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Abstract. The artificial bee colony algorithm is one of the population-based optimization methods
inspired by the evolutionary principles of the social behavior of bees. On the other hand, one of the
sub-fields of operations research science is data envelopment analysis. There are some difficulties
in DEA models for selecting the appropriate numerical value for an infinitesimal non-Archimedean
epsilon. So far, various methods have been proposed to solve this problem and choose the suitable
non-Archimedean epsilon. In order to solve the problem, the artificial bee colony algorithm (ABC),
and modification of the original ABC algorithm (MABC) are adopted and proposed in this paper.
The impacts of our proposed algorithms on the suitable non-Archimedean epsilon by solving only
one linear programming (LP), instead of n LP are investigated. Finally, the performance of the
proposed algorithms is evaluated by comparing the solutions obtained from GAMS software based
on the presented examples.
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1. Introduction

Well-known population-based meta-heuristic algorithms include evolutionary compu-
tation [23], particle swarm optimization method [18], genetic algorithm [13], ant colony
optimization[10], artificial bee colony algorithm [15], and so on. The ABC algorithm has
been used in many topics such as the numerical function optimization [16], neural net-
works [17], real parameter optimization or fuzzy polynomial interpolation ([1], [6], and
[19]). It should be noted that this algorithm was introduced by [15]. Also, the different
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ratios of the onlooker and employee bees for the first modifications of the artificial bee
colony algorithm suggested by [4]. They have proposed these ratios {1:1, 1:2, 1:3, 1:4,
2:1, 3:1, 4:1, 2:2, 2:3, 3:2} and also have considered the execution of the main loop of the
algorithm to be constant for different ratios. [4] showed that in the modified ABC algo-
rithm, more onlooker bees had a better effect on the results. On the other hand, one of the
sub-fields of operations research science is data envelopment analysis. Data envelopment
analysis is an effective way to evaluate and analyze the efficiency of systems with multiple
inputs and outputs. One of the practical topics in data envelopment analysis is finding
the efficiency of decision-making units based on the indicators considered in the problem.
The first DEA model introduced by Professor Cooper, Charnes and Rhodes in 1978 was
the CCR model [7]. This model became the basis of many studies in the DEA. One of
the problems in solving this model is that it declares inefficient units as efficient, which
happens due to finding zero weights. The first version of the DEA model was updated in
1979 with the addition of a non-Archimedean ε as the lower limit for inputs and outputs
weights of DMU under evaluation [8]. Various methods have been suggested to calculate
the appropriate value for ε. [2] proposed a method for finding a suitable value for ε. [20]
modified this technique and presented an LP to select a suitable value for ε. [21] showed
that there exists threshold value and if the epsilon is smaller than this value, the solution
to the single stage program is exact. So far, some researchers have prepared methods and
studies about the non- Archimedean ε such as [5], [3], [11], [24], [25], and [27] but some
proposed techniques may not lead to the correct recognition of efficient and inefficient
DMUs. [9], as the first and most significant alternative technique to epsilon based DEA
solutions proposed the two-phase method for evaluating efficiency in DEA without helping
of ε. In this proposed method, the efficiency of each DMU obtains by solving two LPs.
Besides, DEA requires huge computer resources in terms of memory and CPU time for
a large data set with many input/output variables and/or DMUs and takes a long time
even with a very fast computer [12]. In addition, for each DMU unit, a mathematical
programming problem must be solved separately. Therefore, to solve this problem, some
methods have been proposed and used in related works. For example, to estimate efficiency
frontiers, neural networks (NN) can be considered as a possible alternative to replace or
complement the DEA technique [26]. One of the studies that explicitly considered the
big data set is the work of [12]. They considered five large random data sets of DMUs
to measure efficiency and by analyzing the results obtained by conventional DEA with
a back-propagation neural network; they showed that the estimation error decreases for
larger data sets. As determining an appropriate value for epsilon is a challenging issue in
the literature of DEA, as well as in recent years, the population-based algorithms have
been used a lot to solve various problems in data envelopment analysis (see [14] and [28]).
In this work, in order to surmount the mentioned drawbacks, by finding strictly positive
weights and estimating the efficiency of DMUs, we developed an efficient metaheuristic
algorithm: the MABC algorithm. As explained earlier, many methods to find a suitable
value for the non-Archimedean epsilon have been used in previous works. Here, our nov-
elty approach is to use MABC for the first time in this area. Then the performance of
our proposed algorithm is evaluated based on the provided examples. As a result, we can
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evaluate technical efficiency of DMUs based on the MABC algorithm. Finally, the MABC
algorithm can help the decision maker to correctly identify the efficient unit without the
need to solve many linear programming models and regardless of the size of the problem.
The paper is organized as follows. Section 2 reviews the Preliminaries of DEA and this
section also contains the procedure of ABC and MABC algorithms. The analyses and
results from ABC and modified ABC algorithms and Gams software for finding the non
Archimedean epsilon are detailed in Sections 3 and 4. Finally, section 5 concludes this
work.

