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Abstract. This paper is concerned with the concepts of some topological spaces. Firstly, we
introduce the notions of δs(Λ, p)-open sets. Some properties concerning δs(Λ, p)-open sets are
discussed. Secondly, the concept of s(Λ, p)-connected spaces is introduced. Moreover, we give
several characterizations of s(Λ, p)-connected spaces by utilizing δs(Λ, p)-open sets. Thirdly, we
apply the notion of s(Λ, p)-open sets to present and study new classes of spaces called s(Λ, p)-regular
spaces and s(Λ, p)-normal spaces. Especially, some characterizations of s(Λ, p)-regular spaces and
s(Λ, p)-normal spaces are established. Fourthly, we introduce and investigate the concepts of
s(Λ, p)-T2 spaces and s(Λ, p)-Urysohn spaces. Finally, the notion of S(Λ, p)-closed spaces is studied.
Basic properties and characterizations of S(Λ, p)-closed spaces are considered.
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1. Introduction

In 1968, Veličko [14] introduced δ-open sets, which are stronger than open sets. In 1982,
Mashhour et al. [9] introduced and investigated the notion of preopen sets which is weaker
than the notion of open sets in topological spaces. In 1993, Raychaudhuri and Mukherjee
[11] introduced and studied the notions of δ-preopen sets and δ-closures. The class of
δ-preopen sets is larger than that of preopen sets. In 1996, Raychaudhuri and Mukherjee
[12] introduced and investigated the concept of δp-closed spaces. In 2005, Caldas et al.
[4] introduced some weak separation axioms by utilizing the notions of δ-preopen sets and
the δ-preclosure operator. Caldas et al. [4] showed that (δ, p)-T1 spaces, (δ, p)-R0 spaces
and (δ, p)-symmetric spaces are all equivalent. Moreover, Caldas et al. [6] investigated
some weak separation axioms by utilizing δ-semiopen sets and the δ-semiclosure operator.
Caldas et al. [5] investigated the notion of δ-Λs-semiclosed sets which is defined as the
intersection of a δ-Λs-set and a δ-semiclosed set. In 2011, Buadong et al. [1] introduced
and investigated some separation axioms in generalized topology and minimal structure
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spaces. Dungthaisong et al. [7] studied some properties of pairwise µ-T 1
2
-spaces. Torton

et al. [13] introduced and investigated the notions of µ(m,n)-regular spaces and µ(m,n)-
normal spaces. In [3], the present authors introduced the notions of (Λ, p)-open sets
and (Λ, p)-closed sets which are defined by utilizing the notions of Λp-sets and preclosed
sets. This paper is organized as follows: in Section 2 is devoted to basic definitions and
preliminaries. In Section 3, we introduce the notions of δs(Λ, p)-open sets and δs(Λ, p)-
closed sets in topological spaces. Moreover, some characterizations of δs(Λ, p)-T0 spaces,
δs(Λ, p)-T1 spaces and δs(Λ, p)-symmetric spaces are investigated. In Section 4, the notion
of s(Λ, p)-connected spaces is introduced. Several characterizations of s(Λ, p)-connected
spaces are obtained. In Section 5, we introduce the concepts of s(Λ, p)-regular spaces
and s(Λ, p)-normal spaces. Furthermore, we give some characterizations of s(Λ, p)-regular
spaces and s(Λ, p)-normal spaces by utilizing δs(Λ, p)-open sets. Basic properties and
characterizations of s(Λ, p)-T2 spaces and s(Λ, p)-Urysohn spaces are discussed in Section
6. In the last Section 7, we define the notion of S(Λ, p)-closed spaces. Characterizations
and properties concerning S(Λ, p)-closed spaces are considered.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space
(X, τ) is said to be preopen [9] if A ⊆ Int(Cl(A)). The complement of a preopen set is
called preclosed. The family of all preopen sets of a topological space (X, τ) is denoted by
PO(X, τ). A subset Λp(A) [8] is defined as follows: Λp(A) = ∩{U | A ⊆ U,U ∈ PO(X, τ)}.
A subset A of a topological space (X, τ) is called a Λp-set [3] (pre-Λ-set [8]) if A = Λp(A).
A subset A of a topological space (X, τ) is called (Λ, p)-closed [3] if A = T ∩ C, where
T is a Λp-set and C is a preclosed set. The complement of a (Λ, p)-closed set is called
(Λ, p)-open. The family of all (Λ, p)-open (resp. (Λ, p)-closed) sets in a topological space
(X, τ) is denoted by ΛpO(X, τ) (resp. ΛpC(X, τ)). Let A be a subset of a topological
space (X, τ). A point x ∈ X is called a (Λ, p)-cluster point [3] of A if A∩U ̸= ∅ for every
(Λ, p)-open set U of X containing x. The set of all (Λ, p)-cluster points of A is called the
(Λ, p)-closure [3] of A and is denoted by A(Λ,p). The union of all (Λ, p)-open sets of X
contained in A is called the (Λ, p)-interior [3] of A and is denoted by A(Λ,p). A subset
A of a topological space (X, τ) is said to be α(Λ, p)-open (resp. p(Λ, p)-open, s(Λ, p)-
open, β(Λ, p)-open, r(Λ, p)-open [3]) if A ⊆ [[A(Λ,p)]

