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Degree of convergence of a function in generalized
Zygmund norm using Karamata-Matrix (K*A4) product
operator
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Abstract. In the present paper, we obtain the results on the degree of convergence of a function
of Fourier series in generalized Zygmund space using Karamata-Matrix (K*A) product operator.
We also study an application of our main result.
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1. Introduction

Karamata ([3]) introduced K*-summability method for the first time. This method
was again introduced by Lotosky ([8]) for A = 1. A deep study on K* and their similar
cases is studied after the publication of the work of Agnew ([1]). The degree of approxi-
mation of a function in function spaces viz, Lipschitz, Holder and generalized Holder using
different transforms of Fourier series, has been studied by the researchers [4-6, 9-12] etc.
Therefore, in the present paper we study the degree of convergence of a function in gen-
eralized Zygmund space (Zﬁn);r > 1) using Karamata-Matrix (K*A) product operator of
Fourier series.

1.1. Fourier series

Let g be a Lebesgue integrable function with period 27 on the interval [—7, 7]. The
Fourier series of a function g is given by

[ee]
g(t) ~ % +Z(a,,cosut+bysin1/t), (1)
v=1
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where ag, a,, and b, are Fourier co-efficients.
The v partial sum of (1) is given ([15]) by

1 s
sulg:0) = 5(0) = 9(0) = 5= [ é(t.w)Dy ()i, )
where
¢t w) = gt +w) + g(t —w) = 2g(t),
and D, (w) (Dirichlet Kernal) is defined by

sin (1/—|— %) w

Do) = =3 w)
2

1.2. Summability operator
Let -
U0+U1+U3+"':ZUV (4)
v=0

be an infinite series with the sequence of its v*" partial sum s,,.

1.2.1. Karamata (K*) operator

Let us define, for v € NU {0}, the numbers m, for 0 < k <v, by

v—1 ,
H(t-l-p):t(t+1)...(t+,/_1)zz[Z]tkzw‘

I't
p=0 k=0

The numbers [Z] are said to be the absolute value of stirling number of first kind.
Let {s,} be the seugence of the partial sums of the series (4) and we write [3, 8]

' " [v
%= o 2 ?

to denote the v*" K*-operator of order A > 0. If 5} — s as v — oo, where s is a definite
number, then the series (4) is said to be summable by Karamata metnhod (K*) of order
A > 0 to the sum s.
Thus,

st — s(K?) as v — o0. (6)
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1.2.2. Matrix (A) operator

Let A = (ayy); v,k = 0,1,2,--- be an infinite lower triangular matrix satisfying the
Silverman-Toeplitz [14] conditions of regularity i.e.

14
E ayr =1 as v — oo,
k=0

ay =0 for k> v,

v
Z lay k| < M, a finite constant.
k=0

The sequence to sequence transformation
14
df = Zav,ksk (7)
k=0

defines the sequence d4 of matrix operator of the sequence {s,} obtained by the sequence
of co-efficient (a, ). If d — s as n — oo, then (4) is said to be summable by matrix (A)
method to a definite number s.

1.2.3. Karamata-Matrix (K*A) product operator

Superimposing A operator on K*, a Karamata-Matrix (K*A) product operator is obtained
and is given by

T v

dKAA — Ak dA

v I'v+ A [kz] (di)

k=0
v k
A v
~ 5 o i) ¥ e ®
k=0 §=0

If d,{@A — s as v — 00, then the series (4) is said to be summable to s by (K*A) product
operator.
Regularity of the K* and A methods implies the regularity of the K*A method.

1.3. Generalized Zygmund space

Let C5; denotes the Banach space of all continuous and 27-periodic functions defined
on the interval [0, 27] with the supremum norm.
The function space for 0 < a < 1,

Zo i={g € Cor : [g(t +w) + g(t —w) — 29(t)] = O(|w|*)} (9)
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is a Banach space with the norm || - H(a) defined by
g(t +w) + gt —w) — 2g(t
9ll(a) == sup |g(t)|+sup| ( ) +9( - ) (t)]
0<t<2m taw |w|
w#0

The space of all Lebesgue integrable and periodic functions with period 27 be

L= {g: [0,27r]—>]R;/027r |g(t)|rdt<oo,r21}. (10)

The norm of (10) is defined by
1 27 r %
gl = {E o 190l dt} for 1<r < oo,

€8s SUPyeo,2n [9(t)]  for r=oc.