2. Preliminaries

2.1. Data Envelopment Analysis

The first model of data envelopment analysis is called CCR [7]. In this model, in order
to include the inputs and outputs of other decision-making units to determine the optimal
weight of the unit under study and also to determine the highest efficiency ratio. Assume
that we have n DMUs, DMUj ,j ∈ {1, 2, ..., n} to be evaluated, each DMU using m inputs
to produce s outputs. Xj={x1j , ..., xmj} and Y j={y1j , ..., ysj} are the input and output
vectors of DMUj respectively, in which XjYj ≥ 0 and Xj , Yj ̸= 0. The virtual input and
output are formed with weights vi and ur (yet unknown).
virtual input = v1x1o + ...+ vmxmo.
virtual output = u1y1o + ...+ usyso.
Then, using the basic model introduced below, the weight is determined to reach the
maximum ratio.

max
∑s

r=1 uryro∑m
i=1 vixio

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1 j = 1, 2, ..., n

vi ≥ 0 i = 1, 2, ...,m

ur ≥ 0 r = 1, 2, ..., s

(1)

This problem is denominated the CCR fractional model. At the suggestion of Charnes and
Cooper, by imposing constraints on the CCR fractional programming model, this model
became the following linear programming model, in which DMUo ,o ∈ {1, 2, ..., n} is the
unit under evaluation.

maxZo=
∑s

r=1 uryro∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0 j = 1, 2, ..., n∑m

i=1 vixio = 1
vi ≥ 0 i = 1, 2, ...,m

ur ≥ 0 r = 1, 2, ..., s

(2)

Model (2) states that if the optimal value of the objective function is equal to 1 and there
is at least one optimal solution with all i and r, vi > 0,ur > 0 it will be strong efficient. In



S. Zeidani et al. / Eur. J. Pure Appl. Math, 16 (3) (2023), 1608-1623 1611

order to find the strong efficiency units, both models 3 and 4 are solved simultaneously.

max ε∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0 j = 1, 2, ..., n∑m

i=1 vixij ≤ 1 j = 1, 2, ..., n

vi − ε ≥ 0 i = 1, 2, ...,m

ur − ε ≥ 0 r = 1, 2, ..., s

(3)

Optimal solution of this model (ε∗) can be considered as a lower bound for the variables
vi and ur in the multiplier CCR model.

maxZo=
∑s

r=1 uryro∑s
r=1 uryrj −

∑m
i=1 vixij ≤ 0 j = 1, 2, ..., n∑m

i=1 vixio = 1
vi ≥ ε∗, i = 1, 2, ...,m

ur ≥ ε∗, r = 1, 2, ..., s

(4)

Epsilon is used to prevent the removal of inputs and outputs due to weights being zero.
Also, epsilon is called a Non-Archimedean infinitesimal.