(Λ,p)](Λ,p) (resp. A ⊆ [A(Λ,p)](Λ,p),

A ⊆ [A(Λ,p)]
(Λ,p), A ⊆ [[A(Λ,p)](Λ,p)]

(Λ,p), A = [A(Λ,p)](Λ,p)). The family of all α(Λ, p)-open
(resp. p(Λ, p)-open, s(Λ, p)-open, β(Λ, p)-open, r(Λ, p)-open) sets in a topological space
(X, τ) is denoted by α(Λ, p)O(X, τ) (resp. p(Λ, p)O(X, τ), s(Λ, p)O(X, τ), β(Λ, p)O(X, τ),
r(Λ, p)O(X, τ)). The complement of a p(Λ, p)-open (resp. s(Λ, p)-open, α(Λ, p)-open,
β(Λ, p)-open, r(Λ, p)-open) set is said to be p(Λ, p)-closed (resp. s(Λ, p)-closed, α(Λ, p)-
closed, β(Λ, p)-closed, r(Λ, p)-closed). Let A be a subset of a topological space (X, τ).
The intersection of all s(Λ, p)-closed sets of X containing A is called the s(Λ, p)-closure
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of A and is denoted by As(Λ,p). A point x of X is called a δ(Λ, p)-cluster point [2] of
A if A ∩ [V (Λ,p)](Λ,p) ̸= ∅ for every (Λ, p)-open set V of X containing x. The set of all

δ(Λ, p)-cluster points of A is called the δ(Λ, p)-closure [2] of A and is denoted by Aδ(Λ,p).
If A = Aδ(Λ,p), then A is said to be δ(Λ, p)-closed [2]. The complement of a δ(Λ, p)-closed
set is said to be δ(Λ, p)-open. The union of all δ(Λ, p)-open sets of X contained in A is
called the δ(Λ, p)-interior [2] of A and is denoted by Aδ(Λ,p).

3. δs(Λ, p)-open sets

In this section, we introduce the notion of δs(Λ, p)-open sets. Moreover, some char-
acterizations of δs(Λ, p)-T0 spaces, δs(Λ, p)-T1 spaces and δs(Λ, p)-symmetric spaces are
discussed.

Definition 1. A subset A of a topological space (X, τ) is said to be δs(Λ, p)-open if A ⊆
[A(Λ,p)]

δ(Λ,p). The complement of a δs(Λ, p)-open set is said to be δs(Λ, p)-closed.

The family of all δs(Λ, p)-open (resp. δs(Λ, p)-closed) sets in a topological space (X, τ)
is denoted by δs(Λ, p)O(X, τ) (resp. δs(Λ, p)C(X, τ)).

Definition 2. Let A be a subset of a topological space (X, τ). A point x of X is called a
δs(Λ, p)-cluster point of A if A ∩ U ̸= ∅ for every δs(Λ, s)-open set U of X containing x.
The set of all δs(Λ, p)-cluster points of A is called the δs(Λ, p)-closure of A and is denoted
by Aδs(Λ,p).

Lemma 1. The intersection of arbitrary collection of δs(Λ, s)-closed sets in (X, τ) is
δs(Λ, p)-closed.

Corollary 1. Let A be a subset of a topological space (X, τ). Then,

Aδs(Λ,p) = ∩{F ∈ δs(Λ, p)C(X, τ) | A ⊆ F}.

Lemma 2. For the δs(Λ, p)-closure of subsets A, B in a topological space (X, τ), the
following properties hold:

(1) A is δs(Λ, p)-closed in (X, τ) if and only if A = Aδs(Λ,p).

(2) If A ⊆ B, then Aδs(Λ,p) ⊆ Bδs(Λ,p).

(3) Aδs(Λ,p) is δs(Λ, p)-closed, that is, Aδs(Λ,p) = [Aδs(Λ,p)]δs(Λ,p).

Lemma 3. For a family {Aγ | γ ∈ ∇} of a topological space (X, τ), the following properties
hold:

(1) [∩{Aγ | γ ∈ ∇}]δs(Λ,p) ⊆ ∩{Aδs(Λ,p)
γ | γ ∈ ∇}.

