞),R) in the sense that x(t)− p(t)x(t− τ) is n− 1 times
continuously differentiable and r(t)(x(t)− p(t)x(t− τ))(n−1) is continuously differentiable
on [t1,∞) and such that equation (1) is satisfied for t ≥ t1.

As usual, a solution of (1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise the solution is called nonoscillatory.

2. Main Results

Theorem 1. Assume that (3)-(5) hold and 0 ≤ p(t) ≤ p < 1. Then (1) has a bounded
nonoscillatory solution.



B. Çına, T. Candan, M. Tamer Şenel / Eur. J. Pure Appl. Math, 16 (2) (2023), 713-723 715

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Let X be
the set of all continuous and bounded functions on [t0,∞) with the ∥x∥ = sup

t≥t0

|x(t)| < ∞

norm. Set
A = {x ∈ X : N1 ≤ x(t) ≤ d, t ≥ t0},

where N1 is a positive constant such that N1 < (1− p)d. Clearly, A is a closed, bounded
and convex subset of X. By (3)-(5) there exists a t1 > t0 sufficiently large such that
t− τ ≥ t0, σ1(t) ≥ t0, σ2(t) ≥ t0 for t ≥ t1 and

p+
2

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds ≤ θ1 < 1, i = 1, 2, (8)

where θ1 is a constant,

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds ≤ (1− p)d− α, (9)

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds ≤ α−N1, (10)

where α is a positive constant such that N1 < α < (1 − p)d. Define the operator S on A
by

(Sx)(t) =


α+ p(t)x(t− τ) + 1

(n−2)!

∫∞
t

(s−t)n−2

r(s)

∫ s
t1
[f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds, t ≥ t1
(Sx)(t1), t0 ≤ t ≤ t1.

We can easily see that Sx is continuous. We shall show that SA ⊂ A. In fact, for every
x ∈ A and t ≥ t1, due to (9), we have

(Sx)(t) = α+ p(t)x(t− τ) +
1

(n− 2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1

[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

≤ α+ pd+
1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds

≤ d.

Furthermore, by using (10), we obtain

(Sx)(t) = α+ p(t)x(t− τ) +
1

(n− 2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1

[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

≥ α− 1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds
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≥ N1.

Thus, we proved that SA ⊂ A. Now we shall show that operator S is a contraction
operator on A. In fact, for x, y ∈ A and t ≥ t1, in view of (2) and (8), we have

|(Sx)(t)− (Sy)(t)| ≤ p|x(t− τ)− y(t− τ)|

+
1

(n− 2)!

2∑
i=1

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1

|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

≤ p|x(t− τ)− y(t− τ)|

+
1

(n− 2)!

2∑
i=1

∫ ∞

t1

(s− t)n−2

r(s)

∫ s

t1

qi(u)|x(σi(u))− y(σi(u)))|duds

≤ ∥x− y∥
[
p+

1

(n− 2)!

2∑
i=1

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ1∥x− y∥.

This implies that
∥Sx− Sy∥ ≤ θ1∥x− y∥.

Since θ1 < 1 by (8), it follow that S is a contraction mapping on A. By the Banach
contraction mapping principle, S has a fixed point x ∈ A, which is obviously a positive
solution of (1). This completes the proof.

Theorem 2. Assume that (3)-(5) hold and 1 < p1 ≤ p(t) ≤ p2 < ∞. Then (1) has a
bounded nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Let X
be the set as in the proof of Theorem 1. Set

A = {x ∈ X : N2 ≤ x(t) ≤ d, t ≥ t0},

where N2 is a positive constant such that p2N2 < (p1 − 1)d. It is clear that A is a closed,
bounded and convex subset of X. By (3)-(5), we can choose a t1 > t0 sufficiently large
such that σ1(t+ τ) ≥ t0, σ2(t+ τ) ≥ t0 for t ≥ t1 and

1

p1

[
1 +

2

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ2 < 1, i = 1, 2, (11)

where θ2 is a constant,

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds ≤ α− p2N2, (12)

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds ≤ (p1 − 1)d− α, (13)
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where α is a positive constant such that p2N2 < α < (p1 − 1)d. Define the operator S on
A by

(Sx)(t) =


1

p(t+τ)

[
α+ x(t+ τ)− 1

(n−2)!

∫∞
t+τ

(s−t−τ)n−2

r(s)

∫ s
t1+τ [f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds

]
, t ≥ t1

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. First, we shall show that SA ⊂ A. In fact, for every x ∈ A and
t ≥ t1, using (13), we obtain

(Sx)(t) =
1

p(t+ τ)

[
α+ x(t+ τ)− 1

(n− 2)!

∫ ∞

t+τ

(s− t− τ)n−2

r(s)

∫ s

t1+τ
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

]
≤ 1

p1

[
α+ d+

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds

]
≤ d

and taking (12) into account, we have

(Sx)(t) =
1

p(t+ τ)

[
α+ x(t+ τ)− 1

(n− 2)!

