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Abstract. In this paper, we extend the Euler-Bernoulli beam theory for bending boundary value
problem into mechanically coupled system. We follow the inverse approach to find the exerted
force on two beams separated by elastic material. The theory was utilized in two ways: in the first
approach, we calculate the force exerted on the beams using known values for the stiffness constant
and measured values for the beam deflections. In the second method, we calculate the stiffness
constant using a single known force and measured deflections. These problems are typically ill-
posed problems whose solution does not depend continuously on the boundary data. To minimize
the variational functional, we develop an iterative algorithm based on the system of three equations:
the direct, adjoint, and control equations. Then, we present numerical examples to obtain the
solutions.
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1. Introduction

Devices with touchscreens capability such as smartphones, tablets, televisions, and
medical equipment have become a necessity nowadays [6]. Their popular usage and daily
need have made it crucial for manufacturers of such devices to understand how their glass
screens react to stresses of various kinds, especially for hand-held devices because of their
extensive use [1, 4, 6, 14, 17]. To minimize the lengthy and costly lab testing experiments of
evaluating the sensitivity of these devices to accidents such as falling on varies surfaces and
manually recording the data on the responses and stresses generated, bending models can
be developed to predict the response and stress generated using numerical computations
[7, 18]. The model can deliver scientific expectations and results in a more efficient and
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cost-effective design for new gadgets. A general model to describe touchscreens is presented
in Figure 1. A framework wherein two beams are joined by persistent elastic layer of
stiffness k. The two beams are basically bolstered at the edges. The top beam is loaded
by a point force f .

In this paper, we develop and implement a numerical scheme to represent the model
in Figure 1 in non-denominational approach using the one-dimensional Euler-Bernoulli
beam theory for bending boundary value problem [5, 8, 11, 12]. We utilize this scheme in
two ways: First we consider the inverse problem: Given the spring stiffness k and known
finite measurements of the resulting deflections v1 and v2 for the upper and lower beams
respectively, then we find the imposed force f . Secondly, we use given forces f(x) and
finite measurements of the resulting deflections v1(x) and v2(x) to find the spring stiffness
k.

L

f

E1, v1, ρ1, I1

E2, v2, ρ2, I2

Figure 1: Representation of the physical problem

Following reference [10] and to avoid the complication of the shear stress imposed by
the two dimensional nature of the plates, we consider the one-dimensional cross-section of
the full problem, where we assume that the deflection of the glass plates can be described
by beams. Therefore, we modeled the edge of the plate with a one-dimensional fixable
beam, assuming the same bending from all parts of the plate without any shear stress.

We use Euler-Bernoulli beam theory for the transverse displacements v1(x, t) and
v2(x, t) (vertical displacements) of two simply supported one-dimensional beams of length
L, thickness h, density ρ, flexural rigidity, I the moment of inertia, and E is Young’s
modulus, for the top beam and for the lower beam (as shown in Figure 1),

Considering the two elastic beams joined by continuous elastic layer of stiffness k. Both
beams are pinned to a rigid frame along the boundary. The top beam is loaded by a point
force f . The assumption of point load is based on the fact the affected area by the force is
much smaller than the whole area of the plates. The governing set of equations for such
system in this case is given as:

ρ1h1v1tt = −(E1I1v1xx)xx + k(v2 − v1)− f(x, t) (1)

ρ2h2v2tt = −(E2I2v2xx)xx − k(v2 − v1), (2)

Our interest will be in the response to external load f(x, t) on the upper beam. The
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boundary conditions are based on the assumption that the plates are pinned to a rigid
frame along the boundary which maintains a fixed separation between them:

v1(0, t) = v1(L, t) = v2(0, t) = v2(L, t) = 0, (3)

v1xx(0, t) = v1xx(L, t) = v2xx(0, t) = v2xx(L, t) = 0, (4)

The problem of steady state solution of the one-dimensional, two beam system was
discussed an analyzed by Adriazola et al. [10], they solved the forward problem using
analysis of Green’s functions for system response to point loads, they also solved the
inverse problem of recovering the spring stiffness using Fourier decomposition.

