EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 3, 2023, 1533-1542 ISSN 1307-5543 – ejpam.com Published by New York Business Global

$\delta p(\Lambda, p)$ -open sets in topological spaces

Chawalit Boonpok¹, Montri Thongmoon^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper deals with the notion of $\delta p(\Lambda, p)$ -open sets. Some properties of $\delta p(\Lambda, p)$ open sets and $\delta p(\Lambda, p)$ -closed sets are investigated. Moreover, several characterizations of $\delta p(\Lambda, p)$ - \mathscr{D}_1 spaces and $\delta p(\Lambda, p)-R_0$ spaces are established.

2020 Mathematics Subject Classifications: 54A05, 54D10

Key Words and Phrases: $\delta p(\Lambda, p)$ -open set, $\delta p(\Lambda, p)$ - \mathcal{D}_1 space, $\delta p(\Lambda, p)$ - R_0 space

1. Introduction

The concept of δ -open sets was first introduced by Veličko [10]. In 1982, Mashhour et al. [7] introduced and investigated the notion of preopen sets which is weaker than the notion of open sets in topological spaces. Raychaudhuri and Mukherjee [8] introduced and studied the notions of δ -preopen sets and δ -closure. The class of δ -preopen sets is larger than that of preopen sets. In 1996, Raychaudhuri and Mukherjee [9] introduced and investigated the concept of δ_p -closed spaces. Caldas et al. [3] introduced some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. Furthermore, Caldas et al. [3] showed that (δ, p) - T_1 spaces, (δ, p) - R_0 spaces and (δ, p) -symmetric spaces are all equivalent. In 2003, Caldas et al. [5] investigated some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. In 2005, Caldas et al. [4] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [2], the present authors introduced the notions of (Λ, p) -open sets and (Λ, p) -closed sets which are defined by utilizing the notions of Λ_p -sets and preclosed sets. Quite recently, Boonpok and Viriyapong [1] investigated some characterizations of (Λ, s) - R_0 topological spaces. In this paper, we introduced the concept of $\delta p(\Lambda, p)$ -open sets. Moreover, some properties of $\delta p(\Lambda, p)$ -open sets and $\delta p(\Lambda, p)$ -closed sets are discussed. In particular, several characterizations of $\delta p(\Lambda, p) \cdot \mathscr{D}_1$ spaces and $\delta p(\Lambda, p) \cdot R_0$ spaces are investigated.

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), montri.t@msu.ac.th (M. Thongmoon)

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4733

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X,τ) , Cl(A) and Int(A), represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [7] if $A \subseteq Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [6] is defined as follows: $\Lambda_p(A) = \bigcap \{ U \mid A \subseteq U, U \in PO(X, \tau) \}$. A subset A of a topological space (X, τ) is called a Λ_p -set [1] (pre- Λ -set [6]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X,\tau)$ (resp. $\Lambda_p C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, p) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [1] of A and is denoted by $A^{(\Lambda,p)}$. The union of all (Λ,p) -open sets contained in A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda, p)}$. A subset A of a topological space (X, τ) is said to be $p(\Lambda, p)$ -open [1] if $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$. The complement of a $p(\Lambda, p)$ -open set is said to be $p(\Lambda, p)$ -closed.

3. $\delta p(\Lambda, p)$ -open sets

In this section, we introduced the concept of $\delta p(\Lambda, p)$ -open sets. Moreover, some properties of $\delta p(\Lambda, p)$ -open sets and $\delta p(\Lambda, p)$ -closed sets are investigated. Furthermore, several characterizations of $\delta p(\Lambda, p)$ - \mathcal{D}_1 spaces and $\delta p(\Lambda, p)$ - R_0 spaces are discussed.

Definition 1. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, p)$ -cluster point of A if $A \cap [V^{(\Lambda, p)}]_{(\Lambda, p)} \neq \emptyset$ for every (Λ, p) -open set V of X containing x. The set of all $\delta(\Lambda, p)$ -cluster points of A is called the $\delta(\Lambda, p)$ -closure of A and is denoted by $A^{\delta(\Lambda, p)}$. If $A = A^{\delta(\Lambda, p)}$, then A is said to be $\delta(\Lambda, p)$ -closed. The complement of a $\delta(\Lambda, p)$ -closed set is said to be $\delta(\Lambda, p)$ -open. The union of all $\delta(\Lambda, p)$ -open sets contained in A is called the $\delta(\Lambda, p)$ -interior of A and is denoted by $A_{\delta(\Lambda, p)}$.