(2) [∪{Aγ | γ ∈ ∇}]δs(Λ,p) ⊇ ∪{Aδs(Λ,p)
γ | γ ∈ ∇}.
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Definition 3. A subset A of a topological space (X, τ) is called s(Λ, p)-regular if A is
s(Λ, p)-open and s(Λ, p)-closed.

The family of all s(Λ, p)-regular sets in a topological space (X, τ) is denoted by
s(Λ, p)r(X, τ).

Lemma 4. For a subset A of a topological space (X, τ), the following properties hold:

(1) If A is a s(Λ, p)-regular set, then A is δs(Λ, p)-open.

(2) If A is a δs(Λ, p)-open set, then A is s(Λ, p)-open.

(3) If A is a s(Λ, p)-open set, then As(Λ,p) is s(Λ, p)-regular.

Definition 4. Let A be a subset of a topological space (X, τ). A point x of X is called a
θs(Λ, p)-cluster point of A if A∩U s(Λ,p) ̸= ∅ for every s(Λ, p)-open set U of X containing
x. The set of all θs(Λ, p)-cluster points of A is called the θs(Λ, p)-closure of A, denoted
by Aθs(Λ,p). A subset A of a topological space (X, τ) is said to be θs(Λ, p)-closed if A =
Aθs(Λ,p). The complement of a θs(Λ, p)-closed set is said to be θs(Λ, p)-open.

Lemma 5. Let (X, τ) be a topological space. Then, V θs(Λ,p) = V δs(Λ,p) = V s(Λ,p) for each
V ∈ s(Λ, p)O(X, τ).

Definition 5. A topological space (X, τ) is called δs(Λ, p)-T0 if, for any distinct pair of
points in X, there exists a δs(Λ, p)-open set containing one of the points but not the other.

Theorem 1. A topological space (X, τ) is δs(Λ, p)-T0 if and only if for each point of
distinct points x, y of X, {x}δs(Λ,p) ̸= {y}δs(Λ,p).

Proof. Suppose that x, y ∈ X, x ̸= y and {x}δs(Λ,p) ̸= {y}δs(Λ,p). Let z be a point
of X such that z ∈ {x}δs(Λ,p) but z ̸∈ {y}δs(Λ,p). We claim that x ̸∈ {y}δs(Λ,p). For, if
x ∈ {y}δs(Λ,p), then {x}δs(Λ,p) ⊆ {y}δs(Λ,p) and this contradicts the fact that z ̸∈ {y}δs(Λ,p).
Thus, x belongs to the δs(Λ, p)-open set X − {y}δs(Λ,p) to which y does not belong.

Conversely, let (X, τ) be a δs(Λ, p)-T0 space and x, y be any two distinct points of X.
Then, there exists a δs(Λ, p)-open set U containing x or y, say x but not y. Then, X −U
is a δs(Λ, p)-closed set which does not contain x but contains y. Thus, {y}δs(Λ,p) ⊆ X −U
and hence x ̸∈ {y}δs(Λ,p). This shows that {x}δs(Λ,p) ̸= {y}δs(Λ,p).

Definition 6. A topological space (X, τ) is called δs(Λ, p)-T1 if, for any distinct pair of
points x and y in X, there exist a δs(Λ, p)-open set U of X containing x but not y and a
δs(Λ, p)-open set V of X containing y but not x.

Theorem 2. A topological space (X, τ) is δs(Λ, p)-T1 if and only if the singletons are
δs(Λ, p)-closed sets.
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Proof. Suppose that (X, τ) is δs(Λ, p)-T1 and x be any point of X. Let y ∈ X − {x}.
Then, x ̸= y and so there exists a δs(Λ, p)-open set Vy such that y ∈ Vy but x ̸∈ Vy.
Therefore, y ∈ Vy ⊆ X − {x}. Thus, X − {x} = ∪{Vy | y ∈ (X − {x})} which is
δs(Λ, p)-open.

Conversely, suppose that {z} is δs(Λ, p)-closed for each z ∈ X. Let x, y ∈ X with
x ̸= y. Now x ̸= y implies y ∈ X − {x}. Thus, X − {x} is a δs(Λ, p)-open set containing
y but not containing x. Similarly, X − {y} is a δs(Λ, p)-open set containing x but not
containing y. This shows that (X, τ) is a δs(Λ, p)-T1 space.

Definition 7. A topological space (X, τ) is called δs(Λ, p)-symmetric if, for each x and y
in X, x ∈ {y}δs(Λ,p) implies y ∈ {y}δs(Λ,p).

Lemma 6. Let (X, τ) be a topological space. For each point x ∈ X, {x} is s(Λ, p)-open
or s(Λ, p)-closed.