In this paper we consider the same time-independent (stationary) problem, therefore
the system above, (1),(2), (3), and (4) becomes:

−E1I1v
(4)
1 + k(v2 − v1) = f(x), (5)

−E2I2v
(4)
2 − k(v2 − v1) = 0. (6)

Subtracting (6) from (5) and letting u = v1 − v2 and L = 1 reduces the system to

u(4) −Ku = g(x) (7)

u(0, t) = u(1) = 0 = uxx(0) = uxx(1) = 0 (8)

where:

K =
k

E1I1
+

k

E2I2
, and

g =
−f

E1I1

Obtaining the solution u(x) for this system (7) and (8), we then substitute the relation
v1 = u+ v2 into (6) to get a modified equation for v2,

−E2I2v
(4)
2 − ku = 0.

or

v
(4)
2 = g̃.

where g̃ = −u
E2I2

is the forcing on the lower beam due to the top beam,
After solving for v2, we can recover v1 from the relation v1 = u+ v2.
First we consider the inverse problem: Given the spring stiffness k and measurements

of the resulting deflections v1(x) and v2(x), find the imposed force f(x), this is the same
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as finding the function g ∈ L2[0, 1] in (7),(8) if K is known and a finite observation is
given about the function u.

Second we consider the inverse problem: Given a single imposed force f(x) and mea-
surements of the resulting deflections v1(x) and v2(x), find the spring stiffness k, this is
the same as recovering the coefficient K, in (7),(8), if a continuous function g(x) is given.

2. Formulation of the two inverse problems

The problem of recovering a source function g or a coefficient K in (7)(8) are typical
ill-posed problems whose solution does not depend continuously on the boundary data.
That is, a small error in the specified data may result in an enormous error in the numer-
ical solution [13]. We employ Tikhonov regularization technique to restore the stability of
the numerical solution [3, 15]. Stable and efficient numerical methods are of high impor-
tance. We assume that the only available information is finite observations of the solution
uobs at xi, i = 1, 2, 3, . . . n. Henceforth, uobs is the interpolating cubic spline of the finite
observations of the function u.

2.1. Inverse problem 1

Suppose that the functions g = g0 and K are known in (7)(8), we solve the direct
problem and obtain the exact solution u(0) ̸= uobs. Then we seek a solution u1 in the
neighborhood of u(0) and g1 = g0+v in neighborhood of g0, where, u1 meets the boundary
conditions (8).

We define the operator A as follows:

Au = u(4) −Ku,

D(A) = {u ∈ W 2
4 [0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0},

Au = g, g ∈ L2[0, 1],

where
W p

k (Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀α, |α| ≤ k},

and define the inner product

(u, v) =

∫ 1

0
uv dx

The inverse problem is to find u1 ∈ W 2
4 [0, 1] and v ∈ L2 such that:

Au1 = g1 = g0 + v.

Along the above, we consider the variational problem:
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inf
v∈L2

{
α∥v∥2L2 + ∥u1 − uobs∥2W 2

4

}
.

Now we can reformulate the problem above as the following inverse problem of the
function u = u1 − u(0). For given uobs and u(0), find u ∈ W 2

4 [0, 1] and v ∈ L2 such that:

Au = v,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

inf
v∈L2

J(u, v),

where,

J = inf
v∈L2

{
α∥v∥2L2 + ∥u− (uobs − u(0))∥2W 2

4

}
.

In the last expression we seek u and v such that the minimum is attained. Here α is
a constant. To minimize the functional J , we consider its variational δJ and equals it to
zero, we obtain:

δJ = 2α(v, δv) + 2(u− (uobs − u(0)), δu) = 0,

here, δu satisfies Au = v, we get:

Aδu = δv,

now we introduce the adjoint operator, A∗ and obtain:

(A∗q, δu) = (q, Aδu) = (q, δv).