Definition 2. A subset A of a topological space (X, τ) is said to be $\delta p(\Lambda, p)$ -open if $A \subseteq [A^{(\Lambda,p)}]_{\delta(\Lambda,p)}$. The complement of a $\delta p(\Lambda, p)$ -open set is said to be $\delta p(\Lambda, p)$ -closed.

The family of all $\delta p(\Lambda, p)$ -open (resp. $\delta p(\Lambda, p)$ -closed) sets in a topological space (X, τ) is denoted by $\delta p(\Lambda, p)O(X, \tau)$ (resp. $\delta p(\Lambda, p)C(X, \tau)$). Let A be a subset of a topological space (X, τ) . The intersection of all $\delta p(\Lambda, p)$ -closed sets containing A is called the $\delta p(\Lambda, p)$ closure of A and is denoted by $A^{\delta p(\Lambda, p)}$.

Lemma 1. For the $\delta p(\Lambda, p)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

C. Boonpok, M. Thongmoon / Eur. J. Pure Appl. Math, 16 (3) (2023), 1533-1542

- (1) If $A \subseteq B$, then $A^{\delta p(\Lambda,p)} \subseteq B^{\delta p(\Lambda,p)}$.
- (2) A is $\delta p(\Lambda, p)$ -closed in (X, τ) if and only if $A = A^{\delta p(\Lambda, p)}$.
- (3) $A^{\delta p(\Lambda,p)}$ is $\delta p(\Lambda,p)$ -closed, that is, $A^{\delta p(\Lambda,p)} = [A^{\delta p(\Lambda,p)}]^{\delta p(\Lambda,p)}$.
- (4) $x \in A^{\delta p(\Lambda,p)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda,p)O(X,\tau)$ containing x.

Lemma 2. For a family $\{A_{\gamma} \mid \gamma \in \nabla\}$ of a topological space (X, τ) , the following properties hold:

- (1) $[\cap \{A_{\gamma} \mid \gamma \in \nabla\}]^{\delta p(\Lambda,p)} \subseteq \cap \{A_{\gamma}^{\delta p(\Lambda,p)} \mid \gamma \in \nabla\}.$
- $(2) \ [\cup\{A_{\gamma} \mid \gamma \in \nabla\}]^{\delta p(\Lambda,p)} \supseteq \cup\{A_{\gamma}^{\delta p(\Lambda,p)} \mid \gamma \in \nabla\}.$

Definition 3. A subset A of a topological space (X, τ) is called a $\delta p(\Lambda, p)\mathcal{D}$ -set if there exist $\delta p(\Lambda, p)$ -open sets U and V such that $U \neq X$ and A = U - V.

Definition 4. A topological space (X, τ) is said to be:

- (i) $\delta p(\Lambda, p)$ - T_1 if for any distinct pair of points x and y of X, there exist a $\delta p(\Lambda, p)$ -open set U of X containing x but not y and a $\delta p(\Lambda, p)$ -open set V of X containing y but not x;
- (ii) $\delta p(\Lambda, p) \cdot \mathscr{D}_1$ if for any distinct pair of points x and y of X, there exist a $\delta p(\Lambda, p) \mathscr{D}$ -set U of X containing x but not y and a $\delta p(\Lambda, p) \mathscr{D}$ -set V of X containing y but not x.

Definition 5. A subset N of a topological space (X, τ) is called a $\delta p(\Lambda, p)$ -neighborhood of a point $x \in X$ if there exists a $\delta p(\Lambda, p)$ -open set U such that $x \in U \subseteq N$.

Definition 6. Let (X, τ) be a topological space. A point $x \in X$ which has only X as the $\delta p(\Lambda, p)$ -neighbourhood is called a $\delta p(\Lambda, p)$ -neat point.

Lemma 3. Let (X, τ) be a topological space. For each point $x \in X$, $\{x\}$ is $p(\Lambda, p)$ -open or $p(\Lambda, p)$ -closed.

Theorem 1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, p) \mathcal{D}_1$;
- (2) (X, τ) has no $\delta p(\Lambda, p)$ -neat point.

Proof. (1) \Rightarrow (2): Since (X, τ) is $\delta p(\Lambda, p) \cdot \mathscr{D}_1$, so each point x of X is contained in a $\delta p(\Lambda, p) \mathscr{D}$ -set G = U - V and thus in U, where U and V are $\delta p(\Lambda, p)$ -open sets. By definition $U \neq X$. This implies that x is not a $\delta p(\Lambda, p)$ -neat point.