2.2. Artificial bee colony algorithm

The ABC algorithm consists of two search methods: local search and global search,
employed and onlooker bees performed the local search, and onlookers and scouts managed
the global search [15]. In the search space of the ABC algorithm, employed bees are sent
to food sources to measure their nectar. After sharing information with the employed
bees, the amount of nectar in the food source is determined and the onlooker bees select
the food sources. Then the scout bees are sent to food sources after identification.
In summary, The ABC algorithm actually employs different selection processes:

01. The overall selection process described by artificial onlooker bees to explore the
promising areas described. The onlooker bee selects each food source based on
the probability value associated with it, and this selection is calculated using the
following formula:

fitnessi =

{ 1
(1+fi)

if fi ≥ 0

1 + abs(fi) if fi < 0
(5)

and

Pi =
fiti∑SN

n=1 fitn
(6)

Also, fi is the suitability of solution i, which is obtained by evaluating the amount
of nectar in position i.
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02. A local selection process in the area is performed by artificial bees and the onlook-
ers are given the local information to determine a food source neighbor around a
previously defined source of memory; this greedy selection is computed by:

vij = xij + ϕij(xij − xkj), k ∈ {1, 2, ..., SN},j = {1, 2, ..., D}, k ̸= i, ϕij ∈ [−1, 1] (7)

From the above explanation, it is clear that three control parameters of the main artificial
bee colony algorithm are used:

01. The number of food sources (SN)

02. Limit value

03. Maximum number of cycles

2.3. Modified ABC algorithm

The different ratios of the onlooker and employee bees for the first modifications of
the artificial bee colony algorithm suggested by [4]. Their proposed algorithms have been
tested for optimizing some well- known numerical functions. The details of examples are
shown in [4]. They have proposed these ratios {1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 4:1, 2:2, 2:3, 3:2}
and also have considered the execution of the main loop of the algorithm to be constant
for different ratios. [4] showed that in the modified ABC algorithm, more onlooker bees
had a better effect on the results.

3. Proposed modified artificial bee colony algorithm for finding the
non-Archimedean epsilon

In this paper, we have used these ratios {1:2, 1:3, 1:4, 2:1, 3:1, 4:1} taken from the
modified ABC algorithm presented by [4]. Therefore, for these ratios, the population size
will be {66, 50, 40, 66, 50, 40}, respectively. Also, the maximum number of cycle iterations
is 3000 for two examples. Furthermore, we have determined ε∗ from the multiplier CCR
model without needing to solve two-stage approach. So, ε∗ may be non-unique but positive.
It has been shown that using the modified ABC algorithm determines the magnitude of
epsilon referring to two illustrative examples, however, it has not been mentioned how one
can determine an assurance value for the non-Archimedean ε∗. The pseudo-code of our
proposed modified ABC algorithm for solving the multiplier CCR model is given below:

01. Initialize population solutions vi and ur

02. Set maximum cycle number (MCN=3000),

03. Evaluate the fitness function value (the CCR model (2))

04. For each decision maker unit

05. Assessment of the fitness value for each solution,
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06. Repeat, Cycle=1, for the different ratios of employed and onlooker bees {1:2, 1:3,
1:4, 2:1, 3:1, 4:1}, also for the ratios mentioned above, the population size will be
{66, 50, 40, 66, 50, 40}},

07. Produce the new solution vij for the employed bees by (7),

08. Apply the greedy selection process,

09. Calculate the probability values by using (6),

10. Apply the greedy selection process between the old solution and new solution,

11. Determine the abandoned solution and replace it with a new randomly produced
solution,

12. Memorize the optimized solution achieved so far,

13. Cycle= cycle+1, until cycle= MCN,

14. End.

4. Experiments

Most classical mathematical methods consider the local optimal point as a global op-
timal. In each of these techniques, the number of calculations increases exponentially and
is used for difficult and special problems. One of these problems is determining ε∗ in the
DEA model which has been a controversial subject for a long time, so we used ABC and
modified ABC method for solving the above CCR model (2) optimization problem and
we find the best values of weight coefficients and ε∗. The accuracy of ABC and MABC
algorithms is compared with the GAMS software. All numerical examples and results will
be explained in 4.1 and 4.2, respectively.