Clearly, A∗ = A, if we set

A∗q = u− (uobs − u(0)),

we obtain the control equation:

αv + q = 0.

So, the algorithm can be written as follows:

Aun = vn, un(0) = un(1) = u′′n(0) = u′′n(1) = 0, (9)

A∗qn = un − (uobs − u(0)), qn(0) = qn(1) = q′′n(0) = q′′n(1) = 0, (10)
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vn+1 = vn − τ(αvn + qn). (11)

Where arbitrary initial value v0 ∈ L2 and τ is a constant (stabilizer).
For fixed n iteration steps, the computer program of the algorithm (9)-(11) is ap-

proximated by a finite difference scheme justified in [2, 9, 16], that can be written in the
following form:

Set ∆x = 1
N , where, N is the number of grid points. The fourth derivative is approxi-

mated as:

D(4)(z(xi)) ≈
z(xi+2)− 4z(xi+1) + 6z(xi)− 4z(xi−1) + z(xi−2)

(∆x)4
,

and the computer program is approximated as follows:

D(4)(u(xi))−Ku(xi) = v(xi), i = 1, 2, . . . , N,

D(4)(q(xi))−Kq(xi) = u(xi)− (uobs(xi)− u(0)(xi)), i = 1, 2, . . . , N,

We find u and q from above, after that we solve the control equation (11), which is
approximated as follows:

vn+1(i) = vn(i)− α(τvn(i)− q(xi)), i = 1, 2, . . . , N.

Then, we are ready to pass to the next, n+ 1 iteration step.

2.1.1. Numerical solution for Inverse Problem 1

The aim of Inverse Problem 1 is to recover the right hand side function of (7) in the
neighborhood of known g0(x) over [0, 1]. Given the known functions, K = 1, and g0(x) =
1
2 sin(2πx), by solving the forward problem (7) we obtain the initial solution u(0). If we
set v(x) = 1

4 sin(πx) and calculate the exact solution ue for K = 1 and ge = g0(x) + v(x),
then we can compare this solution with the calculated solution using our algorithm. The
exact solution ue and the initial starting solution u(0) are shown in Figure 7, we set uobs
to be the interpolating cubic spline of n finite values of ue after adding noise. Figure 2
shows a side by side comparison of the exact solution ue and the noisy measurements
(uobs). We then pretend that we know neither the value of v(x) nor ue(x), we run the
algorithm to recover v(x) based on an initial guess of v0 = vguess = 0 shown in Figure 5.
Figure 6 shows a side by side comparison of the functions ve (expected value of v), and
vc, the calculated value (recovered) of v. Figure 8 shows a side by side comparison of the
functions ue (expected value of u), and vc, the calculated value of u. As shown in the figure
the graphs of both recovered functions, u and v, are almost identical to the expected values.

It is worth mentioning that Figure 3 shows the expected value of ge based on the exact
solution ue is as expected (Aue = ge), however, when we plug the noisy solution uobs in
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Auobs, we get instability as shown in Figure 4. Our method still works well with such
noisy measurements. This is clear in Figure 9 that shows side by side comparison with
Auc and Aue.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

u
e

u
obs

Figure 2: Inverse problem 1, the graph shows noisy uobs compare to exact ue
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Figure 3: Inverse problem 1, the graph shows Aue

.
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Figure 4: Inverse problem 1, the graph shows Auobs
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Figure 5: Inverse problem 1, the graph shows the initial process of expected value of v,(ve) and the starting
value of v, (v0 = vguess).

2.2. Inverse problem 2

Suppose that the functions g in (7) is known, we use series expansion method of K
and the subsequent transformation of this problem to the first problem (recovery of the
right-hand side).

let u(x) = r(x) + βs(x) , and

K = k0 + βk1(x).