 $(2) \Rightarrow (1)$: By Lemma 3 for each distinct pair of points $x, y \in X$, at least one of them, x(say) has a $\delta p(\Lambda, p)$ -neighborhood U containing x and not y. Thus, U which is different from X is a $\delta p(\Lambda, p) \mathscr{D}$ -set. If X has no $\delta p(\Lambda, p)$ -neat point, then y is not a $\delta p(\Lambda, p)$ -neat point. This means that there exists a $\delta p(\Lambda, p)$ -neighborhood V of y such that $V \neq X$. Thus, $y \in V - U$ but not y and V - U is a $\delta p(\Lambda, p) \mathscr{D}$ -set. This shows that (X, τ) is $\delta p(\Lambda, p) \cdot \mathscr{D}_1$. **Definition 7.** A function $f : (X, \tau) \to (Y, \sigma)$ is called $\delta p(\Lambda, p)$ -continuous if, for each $x \in X$ and each $\delta p(\Lambda, p)$ -open set V of Y containing f(x), there exists a $\delta p(\Lambda, p)$ -open set U of X containing x such that $f(U) \subseteq V$.

Lemma 4. A function $f : (X, \tau) \to (Y, \sigma)$ is $\delta p(\Lambda, p)$ -continuous if and only if $f^{-1}(V)$ is $\delta p(\Lambda, p)$ -open in X for every $\delta p(\Lambda, p)$ -open set V of Y.

Theorem 2. If $f : (X, \tau) \to (Y, \sigma)$ is a $\delta p(\Lambda, p)$ -continuous surjective function and B is a $\delta p(\Lambda, p) \mathscr{D}$ -set in Y, then $f^{-1}(B)$ is a $\delta p(\Lambda, p) \mathscr{D}$ -set in X.

Proof. Let B be a $\delta p(\Lambda, p) \mathscr{D}$ -set in Y. Then, there exist $\delta p(\Lambda, p)$ -open sets U and V in Y such that B = U - V and $U \neq Y$. By the $\delta p(\Lambda, p)$ -continuity of f, $f^{-1}(U)$ and $f^{-1}(V)$ are $\delta p(\Lambda, p)$ -open in X. Since $U \neq Y$, we have $f^{-1}(U) \neq X$. Thus, $f^{-1}(B) = f^{-1}(U) - f^{-1}(V)$ is a $\delta p(\Lambda, p) \mathscr{D}$ -set.

Theorem 3. If (Y, σ) is a $\delta p(\Lambda, p)$ - \mathcal{D}_1 space and $f : (X, \tau) \to (Y, \sigma)$ is a $\delta p(\Lambda, p)$ continuous bijection, then (X, τ) is $\delta p(\Lambda, p)$ - \mathcal{D}_1 .

Proof. Suppose that (Y, σ) is a $\delta p(\Lambda, p) \cdot \mathscr{D}_1$ space. Let x and y be any pair of distinct points in X. Since f is injective and (Y, σ) is $\delta p(\Lambda, p) \cdot \mathscr{D}_1$, there exist $\delta p(\Lambda, p) \cdot \mathscr{D}$ -sets Uand V of Y containing f(x) and f(y), respectively, such that $f(y) \notin U$ and $f(x) \notin V$. By Theorem 2, $f^{-1}(U)$ and $f^{-1}(V)$ are $\delta p(\Lambda, p) \cdot \mathscr{D}$ -sets in X containing x and y, respectively, such that $y \notin f^{-1}(U)$ and $x \notin f^{-1}(V)$. This shows that (X, τ) is $\delta p(\Lambda, p) \cdot \mathscr{D}_1$.

Definition 8. A topological space (X, τ) is called $\delta p(\Lambda, p)$ - R_0 if for each $\delta p(\Lambda, p)$ -open set U and each $x \in U$, $\{x\}^{\delta p(\Lambda, p)} \subseteq U$.

Theorem 4. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, p)$ - R_0 .
- (2) For each $\delta p(\Lambda, p)$ -closed set F and each $x \in X F$, there exists $U \in \delta p(\Lambda, p)O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$.
- (3) For each $\delta p(\Lambda, p)$ -closed set F and each $x \in X F$, $F \cap \{x\}^{\delta p(\Lambda, p)} = \emptyset$.
- (4) For any distinct points x, y in $X, \{x\}^{\delta p(\Lambda, p)} = \{y\}^{\delta p(\Lambda, p)}$ or $\{x\}^{\delta p(\Lambda, p)} \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$.