We define

r

2w
Ziayr =149 €L"0,2n] : </0 lg(t +w) + g(t — w) — 2g(t)rdt> =O(lw|*) p. (11)

The space Z(y),,7 > 1,0 < a < 1 is a Banach space with the norm || - ||

lg(t +w) +g(t — w) — 29(®)|-

HgHOM‘ =gl "‘21;% |wle

g/l = llgll:-

The function space Z(") is a defined as
70 = {g € Car : |g(t + w) + g(t —w) — 2g(t)| = O(m(w))}

where 77 is a integral modulus of continuity, that is, 7; is a non-decreasing continuous
function together with the property 71(0) = 0,71 (w1 + w2) < n1(w1) + N1 (w2).

Let n1 : [0,27] — R be a real valued arbitrary function with n;(w) > 0 for 0 < w < 27
and lim,,_04+ 11 (w) = n1(0) = 0.
Now, we define ([15])

qum) =<g€L"0,27] : sup gt +w) + 90 — w) = 290)]
w#0 m(w)

T<oo,r21}, (12)

with its norm given by

lg(- +w) +g(- —w) —2g9()||-
m(w)

gl = llgllr + sup 7> 1 (13)
w#0
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Hence, the generalized Zygmund space (12) with (13) is a Banach space.
The space || - \|§771) is complete in view of L"(r > 1) space.

Note 1: 7;(w) and n2(w) denote the moduli of continuity of order two ([15]).

If mggg be non-decreasing and positive, then

n1 (2w
o) < mase (1, 28T g o) < o

Note 2: We observe that
zm) < zm) c ' or > 1.

Remark 1:
(i) If r — oo in Z™ then Z™ reduces to Z(m).

If my(w) = w® in ZM) then ZM) reduces to Z,.
If 1 (w) = w® in ZTQT”) then qum) reduces to Zy, .

If r = o0 in Z,, then Z,, reduces to Z,.

)

If m(w) = w*, mp(w) = w*?,r — oo and ap = 0 in Z,, then Z,gm reduces to

Lip(«).
(vi) Let 0 < 0y < 01 < 1, if my(w) = w’* and no(w) = w® then Z;gxg is non-decreasing,
while % is non-increasing.

1.4. Degree of convergence

The degree of convergence of a summation method to a given function ¢ is a measure
that how fast w, converges to g, which is given by ([7])

1
Hg—mﬂ—0<>,
Yv

d(w) = ¢(t,w) = g(t + w) + g(t — w) — 29(t);

/W¢rm

1 sin (j + 3
M, (w) = %Z [k] )\kz k,js(fn(Q)) .

k=0 7=0

where v, — 00 as v — 0.
We write

The organization of the paper is as follows: In section 2, we give a motivation and propose
our main results. In section 3, we establish two lemmas, which are used in the proofs
of our main results. In section 4, we establish our main results. In section 5, we give
applications of our main results and in section 6, we give a conclusion of the main results.
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2. Main Results
In this section, we state our main results:

Theorem 1. Let g be a Lebesgue integrable function with period 2w then the degree of
convergence of g of Fourier series in the generalized Zygmund space (Zr(m),r > 1) using

(K)‘A) operator, is given by
(L TN+ 1)~ 13 [T m(w) 1
((1/ +1)IMr(v+1)— 1}) /»1+1 n2(w) w2dw] o (14)

m(w)

where n1(w) and n2(w) are as defined in Note 1 and (w) s positive and non-decreasing.

A
15 A(g;-) — g()| =) = O

m (w)
wnz (w)

Theorem 2. Following the conditions of Theorem 1, i s non-increasing, then the

degree of convergence of g of Fourier series in the generalized Zygmund space (Zﬁm)jr >1)
using (K*A) operator, is given by

A
5" (g5) = 9™ = O

<(1 + TN {2n(v +1) - 1}> n (#1) (15)
e (it

A+ 1) 1) (V 1) log{(v + 1)7}|.

3. Lemmas

In this section, we prove the following lemmas:

Lemma 1. ([6]) Let f € Z™), then for 0 < w < .
If m(w) and n2(w) are as defined in Note 1, then

66 +20) + 60 = 50) = 200 w)ll, = O (mlle) 2L )
Lemma 2. |M,(w )\_O(il) for0<w< L.

