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An Iterative Approach to Solve Volterra Nonlinear
Integral Equations

Rania Saadeh

Department of Mathematics, Zarqa University, Zarqa 13110, Jordan

Abstract. In this study, we provide the Aboodh decomposition method, a novel analytical tech-
nique. The fundamental definitions and theorems of the suggested approach are provided and
analyzed. This new method is a novel mixture of the Aboodh transform and the Adomian decom-
position method. The new method is used to solve nonlinear integro-differential equations (IDEs),
and the solutions are given as quickly expanding series of terms. We compute the maximum ab-
solute error and provide some figures to compare the resulting approximative solutions with the
exact ones in order to demonstrate the method’s applicability and efficiency.
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1. Introduction

Several scientific and engineering problems include integral equations. Volterra or
Fredholm integral equations can be used to solve a wide variety of initial and boundary
value problems. The potential theory made the greatest contribution to the develop-
ment of integral equations. The development of integral equations was further facilitated
by mathematical physics models of diffraction issues, astrophysics, quantum mechanics
scattering, conformal mapping, and water waves [4, 5, 7, 9, 26]. Moreover, the study of
nonlinear IDEs has appeared in many fields of science, because of the great number of
applications that could describe, such as chemical kinetics, queuing theory, and others
[12, 21, 27, 28, 34]. Thus researchers have developed many techniques to handle these
problems such as He’s homotopy perturbation method [37], variation iteration method
[14], least square method [8], decomposition method [13] and others.
Decomposition method is one of the most powerful methods to solve nonlinear differ-
ential and integral equations, it presents approximate analytical series solutions of the
target problems. Adomian decomposition method was presented by Adomian in [6, 7] to
solve integral equations, then it was developed by Wazwaz to solve Volterra IDEs [39].
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Then the method was used by many researchers to solve various kinds of problems [15–
19, 22, 31, 32].
Integral transforms have played important roles in solving integral equations, such as
Laplace transform [38], ARA transform [36], formable transform [35] and others [10, 20].
One of the most important transforms in literature is Aboodh transform, which was in-
troduced in 2013 [1], and it has great applications in mathematics. Aboodh transform is
defined by the following improper integral:

A [φ (τ)] =
1

v

∫ ∞

0
e−vτφ (τ) dτ, v > 0.

This transform has a great attention from mathematicians, because of its applicability
to solve different types of problems, also it could be combined easily with other iteration
methods to solve nonlinear problems [2, 3, 11].
The main goal of this article, is to introduce a new combination between the Aboodh
transform and the Adomian decomposition method, namely the Aboodh -decomposition
method (ADM). The proposed method is utilized to establish analytical series solutions of
nonlinear Volterra IDEs, these approximate solutions converge rapidly to the exact ones.
for the nonlinear VIE. The novelty of this approach is the powerful combination between
the decomposition method and Aboodh transform for the first time. Moreover, the high
speed of convergence of the approximate analytical solutions obtained by ADM to the
exact solutions, make it an effective method to solve nonlinear IDEs in comparison to
other numerical methods.
This research investigates the solution of the nonlinear Volterra IDE of the form

φ(n) (τ) = ψ (τ) +

∫ τ

0
k(τ − u)H(φ (u))du,

where the kernel k(τ − v) and ψ(τ) are real-valued functions, and H(φ (u)) is a nonlinear
function of φ (v), such as φ3 (v), coshφ (v), sinhφ (v). The main contribution of this work
is to present a new analytical approach for solving nonlinear IDEs with simple and easy
steps, the method basically depends on applying the Aboodh transform the using the
technique of ADM to handle the nonlinear terms. The method is new and simple with
less computatios than other methods.
This paper is structured as follows, in Section 2, we introduce the definition of Aboodh
transform and some basic properties of it, and we illustrate the main idea of the Adomian
decomposition method. In Section 3, the ADM is presented to handle nonlinear Volterra
IDEs. To show the applicability of the method, we solve some numerical examples on
IDEs. Finally, the conclusion of this article is introduced in Section 5.

2. Basic preliminaries of ADM

2.1. Aboodh integral transform

In this section, we present the basic definitions and properties of Aboodh transform.
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Definition 1. [1] Let φ (τ) be a piecewise continuous function defined on (0,∞). Then
Aboodh transform for φ (τ) is denoted and defined by

A [φ (τ)] = Φ (v) =
1

v

∫ ∞

0
e−vτφ (τ) dτ, τ > 0.

The inverse Aboodh transform for Φ (v) denoted and defined by

A−1 [Φ (v)] = φ (τ) =
1

2πi

∫ c+i∞

c−i∞
vevτΦ (v) dv.

Theorem 1. (Existence Condition)[1]
Ifφ (τ) is a piecewise continuous function on [0,∞) and satisfies the condition

|φ (τ)| ≤ Neατ ,

for some N > 0.
Then, Aboodh transform A[φ (τ)] exists for Re (v) > α.

Proof. Using the definition of Aboodh transform, we obtain

|Φ (v) | =
∣∣∣∣1v

∫ ∞

0
e−vτφ (τ) dτ

∣∣∣∣ ≤ 1

v

∫ ∞

0
e−vτ |φ (τ)| dτ ≤ 1

v

∫ ∞

0
e−vτNeατdτ

=
1

v
N

∫ ∞

0
e−τ(v−α)dτ =

N

v (v − α)
, Re (v) > α > 0.