Proof. (1) \Rightarrow (2): Let F be a $\delta p(\Lambda, p)$ -closed set and $x \in X - F$. Since (X, τ) is $\delta p(\Lambda, p)$ - R_0 , we have $\{x\}^{\delta p(\Lambda, p)} \subseteq X - F$. Put $U = X - \{x\}^{\delta p(\Lambda, p)}$. Thus, by Lemma 1, $U \in \delta p(\Lambda, p)O(X, \tau), F \subseteq U$ and $x \notin U$.

 $(2) \Rightarrow (3)$: Let F be a $\delta p(\Lambda, p)$ -closed set and $x \in X - F$. By (2), there exists

$$U \in \delta p(\Lambda, p) O(X, \tau)$$

such that $F \subseteq U$ and $x \notin U$. Since $U \in \delta p(\Lambda, p)O(X, \tau)$, $U \cap \{x\}^{\delta p(\Lambda, p)} = \emptyset$ and hence $F \cap \{x\}^{\delta p(\Lambda, p)} = \emptyset$.

(3) \Rightarrow (4): Let x and y be distinct points of X. Suppose that $\{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)} \neq \emptyset$. By (3), we have $x \in \{y\}^{\delta p(\Lambda,p)}$ and $y \in \{x\}^{\delta p(\Lambda,p)}$. By Lemma 1,

$$\{x\}^{\delta p(\Lambda,p)} \subseteq \{y\}^{\delta p(\Lambda,p)} \subseteq \{x\}^{\delta p(\Lambda,p)}$$

and hence $\{x\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$. (4) \Rightarrow (1): Let $V \in \delta p(\Lambda,p)O(X,\tau)$ and $x \in V$. For each $y \notin V$,

$$V \cap \{y\}^{\delta p(\Lambda,p)} = \emptyset$$

and hence $x \notin \{y\}^{\delta p(\Lambda,p)}$. Thus, $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$. By (4), for each $y \notin V$, $\{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)} = \emptyset$. Since X - V is $\delta p(\Lambda,p)$ -closed, $y \in \{y\}^{\delta p(\Lambda,p)} \subseteq X - V$ and $\bigcup_{y \in X - V} \{y\}^{\delta p(\Lambda,p)} = X - V$. Thus,

$$\{x\}^{\delta p(\Lambda,p)} \cap (X-V) = \{x\}^{\delta p(\Lambda,p)} \cap [\cup_{y \in X-V} \{y\}^{\delta p(\Lambda,p)}]$$
$$= \cup_{y \in X-V} [\{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)}]$$
$$= \emptyset$$

and hence $\{x\}^{\delta p(\Lambda,p)} \subseteq V$. This shows that (X,τ) is $\delta p(\Lambda,p)$ - R_0 .

Corollary 1. A topological space (X, τ) is $\delta p(\Lambda, p)$ - R_0 if and only if, for any points x and y in X, $\{x\}^{\delta p(\Lambda, p)} \neq \{y\}^{\delta p(\Lambda, p)}$ implies $\{x\}^{\delta p(\Lambda, p)} \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$.

Proof. This is obvious by Theorem 4.

Conversely, let $U \in \delta p(\Lambda, p)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$. Thus, $x \notin \{y\}^{\delta p(\Lambda, p)}$ and $\{x\}^{\delta p(\Lambda, p)} \neq \{y\}^{\delta p(\Lambda, p)}$. By the hypothesis, $\{x\}^{\delta p(\Lambda, p)} \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$ and hence $y \notin \{x\}^{\delta p(\Lambda, p)}$. This shows that $\{x\}^{\delta p(\Lambda, p)} \subseteq U$. Thus, (X, τ) is $\delta p(\Lambda, p)$ - R_0 .

Definition 9. Let A be a subset of a topological space (X, τ) . The $\delta p(\Lambda, p)$ -kernel of A, denoted by $\delta p(\Lambda, p) Ker(A)$, is defined to be the set

$$\delta p(\Lambda, p) Ker(A) = \cap \{ U \in \delta p(\Lambda, p) O(X, \tau) \mid A \subseteq U \}.$$

Lemma 5. For subsets A, B of a topological space (X, τ) , the following properties hold:

- (1) $A \subseteq \delta p(\Lambda, p) Ker(A)$.
- (2) If $A \subseteq B$, then $\delta p(\Lambda, p) Ker(A) \subseteq \delta p(\Lambda, p) Ker(B)$.
- (3) $\delta p(\Lambda, p) Ker(\delta p(\Lambda, sp) Ker(A)) = \delta p(\Lambda, p) Ker(A).$
- (4) If A is $\delta p(\Lambda, p)$ -open, $\delta p(\Lambda, p)Ker(A) = A$.