4.1. Example 1:

Table 1 exhibits a numerical example that was previously used by [27]. In this example,
there are five DMUs, each using two inputs to generate a single unitized output. We obtain
the weight coefficients v1 ,v2 and u1 by solving Gams software and the original ABC and
MABC algorithms.
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Table 1: The data set of first numerical example.

DMU I1 I2 O1

1 1 2 1
2 2 1 1
3 4 1 1
4 1 4 1
5 1 8 1

Table 2: The results of a multiplier CCR model (2) by using Gams software.

DMU Efficiency v1 v2 u1
1 1.00000 1.00000 0.00000 1.00000
2 1.00000 0.00000 1.00000 1.00000
3 1.00000 0.00000 1.00000 1.00000
4 1.00000 1.00000 0.00000 1.00000
5 1.00000 1.00000 0.00000 1.00000

Table 3: The results of the CCR models 3 and 4 by using Gams software(ε∗ = 0.11111).

DMU z v1 v2 u1
1 1.00000 0.77778 0.11111 1.00000
2 1.00000 0.11111 0.77778 1.00000
3 0.77778 0.11111 0.55556 0.77778
4 0.77778 0.55556 0.11111 0.77778
5 0.33333 0.11111 0.11111 0.33333

Table 4: The results of the basic ABC algorithm [SN=100 and ratio 1:1] on CCR model (2).

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00133 0.77618 0.11291 1.00133 0.00133
2 1.00131 0.11292 0.77616 1.00131 0.00131
3 0.77904 0.11407 0.54572 0.77904 0.00126
4 0.77901 0.54564 0.11409 0.77901 0.00123
5 0.33460 0.11114 0.11123 0.33460 0.00127

Table 5: The results of MABC algorithm on CCR model (2) for ratio 4:1 (employed/onlooker)).

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00104 0.77644 0.11218 1.00104 0.00104
2 1.00105 0.11219 0.77642 1.00105 0.00105
3 0.77883 0.11328 0.54778 0.77883 0.00105
4 0.77882 0.54766 0.11331 0.77882 0.00104
5 0.33436 0.11112 0.11121 0.33436 0.00103
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Table 6: The results MABC algorithm on CCR model (2) for ratio 3:1.

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00078 0.77658 0.11196 1.00078 0.00078
2 1.00076 0.11197 0.77656 1.00076 0.00076
3 0.77852 0.11251 0.55046 0.77852 0.00074
4 0.77853 0.55050 0.11250 0.77853 0.00075
5 0.33408 0.11111 0.11120 0.33408 0.00075

Table 7: The results MABC algorithm on CCR model (2) for ratio 2:1.

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00042 0.77724 0.11148 1.00042 0.00042
2 1.00044 0.11147 0.77726 1.00044 0.00044
3 0.77817 0.11213 0.55168 0.77817 0.00039
4 0.77815 0.55170 0.11215 0.77815 0.00037
5 0.33374 0.11109 0.11118 0.33374 0.00041

Table 8: The results MABC algorithm on CCR model (2) for ratio 1:2.

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00025 0.77757 0.11125 1.00025 0.00025
2 1.00023 0.11125 0.77758 1.00023 0.00023
3 0.77803 0.11157 0.55380 0.77803 0.00025
4 0.77802 0.55381 0.11157 0.77802 0.00024
5 0.33356 0.11106 0.11117 0.33356 0.00023

Table 9: The results MABC algorithm on CCR model (2) for ratio 1:3.

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00008 0.77870 0.11067 1.00008 0.00008
2 1.00007 0.11066 0.77872 1.00007 0.00007
3 0.77788 0.11106 0.55580 0.77788 0.00010
4 0.77787 0.55580 0.11111 0.77787 0.00009
5 0.33341 0.11104 0.11113 0.33341 0.00008

Table 10: The results MABC algorithm on CCR model (2) for ratio 1:4.