Theorem 3. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is δs(Λ, p)-symmetric.

(2) For each x ∈ X, {x} is δs(Λ, p)-closed.

(3) (X, τ) is δs(Λ, p)-T1.

Proof. (1) ⇒ (2): Suppose that (X, τ) is δs(Λ, p)-symmetric. Let x be any point of X
and y be any distinct point from x. By Lemma 6, {y} is s(Λ, p)-open or s(Λ, p)-closed in
(X, τ). (i) In case {y} is s(Λ, p)-open, put Vy = {y}, then Vy ∈ δs(Λ, p)O(X, τ). (ii) In
case {y} is s(Λ, p)-closed, x ̸∈ {y} = {y}s(Λ,p) and x ̸∈ {y}δs(Λ,p). By (1), y ̸∈ {x}δs(Λ,p).
Now put Vy = X − {x}δs(Λ,p). Then, x ̸∈ Vy, y ∈ Vy and Vy ∈ δs(Λ, p)O(X, τ). Thus,
X − {x} = ∪

y∈X−{x}
Vy ∈ δs(Λ, p)O(X, τ) and hence {x} is δs(Λ, p)-closed.

(2) ⇒ (3): Suppose that {z} is δs(Λ, p)-closed for each z ∈ X. Let x, y ∈ X with
x ̸= y. Now x ̸= y implies y ∈ X −{x}. Thus, X −{x} is a δs(Λ, p)-open set containing y
but not containing x. Similarly, we have X − {y} is a δs(Λ, p)-open set containing x but
not containing y. This shows that (X, τ) is δs(Λ, p)-T1.

(3) ⇒ (1): Suppose that y ̸∈ {x}δs(Λ,p). Then, since x ̸= y, by (3) there exists a
δs(Λ, p)-open set U containing x such that y ̸∈ U and hence x ̸∈ {y}δs(Λ,p). This shows
that x ∈ {y}δs(Λ,p) implies y ∈ {x}δs(Λ,p). Thus, (X, τ) is δs(Λ, p)-symmetric.

Definition 8. A subset A of a topological space (X, τ) is called generalized δs(Λ, p)-closed
(briefly g-δs(Λ, p)-closed) if Aδs(Λ,p) ⊆ U whenever A ⊆ U and U is δs(Λ, p)-open in
(X, τ).

Theorem 4. A subset A of a topological space (X, τ) is g-δs(Λ, p)-closed if and only if
Aδs(Λ,p) −A contains no nonempty δs(Λ, p)-closed set.
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Proof. Let F be a δs(Λ, p)-closed subset of Aδs(Λ,p) − A. Since A ⊆ X − F and A is
g-δs(Λ, p)-closed, Aδs(Λ,p) ⊆ X − F and hence F ⊆ X −Aδs(Λ,p). Thus,

F ⊆ Aδs(Λ,p) ∩ [X −Aδs(Λ,p)] = ∅

and F is empty.
Conversely, suppose that A ⊆ U and U is δs(Λ, p)-open. If Aδs(Λ,p) ⊈ U , then

Aδs(Λ,p) ∩ (X − U)

is a nonempty δs(Λ, p)-closed subset of Aδs(Λ,p) −A.

Theorem 5. A subset A of a topological space (X, τ) is g-δs(Λ, p)-closed if and only if
F ∩Aδs(Λ,p) = ∅ whenever A ∩ F = ∅ and F is δs(Λ, p)-closed.

Proof. Suppose that A is a δs(Λ, p)-closed set. Let F be a δs(Λ, p)-closed set and
A ∩ F = ∅. Then, A ⊆ X − F ∈ δs(Λ, p)O(X, τ) and Aδs(Λ,p) ⊆ X − F . Thus,

F ∩Aδs(Λ,p) = ∅.

Conversely, let A ⊆ U and U ∈ δs(Λ, p)O(X, τ). Then, A∩ (X −U) = ∅ and X −U is
δs(Λ, p)-closed. By the hypothesis, (X −U) ∩Aδs(Λ,p) = ∅ and hence Aδs(Λ,p) ⊆ U . Thus,
A is g-δs(Λ, p)-closed.

Theorem 6. A subset A of a topological space (X, τ) is g-δs(Λ, p)-closed if and only if
A ∩ {x}δs(Λ,p) ̸= ∅ for every x ∈ Aδs(Λ,p).