Theorem 5. For any points x and y in a topological space (X, τ) , the following properties are equivalent:

C. Boonpok, M. Thongmoon / Eur. J. Pure Appl. Math, 16 (3) (2023), 1533-1542

- (1) $\delta p(\Lambda, p) Ker(\{x\}) \neq \delta p(\Lambda, p) Ker(\{y\}).$
- (2) $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$.

Proof. (1) \Rightarrow (2): Suppose that $\delta p(\Lambda, p) Ker(\{x\}) \neq \delta p(\Lambda, p) Ker(\{y\})$. Then, there exists a point $z \in X$ such that $z \in \delta p(\Lambda, p) Ker(\{x\})$ and $z \notin \delta p(\Lambda, p) Ker(\{y\})$ or

$$z \in \delta p(\Lambda, p) Ker(\{y\})$$

and $z \notin \delta p(\Lambda, p) Ker(\{x\})$. We prove only the first case being the second analogous. From $z \in \delta p(\Lambda, p) Ker(\{x\})$ it follows that $\{x\} \cap \{z\}^{\delta p(\Lambda, p)} \neq \emptyset$ which implies

$$x \in \{z\}^{\delta p(\Lambda, p)}.$$

By $z \notin \delta p(\Lambda, p) Ker(\{y\})$, we have $\{y\} \cap \{z\}^{\delta p(\Lambda, p)} = \emptyset$. Since $x \in \{z\}^{\delta p(\Lambda, p)}, \{x\}^{\delta p(\Lambda, p)} \subseteq \mathbb{C}$ $\{z\}^{\delta p(\Lambda,p)}$ and $\{y\} \cap \{x\}^{\delta p(\Lambda,p)} = \emptyset$. Therefore, $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$. Thus,

$$\delta p(\Lambda, p) Ker(\{x\}) \neq \delta p(\Lambda, p) Ker(\{y\})$$

implies that $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$.

(2) \Rightarrow (1): Suppose that $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$. There exists a point $z \in X$ such that $z \in \{x\}^{\delta p(\Lambda,p)}$ and $z \notin \{y\}^{\delta p(\Lambda,p)}$ or $z \in \{y\}^{\delta p(\Lambda,p)}$ and $z \notin \{x\}^{\delta p(\Lambda,p)}$. We prove only the first case being the second analogous. It follows that there exists a $\delta p(\Lambda, p)$ open set containing z and therefore x but not y, namely, $y \notin \delta p(\Lambda, p) Ker(\{x\})$ and thus $\delta p(\Lambda, p) Ker(\{x\}) \neq \delta p(\Lambda, p) Ker(\{y\}).$

Lemma 6. Let (X, τ) be a topological space and $x, y \in X$. Then, the following properties hold:

- (1) $y \in \delta p(\Lambda, p) Ker(\{x\})$ if and only if $x \in \{y\}^{\delta p(\Lambda, p)}$.
- (2) $\delta p(\Lambda, p) Ker(\{x\}) = \delta p(\Lambda, p) Ker(\{y\})$ if and only if $\{x\}^{\delta p(\Lambda, p)} = \{y\}^{\delta p(\Lambda, p)}$.

Proof. (1) Let $x \notin \{y\}^{\delta p(\Lambda,p)}$. Then, there exists $U \in \delta p(\Lambda,p)O(X,\tau)$ such that $x \in U$ and $y \notin U$. Thus, $y \notin \delta p(\Lambda, p) Ker(\{x\})$. The converse is similarly shown.