∫ ∞

t+τ

(s− t− τ)n−2

r(s)

∫ s

t1+τ
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

]
≥ 1

p(t+ τ)

[
α− 1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds

]
≥ 1

p2

[
α− 1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds

]
≥ N2.

Thus, we proved that SA ⊂ A. Second, we shall show that S is a contraction operator on
A. In fact, for x, y ∈ A and t ≥ t1, in view of (2) and (11), we have

|(Sx)(t)− (Sy)(t)| ≤ 1

p(t+ τ)

[
|x(t+ τ)− y(t+ τ)|

+
1

(n− 2)!

2∑
i=1

∫ ∞

t

(s− t− τ)n−2

r(s)

∫ s

t1

|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds
]

≤ ∥x− y∥
p1

[
1 +

1

(n− 2)!

2∑
i=1

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ2∥x− y∥.
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This immediately implies that

∥Sx− Sy∥ ≤ θ2∥x− y∥.

Since θ2 < 1 by (11), it follows that S is a contraction operator on A. By the Banach
contraction mapping principle, S has a fixed point x ∈ A, and x is a positive solution of
(1). Thus, the proof is completed.

Theorem 3. Assume that (3)-(5) hold and −1 < −p ≤ p(t) ≤ 0. Then (1) has a bounded
nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Let X
be the set as in the proof of Theorem 1. Set

A = {x ∈ X : N3 ≤ x(t) ≤ d, t ≥ t0},

where N3 is a positive constant such that N3 + pd < d. Clearly, A is a closed, bounded
and convex subset of X. In view of (3)-(5), there exists a t1 > t0 sufficiently large such
that t− τ ≥ t0, σ1(t) ≥ t0, σ2(t) ≥ t0 for t ≥ t1 and

p+
2

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds ≤ θ3 < 1, i = 1, 2, (14)

where θ3 is a constant,

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds ≤ d− α, (15)

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds ≤ α−N3 − pd, (16)

where α is a positive constant such that N3 + pd < α < d. Define the operator S on A by

(Sx)(t) =


α+ p(t)x(t− τ) + 1

(n−2)!

∫∞
t

(s−t)n−2

r(s)

∫ s
t1
[f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds, t ≥ t1
(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. First, we shall show that SA ⊂ A. For every x ∈ A and
t ≥ t1, by using (15), we have

(Sx)(t) = α+ p(t)x(t− τ)

+
1

(n− 2)!

∫ ∞

t

∫ s

t1

(s− t)n−2

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≤ α+
1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds
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≤ d

and applying (16), we have

(Sx)(t) = α+ p(t)x(t− τ)

+
1

(n− 2)!

∫ ∞

t

∫ s

t1

(s− t)n−2

r(s)
[f1(u, x(σ1(u)))− f2(u, x(σ2(u)))− g(u)]duds

≥ α− pd− 1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds

≥ N3.

Hence, SA ⊂ A. Finally, we show that S is a contraction operator on A. In fact, for
x, y ∈ A and t ≥ t1, using (2) and (14), we obtain

|(Sx)(t)− (Sy)(t)| ≤ p|x(t− τ)− y(t− τ)|

+
1

(n− 2)!

2∑
i=1

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1

|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

≤ p|x(t− τ)− y(t− τ)|

+
1

(n− 2)!

2∑
i=1

∫ ∞

t1

(s− t)n−2

r(s)

∫ s

t1

qi(u)|x(σi(u))− y(σi(u)))|duds

≤ ∥x− y∥
[
p+

1

(n− 2)!

2∑
i=1

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ3∥x− y∥.

This implies that
∥Sx− Sy∥ ≤ θ3∥x− y∥.

Since θ3 < 1 by (14), it follows that S is a contraction operator on A. By the Banach
contraction mapping principle, S has a fixed point x ∈ A, which is obviously a positive
solution of (1). This completes the proof.

Theorem 4. Assume that (3)-(5) hold and −∞ < −p1 ≤ p(t) ≤ −p2 < −1. Then (1)
has a bounded nonoscillatory solution.

Proof. Suppose (4) holds with d > 0, the case d < 0 can be treated similarly. Let X
be the set as in the proof of Theorem 1. Set

A = {x ∈ X : N4 ≤ x(t) ≤ d, t ≥ t0},

where N4 is a positive constant such that p1N4 + d < p2d. It is clear that A is a closed,
bounded and convex subset of X. By (3)-(5), we can choose a t1 > t0 sufficiently large
such that σ1(t+ τ) ≥ t0, σ2(t+ τ) ≥ t0 for t ≥ t1 and

1

p2

[
1 +

2

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ4 < 1, i = 1, 2, (17)
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where θ4 is a constant,

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds ≤ p2d− α (18)

and

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds ≤ α− p1N4 − d, (19)

where α is a positive constant such that p1N4 + d < α < p2d. Define the operator S on A
by

(Sx)(t) =


− 1

p(t+τ)

[
α− x(t+ τ) + 1

(n−2)!