Proof. Let A be a g-δs(Λ, p)-closed set and suppose that there exists x ∈ Aδs(Λ,p) such
that A ∩ {x}δs(Λ,p) = ∅. Thus, A ⊆ X − {x}δs(Λ,p) and hence Aδs(Λ,p) ⊆ X − {x}δs(Λ,p).
Therefore, x ̸∈ Aδs(Λ,p), which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any δs(Λ, p)-
open set containing A. Let x ∈ Aδs(Λ,p). By the hypothesis, A ∩ Aδs(Λ,p) ̸= ∅, so there
exists y ∈ A ∩ {x}δs(Λ,p) and hence y ∈ A ⊆ U . Thus, {x} ∩ U ̸= ∅. Therefore, x ∈ U ,
which implies that Aδs(Λ,p) ⊆ U . This shows that A is g-δs(Λ, p)-closed.

Theorem 7. A topological space (X, τ) is δs(Λ, p)-symmetric if and only if {x} is g-
δs(Λ, p)-closed for each x ∈ X.

Proof. Suppose that x ∈ {y}δs(Λ,p) but y ∈ {x}δs(Λ,p). This means that the complement
of {x}δs(Λ,p) contains y. Thus, the set {y} is a subset of the complement of {x}δs(Λ,p). This
implies that {y}δs(Λ,p) is a subset of the complement of {x}δs(Λ,p). Now the complement
of {x}δs(Λ,p) contains x which is a contradiction.

Conversely, suppose that {x} ⊆ U ∈ δs(Λ, p)O(X, τ), but {x}δs(Λ,p) is not a subset of
U . This means that {x}δs(Λ,p) and the complement of U are not disjoint. Let y belongs
to their intersection. Now we have x ∈ {y}δs(Λ,p) which is a subset of the complement of
U and x ̸∈ U . This is a contradiction.
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4. Characterizations of s(Λ, p)-connected spaces

We begin this section by introducing the concept of s(Λ, p)-connected spaces.

Definition 9. A topological space (X, τ) is called s(Λ, p)-connected if X cannot be ex-
pressed by the disjoint union of two nonempty s(Λ, p)-open sets.

Theorem 8. For a topological space (X, τ), the following properties are equivalent:

(1) V (Λ,p) = X for every nonempty (Λ, p)-open set V of X;

(2) (X, τ) is s(Λ, p)-connected;

(3) X cannot be expressed by the disjoint union of two nonempty δs(Λ, p)-open sets;

(4) V δs(Λ,p) = X for every nonempty δs(Λ, p)-open set V of X.

Proof. (1) ⇔ (2): The proof follows from Theorem 4.3 of [10].
(2) ⇒ (3): Suppose that there exist two nonempty δs(Λ, p)-open sets V1, V2 such that

V1 ∩ V2 = ∅ and V1 ∪ V2 = X. Since δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ), this shows that
(X, τ) is not s(Λ, p)-connected.

(3) ⇒ (4): Suppose that V δs(Λ,p) ̸= X for some nonempty δs(Λ, p)-open set V of X.
Then, X − V δs(Λ,p) ̸= ∅ and X = (X − V δs(Λ,p)) ∪ V δs(Λ,p). Since

δs(Λ, p)O(X, τ) ⊆ s(Λ, p)r(X, τ),

by Lemma 4 and 5, V δs(Λ,p) = V s(Λ,p) ∈ s(Λ, p)r(X, τ). Moreover, since s(Λ, p)r(X, τ) ⊆
δs(Λ, p)O(X, τ), (X − V δs(Λ,p)) and V δs(Λ,p) are δs(Λ, p)-open.

(4) ⇒ (1): Let V be any nonempty (Λ, p)-open set of X. Then, V (Λ,p) is r(Λ, p)-closed
and hence s(Λ, p)-regular. Thus, V (Λ,p) is δs(Λ, p)-open and

X = [V (Λ,p)]δs(Λ,p) = [V (Λ,p)]s(Λ,p) = V (Λ,p).

Theorem 9. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is s(Λ, p)-connected;

(2) V δs(Λ,p) = X for every nonempty V ∈ β(Λ, p)O(X, τ);

(3) V δs(Λ,p) = X for every nonempty V ∈ s(Λ, p)O(X, τ);

(4) V δs(Λ,p) = X for every nonempty V ∈ p(Λ, p)O(X, τ);

(5) V δs(Λ,p) = X for every nonempty V ∈ α(Λ, p)O(X, τ);

(6) V δs(Λ,p) = X for every nonempty V ∈ ΛpO(X, τ).
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Proof. (1) ⇒ (2): Let V be any nonempty β(Λ, p)-open set and U be any nonempty
δs(Λ, p)-open set. Then, [V (Λ,p)](Λ,p) ̸= ∅ and U(Λ,p) ̸= ∅. Thus, by Theorem 8,

∅ ≠ U(Λ,p) ∩ [V (Λ,p)](Λ,p) ⊆ U ∩ [V (Λ,p)](Λ,p)

⊆ U ∩ (V ∪ [V (Λ,p)](Λ,p)) = U ∩ V s(Λ,p) ⊆ U ∩ V δs(Λ,p).