(2) Suppose that $\delta p(\Lambda, p) Ker(\{x\}) = \delta p(\Lambda, p) Ker(\{y\})$ for any $x, y \in X$. Since

$$x \in \delta p(\Lambda, p) Ker(\{x\}),$$

 $x \in \delta p(\Lambda, p) Ker(\{y\}), \text{ by } (1), y \in \{x\}^{\delta p(\Lambda, p)}. \text{ By Lemma 1, } \{y\}^{\delta p(\Lambda, p)} \subseteq \{x\}^{\delta p(\Lambda, p)}.$ Similarly, we have $\{x\}^{\delta p(\Lambda,p)} \subseteq \{y\}^{\delta p(\Lambda,p)}$ and hence $\{x\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$. Conversely, suppose that $\{x\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$. Since $x \in \{x\}^{\delta p(\Lambda,p)}$, we have

$$x \in \{y\}^{\delta p(\Lambda, p)}$$

and by (1), $y \in \delta p(\Lambda, p) Ker(\{x\})$. By Lemma 5,

$$\delta p(\Lambda, p) Ker(\{y\}) \subseteq \delta p(\Lambda, p) Ker(\delta p(\Lambda, p) Ker(\{x\})) = \delta p(\Lambda, p) Ker(\{x\}).$$

Similarly, we have $\delta p(\Lambda, p) Ker(\{x\}) \subseteq \delta p(\Lambda, p) Ker(\{y\})$ and hence

$$\delta p(\Lambda, p) Ker(\{x\}) = \delta p(\Lambda, p) Ker(\{y\}).$$

Theorem 6. A topological space (X, τ) is $\delta p(\Lambda, p)$ - R_0 if and only if for each points x and y in X, $\delta p(\Lambda, p)Ker(\{x\}) \neq \delta p(\Lambda, p)Ker(\{y\})$ implies

$$\delta p(\Lambda, p)Ker(\{x\}) \cap \delta p(\Lambda, p)Ker(\{y\}) = \emptyset.$$

Proof. Let (X, τ) be $\delta p(\Lambda, p)$ - R_0 . Suppose that

$$\delta p(\Lambda, p) Ker(\{x\}) \cap \delta p(\Lambda, p) Ker(\{y\}) \neq \emptyset.$$

Let $z \in \delta p(\Lambda, p) Ker(\{x\}) \cap \delta p(\Lambda, p) Ker(\{y\})$. Then, $z \in \delta p(\Lambda, p) Ker(\{x\})$ and by Lemma 6, $x \in \{z\}^{\delta p(\Lambda, p)}$. Thus, $x \in \{z\}^{\delta p(\Lambda, p)} \cap \{x\}^{\delta p(\Lambda, p)}$ and by Corollary 1,

$$\{z\}^{\delta p(\Lambda,p)} = \{x\}^{\delta p(\Lambda,p)}$$

Similarly, we have $\{z\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$ and hence $\{x\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$, by Lemma 6, $\delta p(\Lambda,p)Ker(\{x\}) = \delta p(\Lambda,p)Ker(\{y\})$.

Conversely, we show the sufficiency by using Corollary 1. Suppose that

$$\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$$

By Lemma 6, $\delta p(\Lambda, p) Ker(\{x\}) \neq \delta p(\Lambda, p) Ker(\{y\})$ and hence

$$\delta p(\Lambda, p) Ker(\{x\}) \cap \delta p(\Lambda, p) Ker(\{y\}) = \emptyset$$

Thus, $\{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)} = \emptyset$. In fact, assume that $z \in \{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)}$. Then,

$$z \in \{x\}^{\delta p(\Lambda, p)}$$

implies $x \in \delta p(\Lambda, p) Ker(\{z\})$ and hence $x \in \delta p(\Lambda, p) Ker(\{z\}) \cap \delta p(\Lambda, p) Ker(\{x\})$. By the hypothesis, $\delta p(\Lambda, p) Ker(\{z\}) = \delta p(\Lambda, p) Ker(\{x\})$ and by Lemma 6,

$$\{z\}^{\delta p(\Lambda,p)} = \{x\}^{\delta p(\Lambda,p)}$$

Similarly, we have $\{z\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$ and hence $\{x\}^{\delta p(\Lambda,p)} = \{y\}^{\delta p(\Lambda,p)}$. This contradicts that $\{x\}^{\delta p(\Lambda,p)} \neq \{y\}^{\delta p(\Lambda,p)}$. Thus, $\{x\}^{\delta p(\Lambda,p)} \cap \{y\}^{\delta p(\Lambda,p)} = \emptyset$. This shows that (X,τ) is $\delta p(\Lambda,p)-R_0$.

Theorem 7. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, p)$ - R_0 .
- (2) $x \in \{y\}^{\delta p(\Lambda,p)}$ if and only if $y \in \{x\}^{\delta p(\Lambda,p)}$.