∫∞
t+τ

(s−t−τ)n−2

r(s)

∫ s
t1+τ [f1(u, x(σ1(u)))

−f2(u, x(σ2(u)))− g(u)]duds

]
, t ≥ t1

(Sx)(t1), t0 ≤ t ≤ t1.

Clearly, Sx is continuous. We shall show that SA ⊂ A. For each x ∈ A and t ≥ t1, by
using (18), we have

(Sx)(t) = − 1

p(t+ τ)

[
α− x(t+ τ) +

1

(n− 2)!

∫ ∞

t+τ

∫ s

t1+τ

(s− t− τ)n−2

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

]
≤ 1

p2

[
α+

1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f1(u, d) + |g(u)|]duds

]
≤ d

and applying (19), we obtain

(Sx)(t) = − 1

p(t+ τ)

[
α− x(t+ τ) +

1

(n− 2)!

∫ ∞

t+τ

∫ s

t1+τ

(s− t− τ)n−2

r(s)
[f1(u, x(σ1(u)))

− f2(u, x(σ2(u)))− g(u)]duds

]
≥ − 1

p(t+ τ)

[
α− d− 1

(n− 2)!

∫ ∞

t1+τ

∫ s

t1+τ

(s− t− τ)n−2

r(s)
[f2(u, d) + |g(u)|]duds

]
≥ 1

p1

[
α− d− 1

(n− 2)!

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
[f2(u, d) + |g(u)|]duds

]
≥ N4.

Hence, we proved that SA ⊂ A. Now we shall show that S is a contraction operator on
A. In fact, for x, y ∈ A and t ≥ t1, in view of (2) and (17), we have

|(Sx)(t)− (Sy)(t)| ≤ 1

|p(t+ τ)|

[
|x(t+ τ)− y(t+ τ)|
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+
1

(n− 2)!

2∑
i=1

∫ ∞

t+τ

(s− t− τ)n−2

r(s)

∫ s

t1+τ
|fi(u, x(σi(u)))− fi(u, y(σi(u)))|duds

]

≤ ∥x− y∥
p2

[
1 +

1

(n− 2)!

2∑
i=1

∫ ∞

t1

∫ s

t1

(s− t)n−2

r(s)
qi(u)duds

]
≤ θ4∥x− y∥.

This implies that
∥Sx− Sy∥ ≤ θ4∥x− y∥.

Since θ4 < 1 by (17), S is a contraction operator on A. By the Banach contraction
mapping principle, S has a fixed point x ∈ A, and x is a positive solution of (1). Thus,
the proof is completed.

Example 1. Consider the equation

(et(x(t)− e−t−4x(t− 4))′′′)′ + e−t−5x(t− 5)

−e−t−6x3(t− 2)− e−2t + e−4t + 8e−t = 0, t0 > 5, (20)

where n = 4, r(t) = et, p(t) = e−t−4, τ = 4, σ1(t) = t−5, σ2(t) = t−2, f1(t, x) = e−t−5x,
f2(t, x) = e−t−6x3 and g(t) = e−2t − e−4t − 8e−t. Thus,

|f1(t, x)− f1(t, y)| = |e−t−5x− e−t−5y| = e−t−5|x− y|, where x, y ∈ [a, b], a > 0,

|f2(t, x)− f2(t, y)| = |e−t−6x3 − e−t−6y3| = e−t−6|x2 + xy + y2||x− y| ≤ 3b2e−t−6|x− y|,
where x, y ∈ [a, b], a > 0. Letting q1(t) = e−t−5 and q2(t) = 3b2e−t−6, then

1

(n− 2)!

∫ ∞

t0

∫ s

t0

sn−2

r(s)
q1(u)duds =

1

2!

∫ ∞

t0

∫ s

t0

s2

es
e−u−5duds < ∞

and
1

(n− 2)!

∫ ∞

t0

∫ s

t0

sn−2

r(s)
q2(u)duds =

1

2!

∫ ∞

t0

∫ s

t0

s2

es
3b2e−u−6duds < ∞.

Furthermore,

1

(n− 2)!

∫ ∞

t0

∫ s

t0

sn−2

r(s)
|f1(u, d)|duds =

1

2!

∫ ∞

t0

∫ s

t0

s2

es
e−u−5|d|duds < ∞, d ̸= 0,

1

(n− 2)!

∫ ∞

t0

∫ s

t0

sn−2

r(s)
|f2(u, d)|duds =

1

2!

∫ ∞

t0

∫ s

t0

s2

es
e−u−6|d|3duds < ∞, d ̸= 0,

and

1

(n− 2)!

∫ ∞

t0

∫ s

t0

sn−2

r(s)
|g(u)|duds = 1

2!

∫ ∞

t0

∫ s

t0

s2

es
e−u−5|e−2u − e−4u − 8e−u|duds < ∞.

We see that all conditions of Theorem 1 are satisfied. In fact, x(t) = e−t is a nonoscillatory
solution of (20).
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