Since U ∈ δs(Λ, p)O(X, τ), U ∩ V ̸= ∅. This shows that V δs(Λ,p) = X.
(6) ⇒ (1): Let U, V be any nonempty δs(Λ, p)-open sets. Since

δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ)

and V(Λ,p) ̸= ∅, we have ∅ ≠ U ∩ V(Λ,p) ⊆ U ∩ V . This shows that V δs(Λ,p) = X for every
nonempty V ∈ δs(Λ, p)O(X, τ). Thus, by Theorem 8, (X, τ) is s(Λ, p)-connected.

Other implications are obvious since

ΛpO(X, τ) ⊆ α(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ) ∩ p(Λ, p)O(X, τ)

and s(Λ, p)O(X, τ) ∪ p(Λ, p)O(X, τ) ⊆ β(Λ, p)O(X, τ).

Corollary 2. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is s(Λ, p)-connected;

(2) U ∩ V ̸= ∅ for every nonempty sets U ∈ β(Λ, p)O(X, τ) and
V ∈ δs(Λ, p)O(X, τ);

(3) U ∩ V ̸= ∅ for every nonempty sets U ∈ p(Λ, p)O(X, τ) and
V ∈ δs(Λ, p)O(X, τ);

(4) U ∩ V ̸= ∅ for every nonempty sets U ∈ s(Λ, p)O(X, τ) and
V ∈ δs(Λ, p)O(X, τ);

(5) U ∩ V ̸= ∅ for every nonempty sets U ∈ α(Λ, p)O(X, τ) and
V ∈ δs(Λ, p)O(X, τ);

(6) U ∩ V ̸= ∅ for every nonempty sets U ∈ ΛpO(X, τ) and
V ∈ δs(Λ, p)O(X, τ);

(7) U ∩ V ̸= ∅ for every nonempty sets U ∈ δs(Λ, p)O(X, τ) and
V ∈ δs(Λ, p)O(X, τ).

Proof. This is immediate consequence of Theorem 8 and 9.
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5. Characterizations of s(Λ, p)-regular spaces and s(Λ, p)-normal spaces

In this section, we introduce the notions of s(Λ, p)-regular spaces and s(Λ, p)-normal
spaces. Moreover, several characterizations of s(Λ, p)-regular spaces and s(Λ, p)-normal
spaces are discussed.

Definition 10. A topological space (X, τ) is said to be s(Λ, p)-regular if, for each s(Λ, p)-
closed set F of X and each point x ̸∈ F , there exist U, V ∈ s(Λ, p)O(X, τ) such that x ∈ U ,
F ⊆ V and U ∩ V = ∅.

Theorem 10. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is s(Λ, p)-regular.

(2) For each s(Λ, p)-closed set F and each point x ̸∈ F , there exist
U, V ∈ δs(Λ, p)O(X, τ) such that x ∈ U , F ⊆ V and U ∩ V = ∅.

(3) For each point x ∈ X and each s(Λ, p)-open set V containing x, there exists

U ∈ δs(Λ, p)O(X, τ)

such that x ∈ U ⊆ U δs(Λ,p) ⊆ V .

Proof. (1) ⇒ (2): Let F be a s(Λ, p)-closed set and x ̸∈ F . Then, there exist
G,H ∈ s(Λ, p)O(X, τ) such that x ∈ G, F ⊆ H and G ∩H = ∅. By Lemma 4, Gs(Λ,p) is
s(Λ, p)-regular and Gs(Λ,p)∩H = ∅. Thus, Gs(Λ,p)∩Hs(Λ,p) = ∅. Now, we put U = Gs(Λ,p)

and V = Hs(Λ,p), then U and V are δs(Λ, p)-open sets such that x ∈ U , F ⊆ V and
U ∩ V = ∅.

(2) ⇒ (3): Let x ∈ X and V be any s(Λ, p)-open set containing x. Since x ̸∈ X − V ,
there exist U,G ∈ δs(Λ, p)O(X, τ) such that x ∈ U , X − V ⊆ G and U ∩ G = ∅. Since
X −G is δs(Λ, p)-closed and U ⊆ X −G, x ∈ U ⊆ U δs(Λ,p) ⊆ X −G ⊆ V .

(3) ⇒ (1): Let F be a s(Λ, p)-closed set and x ̸∈ F . Then, X − F is s(Λ, p)-open set
containing x. By (3), there exists U ∈ δs(Λ, p)O(X, τ) such that x ∈ U ⊆ U δs(Λ,p) ⊆ X−F .
Thus, x ∈ U , F ⊆ X − U δs(Λ,p) and U ∩ (X − U δs(Λ,p)) = ∅. Since

δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ),

(X, τ) is s(Λ, p)-regular.