Proof. (1) \Rightarrow (2): Suppose that $x \in \{y\}^{\delta p(\Lambda, p)}$. By Lemma 6, $y \in \delta p(\Lambda, p)Ker(\{x\})$ and hence $\delta p(\Lambda, p)Ker(\{x\}) \cap \delta p(\Lambda, p)Ker(\{y\}) \neq \emptyset$. By Theorem 6,

$$\delta p(\Lambda, p) Ker(\{x\}) = \delta p(\Lambda, p) Ker(\{y\})$$

and hence $x \in \delta p(\Lambda, p) Ker(\{y\})$. Thus, by Lemma 6, $y \in \{x\}^{\delta p(\Lambda, p)}$. The converse is similarly shown.

(2) \Rightarrow (1): Let $U \in \delta p(\Lambda, p)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$. Thus, $x \notin \{y\}^{\delta p(\Lambda, p)}$ and $y \notin \{x\}^{\delta p(\Lambda, p)}$. This implies that $\{x\}^{\delta p(\Lambda, p)} \subseteq U$. Therefore, (X, τ) is $\delta p(\Lambda, p) - R_0$. **Theorem 8.** For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, p)$ - R_0 .
- (2) For each nonempty subset A of X and each $U \in \delta p(\Lambda, p)O(X, \tau)$ such that $A \cap U \neq \emptyset$, there exists a $\delta p(\Lambda, p)$ -closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
- (3) $F = \delta p(\Lambda, p) Ker(F)$ for each $\delta p(\Lambda, p)$ -closed set F.
- (4) $\{x\}^{\delta p(\Lambda,p)} = \delta p(\Lambda,p) Ker(\{x\})$ for each $x \in X$.
- (5) $\{x\}^{\delta p(\Lambda,p)} \subseteq \delta p(\Lambda,p) Ker(\{x\})$ for each $x \in X$.

Proof. (1) \Rightarrow (2): Let A be a nonempty subset of X and $U \in \delta p(\Lambda, p)O(X, \tau)$ such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\{x\}^{\delta p(\Lambda, p)} \subseteq U$. Put $F = \{x\}^{\delta p(\Lambda, p)}$. Then, F is $\delta p(\Lambda, p)$ -closed, $A \cap F \neq \emptyset$ and $F \subseteq U$.

 $(2) \Rightarrow (3)$: Let F be any $\delta p(\Lambda, p)$ -closed set of X. By Lemma 5, we have

$$F \subseteq \delta p(\Lambda, p) Ker(F).$$

Next, we show $F \supseteq \delta p(\Lambda, p) Ker(F)$. Let $x \notin F$. Then, $x \in X - F \in \delta p(\Lambda, p)O(X, \tau)$ and by (2), there exists a $\delta p(\Lambda, p)$ -closed set K such that $x \in K$ and $K \subseteq X - F$. Now, put U = X - K. Then, $F \subseteq U \in \delta p(\Lambda, p)O(X, \tau)$ and $x \notin U$. Thus, $x \notin \delta p(\Lambda, p)Ker(F)$. This shows that $F \supseteq \delta p(\Lambda, p)Ker(F)$.

(3) \Rightarrow (4): Let $x \in X$ and $y \notin \delta p(\Lambda, p) Ker(\{x\})$. There exists $U \in \delta p(\Lambda, p) O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $U \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$. By (3),

$$U \cap \delta p(\Lambda, p) Ker(\{y\}^{\delta p(\Lambda, p)}) = \emptyset.$$

Since $x \notin \delta p(\Lambda, p) Ker(\{y\}^{\delta p(\Lambda, p)})$, there exists $V \in \delta p(\Lambda, p) O(X, \tau)$ such that

$$\{y\}^{\delta p(\Lambda,p)} \subseteq V$$

and $x \notin V$. Thus, $V \cap \{x\}^{\delta p(\Lambda,p)} = \emptyset$. Since $y \in V$, $y \notin \{x\}^{\delta p(\Lambda,p)}$ and hence

$$\{x\}^{\delta p(\Lambda,p)} \subseteq \delta p(\Lambda,p) Ker(\{x\}).$$

Moreover, $\{x\}^{\delta p(\Lambda,p)} \subseteq \delta p(\Lambda,p) Ker(\{x\}) \subseteq \delta p(\Lambda,p) Ker(\{x\}^{\delta p(\Lambda,p)}) = \{x\}^{\delta p(\Lambda,p)}$. This shows that $\{x\}^{\delta p(\Lambda,p)} = \delta p(\Lambda,p) Ker(\{x\})$.

 $(4) \Rightarrow (5)$: The proof is obvious.