From (7),
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Figure 6: Inverse problem 1, the graph shows a side by side comparison of the functions ve (expected value of
v), and the calculated value of of v, (vc)
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Figure 7: Inverse problem 1, the graph shows a side by side comparison of the functions ue (expected value of

u), and the initial value of u, (u(0)) before we start the calculation.

r(4) + βs(4) − (k0 + βk1)(r + βs) = g

combining the terms:

r(4) − k0r = g (12)

r(0) = r(1) = r′′(0) = r′′(1) = 0.
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Figure 8: Inverse problem 1,the graph shows a side by side comparison of the functions ue (expected value of
u), and the calculated value of of u, (uc)
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Figure 9: Inverse problem 1, the graph shows a side by side comparison of the functions Aue (expected value
of g(x)), and the calculated value of of Auc

s(4) − k0s = k1r (13)

s(0) = s(1) = s′′(0) = s′′(1) = 0.

sobs =
uobs − r

β

Note that Equation (12) is a linear forward problem since g(x) and k0 are known,
therefore it can be solved directly to find the solution r(x). Also, sobs in (13) is calculated
based on the known finite observation uobs
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We utilize the algorithm developed above to solve the inverse problem (13) to recover
the right-hand side v = k1r. Note that the only unknown in this right-hand-side is k1,
therefore, k1 will be derived from the recovered right-hand-side in every iteration of the
algorithm developed and justified in the previous sections.

2.2.1. Numerical solution for Inverse Problem 2

Our goal is to recover the coefficient function K = 1 of (7) over [0, 1] for the given function
g(x) = sin(πx). These values were used in the calculations: β = 0.05, k0 = 0.5, initial
guess for v is vguess = 0. As before, we pretend that we don’t know the function K, we
run the algorithm to recover v(x) = k1r based on the mentioned initial guess. Figure 10
shows side by side comparison of exact value of u = r+ βs (ue) and calculated value of u
(uc) . Figure 11 shows a side by side comparison of the exact function K = k0 + βk1 and
the calculated value of K, (Kc). As we can see the graphs of both functions are almost
identical as expected.
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Figure 10: Inverse problem 2 with input parameters: g(x) = sin(πx), β = 0.05, k0 = 0.5, initial guess for v is
vguess = 0, the graph shows the expected value of u, (ue) and the calculated value of u, (uc)

3. Conclusion

We developed and implemented a numerical scheme to represent coupled mechanical
system. We considered a one-dimensional model for two beams joined together by elastic
layer. First we considered the inverse problem: Given the spring stiffness k and finite
measurements of the resulting deflections v1(x) and v2(x), find the imposed force f(x),
second we considered the inverse problem: Given a single imposed force f(x) and finite
measurements of the resulting deflections v1(x) and v2(x), find the spring stiffness k. This
development includes a numerical algorithm, that takes as input parameters the physical
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Figure 11: Inverse problem 2 with input parameters: g(x) = sin(πx), β = 0.05, k0 = 0.5, initial guess for v is
vguess = 0, the graph shows the expected value of K, (Ke) and the calculated value of K, (Kc)

measurements of the resulting deflections of the beams and outputs the external forces
or spring stiffness. This computational framework can serve as a preliminary tool in the
product development process, allowing scientists and engineers to simulate desired physical
situations without costly testing of prototypes. The algorithm recovered the right-hand
side f(x) of Equations (7), (8), this method is based on minimizing the defect in the
functional between the calculated data and the measured data. We then used this devel-
opment to also recover the coefficient k by reformulating the problem of recovering the
coefficient to the problem of recovering the right-hand-side. The numerical experiments
demonstrated that the proposed algorithm was able to recover the unknowns very closely
to the exact solution.
In the algorithm, two additional parameters are used: a parameter α that regularizes the
problem, and parameter τ that stabilizes the numerical algorithm. In the algorithm, the
relationship between parameters α and τ was analyzed and the values of α and τ were
optimized on the base of the computational tests of different values of α, and τ .
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