DMU z∗ v1 v2 u1 |z − z∗|
1 1.00002 0.77889 0.11056 1.00002 0.00002
2 1.00002 0.11056 0.77890 1.00002 0.00002
3 0.77779 0.11094 0.55626 0.77779 0.00001
4 0.77777 0.55654 0.11087 0.77777 0.00001
5 0.33335 0.11101 0.11112 0.33335 0.00002
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Figure 1: Comparison of GAMS, ABC and MABC in terms of ε∗.

Using GAMS software, the basic CCR model (2) and both models 3 and 4 are solved
and the results are presented in Tables 2 and 3. There are two CCR-efficient DMUs from
both models 3 and 4 simultaneously. It should be noticed that model (2) is unable to
accurately determine the efficient DMU. In order to handle this inconsistency, we propose
the following modified ABC algorithm to determine an appropriate epsilon for the model
(2). The results of the above example, it can be seen that the group of onlooker bees
with a higher ratio has a better effect on the obtained results. In addition, by using
Gams software the optimal epsilon value of models (3) and (4) for this data set is equal
to ε∗ = 0.11111. Obviously, in this situation, the decision maker to select efficient units
must solve two models to achieve a more accurate solution. So, according to the obtained
results, DMU3 and DMU4 and DMU5 drop to inefficient for the Gams software and the
original ABC and modified ABC algorithms (See Figure 1). Also, |z− z∗| is the difference
between z from the multiplier CCR models 3 and 4 (red star in Figure 1), and z∗ from
the Basic ABC and MABC algorithms. As Tables 4-10 indicate, ε∗ is a parameter ranging
the interval [0, 1], and ε∗ had the most decrease in Table 10.

4.2. Example 2:

This example has been sketched for nine units with two inputs and two outputs. Whose
data has been listed in Table 11 [22]. We obtained the weight coefficients v1 ,v2 and u1 ,u2
by using Gams software and the original ABC and MABC algorithms. Comparison of
GAMS, ABC, and MABC in terms of ε∗ shows in Figure 2.
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Table 11: The data set of second numerical example.

DMU I1 I2 O1 O2

1 3 4 2 3
2 2 1 3 5
3 1 1 4 6
4 5 1 7 6
5 10 1 1 8
6 2 3 3 4
7 3 4 8 5
8 2 6 2 4
9 0.5 0.5 1 1

Table 12: The results of a multiplier CCR model (2) by using Gams software.

DMU Efficiency v1 v2 u1 u2
1 0.16667 0.33333 0.00000 0.00000 0.05556
2 0.80515 0.02206 0.95588 0.02941 0.14338
3 1.00000 1.00000 0.00000 0.00000 0.16667
4 1.00000 0.10714 0.46429 0.14286 0.00000
5 1.00000 0.00000 1.00000 0.04000 0.12000
6 0.37500 0.50000 0.00000 0.12500 0.00000
7 0.66667 0.33333 0.00000 0.08333 0.00000
8 0.33333 0.50000 0.00000 0.00000 0.08333
9 0.50000 2.00000 0.00000 0.50000 0.00000

Table 13: The results of the CCR models 3 and 4 by using Gams software (ε∗ = 0.02241).

DMU Efficiency v1 v2 u1 u2
1 0.16293 0.30345 0.02241 0.02241 0.03937
2 0.80511 0.02241 0.95517 0.02865 0.14383
3 1.00000 0.97759 0.02241 0.02241 0.15172
4 1.00000 0.02241 0.88793 0.12365 0.02241
5 0.96724 0.02241 0.77586 0.02241 0.11810
6 0.35539 0.46638 0.02241 0.08858 0.02241
7 0.49483 0.30345 0.02241 0.04784 0.02241
8 0.28851 0.43276 0.02241 0.02241 0.06092
9 0.48879 1.97759 0.02241 0.46638 0.02241
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Table 14: The results of the basic ABC algorithm on CCR model (2).