(5) \Rightarrow (1): Let $U \in \delta p(\Lambda, p)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, p)} = \emptyset$ and $x \notin \{y\}^{\delta p(\Lambda, p)}$. By Lemma 6, $y \notin \delta p(\Lambda, p)Ker(\{x\})$ and by (5), $y \notin \{x\}^{\delta p(\Lambda, p)}$. Thus, $\{x\}^{\delta p(\Lambda, p)} \subseteq U$ and hence (X, τ) is $\delta p(\Lambda, p) - R_0$.

Corollary 2. A topological space (X, τ) is $\delta p(\Lambda, p)$ - R_0 if and only if

$$\delta p(\Lambda, p) Ker(\{x\}) \subseteq \{x\}^{\delta p(\Lambda, p)}$$

for each $x \in X$.

REFERENCES

Proof. This is obvious by Theorem 8.

Conversely, let $x \in \{y\}^{\delta p(\Lambda,p)}$. Thus, by Lemma 6, $y \in \delta p(\Lambda,p) Ker(\{x\})$ and hence $y \in \{x\}^{\delta p(\Lambda,p)}$. Similarly, if $y \in \{x\}^{\delta p(\Lambda,p)}$, then $x \in \{y\}^{\delta p(\Lambda,p)}$. It follows from Theorem 7 that (X,τ) is $\delta p(\Lambda,p)-R_0$.

Definition 10. Let (X, τ) be a topological space and $x \in X$. A subset $\langle x \rangle_{\delta p(\Lambda, p)}$ is defined as follows: $\langle x \rangle_{\delta p(\Lambda, p)} = \delta p(\Lambda, p) Ker(\{x\}) \cap \{x\}^{\delta p(\Lambda, p)}$.

Theorem 9. A topological space (X, τ) is $\delta p(\Lambda, p)$ - R_0 if and only if $\langle x \rangle_{\delta p(\Lambda, p)} = \{x\}^{\delta p(\Lambda, p)}$ for each $x \in X$.

Proof. Let $x \in X$. By Theorem 8, $\delta p(\Lambda, p) Ker(\{x\}) = \{x\}^{\delta p(\Lambda, sp)}$. Thus,

 $\langle x \rangle_{\delta p(\Lambda, p)} = \delta p(\Lambda, p) Ker(\{x\}) \cap \{x\}^{\delta p(\Lambda, p)} = \{x\}^{\delta p(\Lambda, p)}.$

Conversely, let $x \in X$. By the hypothesis,

$$\{x\}^{\delta p(\Lambda,p)} = \langle x \rangle_{\delta p(\Lambda,p)} = \delta p(\Lambda,p) Ker(\{x\}) \cap \{x\}^{\delta p(\Lambda,p)} \subseteq \delta p(\Lambda,p) Ker(\{x\}).$$

It follows from Theorem 8 that (X, τ) is $\delta p(\Lambda, p) - R_0$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok and C. Viriyapong. On (Λ, p) -closed sets and the related notions in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):415–436, 2022.
- [2] C. Boonpok and C. Viriyapong. On some forms of closed sets and related topics. European Journal of Pure and Applied Mathematics, 16(1):336–362, 2023.
- [3] M. Caldas, T. Fukutake, S. Jafari, and T. Noiri. Some applications of δ-preopen sets in topological spaces. Bulletin of the Institute of Mathematics, Academia Sinica, 33(3):261–276, 2005.
- [4] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, and T. Noiri. δ-semiopen sets in topological spaces. *Topology Proceedings*, 29(2):369–383, 2005.
- [5] M. Caldas, D. N. Georgiou, S. Jafari, and T. Noiri. More on δ-semiopen sets. Note di Matematica, 22(2):1–14, 2003.
- [6] M. Ganster, S. Jafari, and T. Noiri. On pre-Λ-sets and pre-V-sets. Acta Mathematica Hungarica, 95:337–343, 2002.

- [7] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. *Proceedings of the Mathematical and Physical Society* of Egypt, 53:47–53, 1982.
- [8] S. Raychaudhuri and M. N. Mukherjee. On δ -almost continuity and δ -preopen sets. Bulletin of the Institute of Mathematics, Academia Sinica, 21:357–366, 1993.
- [9] S. Raychaudhuri and M. N. Mukherjee. δ_p -closedness for topological spaces. The Journal of the Indian Academy of Mathematics, 18:89–99, 1996.
- [10] N. V. Veličko. H-closed topological spaces. American Mathematical Society Translations, 78(2):102–118, 1968.