Definition 11. A topological space (X, τ) is said to be s(Λ, p)-normal if, for each disjoint
s(Λ, p)-closed sets F and K of X, there exist U, V ∈ s(Λ, p)O(X, τ) such that F ⊆ U ,
K ⊆ V and U ∩ V = ∅.

Theorem 11. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is s(Λ, p)-normal.
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(2) For each disjoint s(Λ, p)-closed sets F and K of X, there exist
U, V ∈ δs(Λ, p)O(X, τ) such that F ⊆ U , K ⊆ V and U ∩ V = ∅.

(3) For each s(Λ, p)-closed set F and each s(Λ, p)-open set V containing F , there exists
U ∈ δs(Λ, p)O(X, τ) such that F ⊆ U ⊆ U δs(Λ,p) ⊆ V .

Proof. The proof is analogous to that of Theorem 10 and is omitted.

6. Characterizations of s(Λ, p)-T2 spaces and s(Λ, p)-Urysohn spaces

In this section, we introduce the notions of s(Λ, p)-T2 spaces and s(Λ, p)-Urysohn
spaces. Furthermore, some characterizations of s(Λ, p)-T2 spaces and s(Λ, p)-Urysohn
spaces are investigated.

Definition 12. A topological space (X, τ) is said to be s(Λ, p)-T2 if, for each pair of
distinct points x, y ∈ X, there exist U, V ∈ s(Λ, p)O(X, τ) such that x ∈ U , y ∈ V and
U ∩ V = ∅.

Theorem 12. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is s(Λ, p)-T2.

(2) For each pair of distinct points x, y ∈ X, there exist U, V ∈ s(Λ, p)r(X, τ) such that
x ∈ U , y ∈ V and U ∩ V = ∅.

(3) For each pair of distinct points x, y ∈ X, there exist U, V ∈ δs(Λ, p)O(X, τ) such
that x ∈ U , y ∈ V and U δs(Λ,p) ∩ V δs(Λ,p) = ∅.

(4) For each pair of distinct points x, y ∈ X, there exist U, V ∈ δs(Λ, p)O(X, τ) such
that x ∈ U , y ∈ V and U s(Λ,p) ∩ V s(Λ,p) = ∅.

(5) For each pair of distinct points x, y ∈ X, there exist U, V ∈ δs(Λ, p)O(X, τ) such
that x ∈ U , y ∈ V and U ∩ V = ∅.

Proof. (1) ⇒ (2): Suppose that (X, τ) is s(Λ, p)-T2. Then, for each pair of distinct
points x, y ∈ X, there exist G,H ∈ s(Λ, p)O(X, τ) such that x ∈ G, y ∈ H and G∩H = ∅.
Thus, Gs(Λ,p) ∩H = ∅. By Lemma 4, we have Gs(Λ,p) ∈ s(Λ, p)r(X, τ) and

Gs(Λ,p) ∩Hs(Λ,p) = ∅.

Now set U = Gs(Λ,p) and V = Hs(Λ,p). Then, U and V are s(Λ, p)-regular sets such that
x ∈ U , y ∈ V and U ∩ V = ∅.

(2) ⇒ (3): This is follows from the facts that s(Λ, p)r(X, τ) ⊆ δs(Λ, p)O(X, τ) and
U δs(Λ,p) = U s(Λ,p) = U for every U ∈ s(Λ, p)r(X, τ).

(3) ⇒ (4): This follows from the fact that U δs(Λ,p) = U s(Λ,p) for every

U ∈ δs(Λ, p)O(X, τ).
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(4) ⇒ (5): This is obvious.
(5) ⇒ (1): This is obvious since δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ).

Definition 13. A topological space (X, τ) is said to be s(Λ, p)-Urysohn if, for each pair
of distinct points x, y ∈ X, there exist U, V ∈ s(Λ, p)O(X, τ) such that x ∈ U , y ∈ V and
U (Λ,p) ∩ V (Λ,p) = ∅.

Theorem 13. A topological space (X, τ) is s(Λ, p)-Urysohn if and only if for each pair of
distinct points x, y of X, there exist U, V ∈ δs(Λ, p)O(X, τ) such that x ∈ U , y ∈ V and
U (Λ,p) ∩ V (Λ,p) = ∅.

Proof. Suppose that (X, τ) is s(Λ, p)-Urysohn. Then, for each pair of distinct points
x, y of X, there exist U, V ∈ s(Λ, p)O(X, τ) such that x ∈ U, y ∈ V and

U (Λ,p) ∩ V (Λ,p) = ∅.