Proof. For 0 < w < +1’

M, (w)] = 1 EV: v )\kf: sin(j—i—%)fw
AT o |2 jzoak’]F(n—&—/\)sm(%)

11 - . |sin (5 + 3) w|
§27 I'(v+A) Z[ ])\ Z I s (L) |sin(%g)|

v

11 - G+ 1w
< on T 1) 2 M”Zak,jﬁ

k=0 Jj=0 4
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k
NS ag (25 +1)
7=0

k k
v .
LR Zjakvj + Z ak.;
L =0 =0

N L2(apy + 2ap2 + - - + kagg) + 1}

N {2(kagy + kaga + - - + kagy) + 1}

N L2k (apo + agy +apa + -+ apg) — 2kago + 1}
N2k {(aro + apy + aga + -+ apr) —aro} + 1
N2k {1 —ago} +1

(2K 4 1)

k . . 1
v sin (] + 7) w
A7 agd; 2
. [k] pr U+ N sin(2)
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1 1 & uw 1
< ——— Ak i Si )+ =
= 2wl (v + \) kz—o{k} ;akﬂsm <]+2>w

By Abel’s lemma, we get

| M, (w)]
1 A P72 I L / 1
S 2wl + N k] A Z(ak,j — Ak-1,j+1) ZSiH <p+ 2) w
=0 §=0 p=0

v k-1 7 K
< - - A 1 1
VoA k-1 .
1 1 V]
“2wl(v+A) P _k_)\ j=0‘ ak,y|+ak,k ma Z < )
1 1 Y ] 1 1 1
< 5w TN Ylol—V)yro—)] =
_2“(”“);:()-’? [ <k+1>+ <k+1>} w
1 1 v ] 1
_wQF(V+)\)k:0 _k_ (k_|_1)

1 1 " v
)\k
w2 (v + 1) T(v+ ) k;Z:o k]
I'(v

IN

4. Proof of Main Results

Proof. [Proof of Theorem 1] By using the integral representation ([13]) of s,(g;1),
we have )
sm n+
——=—dw. 16
sulait) = o) = 5 [t 2 (16)

Denoting K*A operator of s,(g;t) by dl[f A we get

I «

k
a0 o0 = 5 Y HE Do i) - 1)
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A K[y sm]+ Hw
_FV+)\ — [kz] { /(;5 sin(§) dw}
k sm(]-i- 5)w

—F)\/ o(t, w) M, (w)dw
0

Let

=TXA [ o, w)M,(w)dw. (17)

Now,

pult+2) + pult = 2) = 2pu(8) = TX [ {0lt+ 20) + 6t = 2,0) = 20(0,0)} My ()
Using generalized Minkowski inequality ([2]), we can write
Ion(- +2) + pul- = 2) = 200l
<n | TG4 210) + 60 = £110) — 200 0)ls M, ()
D [ 80+ 200) + 6 = 5,0) = 26(,w) My (w)ldw

v+1

=1+ I. (18)

Now, using Lemmas 1 and 2, we have

o [ (e 2 2 ”dw]
0

na(w) T

_0 (y+1)n2(z|)/0”“ "1(w)dw]
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Now, using Lemmas 1 and 3, we have

Izzo[m/

Combining (18)-(20), we have

lpw (- + 2)+pu (- = 2) = 2p0()lr = O

+0

Now,

lov (- +2) + Py

™

v+1

n2(1()
(r+1)

Appl. Math, 16 (2) (2023),
1

){w%u+1

U
[nz(Z)

m(w) 1dw] .

i) d“’]

1
mw) 1

n2(w) w?

/.

n+1

(20)

(
(

1)
)

1

v+
1

3

2\ v+t

n2(12])
(v+1)

L

—2) =20, ()lr

(w) (21

sup
2#0

O[

10w ()l < / e
/0 e

=Ji+ Jo.