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16718 0.30255 0.02409 0.02408 0.03967 0.00425
2 0.80912 0.02473 0.95314 0.03081 0.14334 0.00401
3 1.00466 0.97999 0.02401 0.02405 0.15141 0.00466
4 1.00285 0.02355 0.88510 0.12309 0.02354 0.00285
5 0.97375 0.02473 0.75770 0.02472 0.11860 0.00651
6 0.35900 0.46565 0.02390 0.08784 0.02387 0.00361
7 0.49838 0.30232 0.02401 0.04732 0.02396 0.00355
8 0.29195 0.43102 0.02351 0.02348 0.06125 0.00344
9 0.49280 1.98319 0.02441 0.46840 0.02440 0.00401

Table 15: The results of MABC algorithm on CCR model (2) for ratio 4:1 (employed/onlooker)).

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16696 0.30277 0.02380 0.02382 0.03977 0.00403
2 0.80886 0.02433 0.95344 0.03057 0.14343 0.00375
3 1.00446 0.97970 0.02380 0.02381 0.15154 0.00446
4 1.00261 0.02324 0.88630 0.12333 0.02322 0.00261
5 0.97336 0.02422 0.76240 0.02422 0.11864 0.00612
6 0.35851 0.46583 0.02361 0.08802 0.02361 0.00312
7 0.49790 0.30241 0.02382 0.04736 0.02380 0.00307
8 0.29172 0.43188 0.02314 0.02309 0.06138 0.00321
9 0.49265 1.98331 0.02409 0.46858 0.02407 0.00386

Table 16: The results of MABC algorithm on CCR model (2) for ratio 3:1.

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16669 0.30280 0.02365 0.02365 0.03980 0.00376
2 0.80841 0.02390 0.95350 0.03033 0.14348 0.00330
3 1.00415 0.97955 0.02355 0.02355 0.15166 0.00415
4 1.00242 0.02304 0.88680 0.12348 0.02301 0.00242
5 0.97303 0.02397 0.76440 0.02396 0.11867 0.00579
6 0.35835 0.46585 0.02343 0.08820 0.02344 0.00296
7 0.49758 0.30253 0.02363 0.04743 0.02362 0.00275
8 0.29154 0.43215 0.02295 0.02291 0.06143 0.00303
9 0.49249 1.98333 0.02387 0.46863 0.02386 0.00370
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Table 17: The results of MABC algorithm on CCR model (2) for ratio 2:1.

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16648 0.30293 0.02343 0.02341 0.03989 0.00355
2 0.80808 0.02356 0.95358 0.03002 0.14360 0.00297
3 1.00391 0.97934 0.02326 0.02328 0.15180 0.00391
4 1.00215 0.02278 0.88772 0.12363 0.02279 0.00215
5 0.97277 0.02371 0.76590 0.02373 0.11868 0.00553
6 0.35810 0.46610 0.02313 0.08854 0.02312 0.00271
7 0.49739 0.30268 0.02344 0.04752 0.02344 0.00256
8 0.29130 0.43256 0.02273 0.02274 0.06146 0.00279
9 0.49232 1.98335 0.02365 0.46867 0.02365 0.00353

Table 18: The results of MABC algorithm on CCR model (2) for ratio 1:2.

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16622 0.30311 0.02317 0.02316 0.03997 0.00329
2 0.80782 0.02320 0.95390 0.02972 0.14373 0.00271
3 1.00375 0.97910 0.02310 0.02309 0.15190 0.00375
4 1.00184 0.02253 0.88856 0.12381 0.02253 0.00184
5 0.97235 0.02345 0.76791 0.02344 0.11868 0.00511
6 0.35784 0.46627 0.02285 0.08881 0.02285 0.00245
7 0.49697 0.30299 0.02313 0.04768 0.02310 0.00214
8 0.29105 0.43276 0.02258 0.02256 0.06148 0.00254
9 0.49220 1.98357 0.02343 0.46880 0.02340 0.00341

Table 19: The results of MABC algorithm on CCR model (2) for ratio 1:3.