Since U ∈ s(Λ, p)O(X, τ), U (Λ,p) = [U(Λ,p)]
(Λ,p) and U (Λ,p) is r(Λ, p)-closed. Thus,

U (Λ,p), V (Λ,p) ∈ s(Λ, p)r(X, τ) ⊆ δs(Λ, p)O(X, τ).

It is obvious that x ∈ U (Λ,p), y ∈ V (Λ,p) and [U (Λ,p)](Λ,p)∩[V (Λ,p)](Λ,p) = U (Λ,p)∩V (Λ,p) = ∅.
Conversely, the proof is obvious since δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ).

7. Characterizations of S(Λ, p)-closed spaces

In this section, we introduce the notion of S(Λ, p)-closed spaces. In particular, several
characterizations of S(Λ, p)-closed spaces are discussed.

Definition 14. A topological space (X, τ) is said to be S(Λ, p)-closed if, for every cover
{Vγ | γ ∈ ∇} of X by s(Λ, p)-open sets of X, there exists a finite subset ∇0 of ∇ such that

X = ∪
γ∈∇0

V
s(Λ,p)
γ .

Theorem 14. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is S(Λ, p)-closed.

(2) For every δs(Λ, p)-open cover {Vγ | γ ∈ ∇} of X, there exists a finite subset ∇0 of

∇ such that X = ∪
γ∈∇0

V
s(Λ,p)
γ .

(3) For every δs(Λ, p)-open cover {Vγ | γ ∈ ∇} of X, there exists a finite subset ∇0 of

∇ such that X = ∪
γ∈∇0

V
δs(Λ,p)
γ .
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Proof. (1) ⇒ (2): Suppose that (X, τ) is S(Λ, p)-closed. Let {Vγ | γ ∈ ∇} be a
δs(Λ, p)-open cover of X. By Lemma 4, δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ) and there exists

a finite subset ∇0 of ∇ such that X = ∪
γ∈∇0

V
s(Λ,p)
γ .

(2) ⇒ (3): Let {Vγ | γ ∈ ∇} be a δs(Λ, p)-open cover of X. By Lemma 4,

δs(Λ, p)O(X, τ) ⊆ s(Λ, p)O(X, τ)

and it follows from Lemma 5 that V
δs(Λ,p)
γ = V

s(Λ,p)
γ for each γ ∈ ∇.

(3) ⇒ (1): Let {Vγ | γ ∈ ∇} be a s(Λ, p)-open cover of X. Then, X = ∪
γ∈∇0

V
s(Λ,p)
γ . By

Lemma 4, V
s(Λ,p)
γ ∈ s(Λ, p)r(X, τ) ⊆ δs(Λ, p)O(X, τ) and there exists a finite subset ∇0

of ∇ such that X = ∪
γ∈∇0

[V
s(Λ,p)
γ ]δs(Λ,p). By Lemma 5,

[V s(Λ,p)
γ ]δs(Λ,p) = [V s(Λ,p)

γ ]s(Λ,p) = V s(Λ,p)
γ

and hence X = ∪
γ∈∇0

V
s(Λ,p)
γ . Thus, (X, τ) is S(Λ, p)-closed.

Theorem 15. A topological space (X, τ) is S(Λ, p)-closed if and only if for every θs(Λ, p)-
open cover {Vγ | γ ∈ ∇} of X, there exists a finite subset ∇0 of ∇ such that X = ∪

γ∈∇0

Vγ.

Proof. Let {Vγ | γ ∈ ∇} be a θs(Λ, p)-open cover of X. For each x ∈ X, there exists
γ(x) ∈ ∇ such that x ∈ Vγ(x). Since Vγ(x) is θs(Λ, p)-open, there exists

Gγ(x) ∈ s(Λ, p)O(X, τ)

such that x ∈ Gγ(x) ⊆ G
s(Λ,p)
γ(x) ⊆ Vγ(x). Since {Gγ(x) | x ∈ X} is a s(Λ, p)-open cover of X,

there exist finite points, say, x1, x2, ..., xn such that X =
n
∪
i=1

G
s(Λ,p)
γ(xi)

. Thus, X =
n
∪
i=1

Vγ(xi).

Conversely, let {Vγ | γ ∈ ∇} be a s(Λ, p)-open cover of X. By Lemma 4,

{V s(Λ,p)
γ | γ ∈ ∇}

is a s(Λ, p)-regular cover of X and hence a θs(Λ, p)-open cover of X. Thus, there exists a

finite subset ∇0 of ∇ such that X = ∪
γ∈∇0

V
s(Λ,p)
γ . This shows that (X, τ) is S(Λ, p)-closed.
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[14] N. V. Veličko. H-closed topological spaces. American Mathematical Society Transla-
tions, 78(2):102–118, 1968.