1
T

Now,

Using Lemma 2, we get

12

m <V7

h)
1

W(mf

w) ||| M (

w) || [ My (w)|dw

(1)

1
_1—\)\771

(-
(

1
(n+1

1

e

+0

w

2]
L

] |

w)|dw

| [ Totwll ;)

v+1

|

(23)

/0 o \¢<-7w>||r\MV<w>|dw]

(v +1)

/Oyil??l(w)dw]
<ui 1) /OL dw]
1

)|

'

T\ Tm

6

(24)



H. K. Nigam, M. K. Sah / Eur. J. Pure Appl. Math, 16 (2) (2023), 1302-1317 1312

Using Lemma 3, we get

J=0 / H¢<-,w>ur\My<w>|dw]

o[, lmwom ) ““)d“’]

N T om(w)
_O_(l/—l—l)F)\/VlH 1w dw]. (25)

Combining (23)-(25), we have

Il =0 gm (547 ) | +0

Now, we have

1 " om(w)
(v + )TX /il 2 dw] ' (26)

1o = lou (Ol + sup 122+ 2) el = 2) = 2Ol
0 ED

From (22) and (26), we get

1 1
A (m2) —
IOl O[F/\m<y 1)]+o

In view of monotonicity of n(w)

n(w) = Z;Ei;m( ) < 772(@%23 =0 (253) for 0 < w < 7. Hence,

low ()[4 = 0

! / T mw) 1dw]. (27)

Since 11 and 79 are as defined in Note 1 and Z; EZ% is positive, non-decreasing, therefore,

1
- 1 om(e) o
T o T




H. K. Nigam, M. K. Sah / Eur. J. Pure Appl. Math, 16 (2) (2023), 1302-1317 1313

> o <%+1> 1 + (v + 1)]
72 (%H) L7
NG pZ2ED)
()T
Then,
m (34 7 ™ m(w) 1
(o) e L | -
From (27) and (28), we get
o)1)
(w) 1
=0 Fl)\{w(u—l—l—l}/ 2 (w) w? ]
+0 V—l—l F)\/ de]
T om(w) 1 1 ™ op(w) 1
S icey / | 0o Z;w)uﬂdw]
T 1

=0

T 1 T om(w) 1
[(FA{w(V+1)—1} D) e -1 (1/+1)> / nz(w)tu?dw]

((1+PA){2W(V+1)—1}>/” ”1<“’)1dw].

=0 v+ 1)IMr(v+1)—1} L n2(w) w?

Proof. [Proof of Theorem 2| Following the proof of Theorem 1, we have

E,(g) =

A+ {2r(w+1) =13\ [T m(w) 1
71 (w)

Since W (W) is non-increasing and positive, thus using second mean value theorem of the
integral calculus, we have

(14+TN{2r(v+1) -1} m (7)1
-9 (<u+1>m{w<v >—1})(”“>772(V;)/1 wd“’]

v+1

E.(9)
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=0

A2 (v — m %
((1 ?i{;{(iiljl)l} 1}> - E;% log{(v + 1)m}

5. Application

In this section, we study an application of our main result.

1 1\ 1 1 )%
We take 771(1/7“) = (l/7+1> y 7’]2(744) = <V7+1> N (51 = 1,(52 = 0, and A = 2 then from
Theorem 2, we have

Ey(g) = O <(1+I‘)\){27r(1/+1)—1}> : 1 log{ (v + 1)} |

TA{m(v+1) — 1} v+ 1)

Table 1: Degree of convergence of g for different v.

v Degree of convergence of g

1000 0.0322

10000 0.0041

50000 0.0009572
100000 0.0005063
500000 0.00011414
1000000 0.000005984

00 0
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0.014 T 0.01

0.012
0.008

0.01

0.008 0.006

IE (@)l
IE (gl

0.006 0.004

0.004

0.002
0.002

0 1 2 3 4 5 0 2 4 6 8 10
v x10* v x10*

(a) For v = 50000 (b) For v = 100000

-3 -3
prsL | X10

08

06

IE (@)l

IIE (@l

04

05
0.2

0 1 2 3 4 5 0 2 4 6 8 10
v «10° v x10°

(¢) For v = 500000 (d) For v = 1000000

Figure 1: Degree of convergence of function g.

6. Conclusion

From the Table 1 and figures 1(a) to 1(d), we observed that the error estimation
tends to zero rapidely as v tends to infinity. Thus, the results obtained in Theorems 1
and 2 provide the best approximation of the function ¢ in generalized Zygmund space
(Z,Sn); r > 1) using Karamata-Matrix (K*A) product operator.
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