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16594 0.30331 0.02292 0.02290 0.04005 0.00301
2 0.80764 0.02295 0.95430 0.02926 0.14397 0.00253
3 1.00354 0.97901 0.02279 0.02278 0.15207 0.00354
4 1.00153 0.02230 0.88931 0.12396 0.02230 0.00153
5 0.97209 0.02315 0.77050 0.02315 0.11870 0.00485
6 0.35752 0.46648 0.02258 0.08909 0.02256 0.00213
7 0.49676 0.30320 0.02285 0.04781 0.02285 0.00193
8 0.29091 0.43295 0.02245 0.02245 0.06151 0.00240
9 0.49205 1.98372 0.02328 0.46882 0.02323 0.00326
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Table 20: The results of MABC algorithm on CCR model (2) for ratio 1:4.

DMU z∗ v1 v2 u1 u2 |z − z∗|
1 0.16573 0.30338 0.02274 0.02274 0.04008 0.00280
2 0.80749 0.02274 0.95453 0.02898 0.14411 0.00238
3 1.00337 0.97893 0.02257 0.02257 0.15218 0.00337
4 1.00131 0.02220 0.88955 0.12402 0.02219 0.00131
5 0.97133 0.02290 0.77280 0.02289 0.11874 0.00444
6 0.35720 0.46656 0.02239 0.08923 0.02238 0.00181
7 0.49663 0.30324 0.02272 0.04788 0.02271 0.00180
8 0.29069 0.43317 0.02229 0.02230 0.06153 0.00218
9 0.49179 1.98379 0.02301 0.46885 0.02294 0.00300

Figure 2: Comparison of GAMS, ABC and MABC in terms of ε∗.
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We have three efficient DMUs from Table 12, but their efficiency scores have decreased
in Table 13. Now we apply the modified ABC algorithm for Table 11 (model 2) which
gives us ε∗ = 0.02219 for DMU4. As we expected, this value is less than ε∗ = 0.02241. As
we pointed out, better results are obtained when the ratio of onlooker bees is higher. It
can be easily seen that in model (2), alternative optimal solutions exist and consequently
the best DMU cannot be determined, correctly. On the other hand, as shown in Table 12,
for DMU5, the optimal weight of the first input is equal to zero, hence DMU5 is efficient.
Indeed, in this stage, this model fails to find efficient DMUs. In conclusion, the efficiency
of each DMU obtains by solving two LPs. Similar to the previous example, |z − z∗| value
shows the convergence rate of algorithms and it’s a variable that is a good criterion for
comparing the exact results from Gams and the goodness of various algorithms. It is
noteworthy that the ABC and MABC are simulated by randomly generating a situation.

5. Conclusion

In this work, we used ABC and MABC methods for solving the CCR model (multiplier
form) of the optimization problems. Using the proposed method, the decision maker is
able to detect the strong efficiency units by solving only one LP, instead of n LP, therefore,
can achieve faster results. In ABC and MABC, we attempt to find an optimal solution
to the CCR model which satisfies all the constraints. Solving models by using the MABC
algorithm for computing the suitable non-Archimedean epsilon without needing to solve
the two-stage approach and the ability to find efficient DMUs are the advantages of the
new method. Theoretically, we will emphasize that this one-stage MABC algorithm is
solvable, although we have already done this practically. Unfortunately, there is no single
solution for dealing with the general DEA models, because of the unstable behavior of the
meta-heuristic algorithms. It is worth noting that the model used in this paper is input-
oriented, but can also be extended to output-oriented. Although in this paper, we have
dealt with the case of constant returns to scale, we can apply this model to other cases of
returns to scale by imposing restrictions on the initial intensity vector. Also, despite this
modification that is mentioned, there can be some new modifications on other aspects of
ABC algorithm that are remained for future works.
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