Hence, Aboodh integral transform exists for Re (v) > α > 0.

Now, we mention some properties of Aboodh transform to the basic functions. Suppose
that Φ1 (v) = A[φ1 (τ)] and Φ2 (v) = A[φ2 (τ)] and α, β ∈ R, then

• A [αφ1 (τ) + βφ2 (τ)] = αΦ1 (v) + βΦ2 (v).

• A−1 [αΦ1 (v) + βΦ2 (v)] = αφ1 (τ) + βφ2 (τ).

Now the following table (Table 1) introduces some values of Aboodh transform to some
elementary functions, for more details, see [1].

Table 1: Aboodh transform for some functions.

φ(τ) A [φ (τ)]

1 1/v2

τa Γ(a+1)
va+2 , a > −1

eaτ 1
v(v−a) , s > a

sin (aτ) a
v(v2+a2

cos (aτ) 1
v2+a2

sinh (aτ) a
v(v2−a2

cosh (aτ) 1
v2−a2

φ′ (τ) uΦ (v)− 1
vφ(0)

φ(n) (τ) Φ (v)−
∑n−1

j=0 v
n−j−2φ(j)(0)

(φ ∗ ψ)(τ) vA [φ(τ)]A [ψ(τ)]
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2.2. Adomian Decomposition Method

The Adomian decomposition method [7], which has many applications in engineering,
physics, and applied mathematics, is a very effective technique for solving many classes of
nonlinear partial and ordinary differential equations. The core idea behind the Adomian
decomposition technique is to decompose the nonlinear term in the equation into a sum
of component. These parts add up to a highly accurate representation of the solution. We
explain the steps of the method as:

• Suppose that the solution of the target problem has the following series representa-
tion

φ (τ) =
∞∑
n=0

φn (τ) = φ0 (τ) + φ1 (τ) + . . . .

• Establish a recursive relation of the nonlinear term of the discussed equation, then
substitute the value of the series solution in the equation.

• Simplify the resulting equation and solve it for the series components recursively.

3. Solving nonlinear Volterra IDEs by ADM

In this part of the study, we operate Aboodh transform to the target IDE, then apply
the decomposition method, which is the main idea of the ADM. Moreover, we suppose
that the given kernel in the equation has a difference form, that could be presented as:
k (x− τ), for examples, cos (x− τ), (x− τ)2, ex−τ . Now, consider the following nonlinear
Volterra IDE:

φ(n) (τ) = ψ (τ) +

∫ τ

0
k(τ − u)H(φ (u))du, (1)

Subject to the initial conditions (ICs)

φ(i) (0) = δi, i = 0, 1, . . . , n− 1. (2)

To get the solution of equation (1) by ADM, we operate Aboodh transform to equation
(1)

A
[
φ(n) (τ)

]
= A [ψ (τ)] +A

[∫ τ

0
k (τ − v)H(φ (v))dv

]
.

The differential property and the convolution property stated in Table 1 of Aboodh trans-
form imply that equation (1) can be simplified to

vn−1A [φ (τ)]− vn−2δ0 − vn−3δ1 − . . .− 1

v
δn−1

= A [ψ (τ)] + vA [k (τ − v)]A [H (φ (τ))] .
(3)
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Hence, substituting the ICs (2) in (3) and simplifying equation (3), we obtain

A [φ (τ)] =
1

v
δ0 +

1

v2
δ1 + . . .+

1

vn
δn−1 +

1

vn−1
A [ψ (τ)]

+
1

vn−2
A [k (τ − v)]A [H (φ (τ))] .

(4)

Now, utilizing the Adomian decomposition method to treat the nonlinear functionH (φ (τ)),
we have to present φ (τ) as an infinite series with the components:

φ (τ) =
∞∑
i=0

φi(τ) = φ0 (τ) + φ1 (τ) + . . . , (5)

where the components φi(τ), τ = 0, 1, . . ., are determined by the recurrence relation and
the nonlinear term H (φ (τ)) can be expressed as

H (φ (τ)) =
∞∑
i=0

Ai(τ), (6)

where Ai (τ), i = 0, 1, 2, . . . are defined as

Ai =
1

i!

di

dλi

H

 i∑
j=0

λjφj

∣∣∣∣∣∣
λ=0

 , i = 0, 1, 2, · · · . (7)

The Ai’s are called the Adomian polynomials for the nonlinear function H(φ (τ)), that
can be determined by

A0 = H (φ0) ,

A1 = φ1H
′ (φ0) ,

A2 = φ2H
′ (φ0) +

1

2!
φ2
1H

′′ (φ0) , (8)

A3 = φ3H
′ (φ0) + φ1φ2H

′′ (φ0) +
1

3!
φ3
1H

′′′ (φ0) ,

A4 = φ4H
′ (φ0) +

(
1

2!
φ2
2 + φ1φ3

)
H ′′ (φ0) +

1

2!
φ2
1φ2H

′′′ (φ0) +
1

4!
φ4
1H

(4) (φ0) .

Thus, substituting equations (5) and (6) in equation (4), we get

A

[ ∞∑
i=0

φi(τ)

]
=

1

v
δ0 +

1

v2
δ1 + . . .+

1

vn
δn−1 (0) +

1

vn−1
A [ψ (τ)]

+
1

vn−2
A [k (τ − v)]A

[ ∞∑
i=0

Ai(τ)

]
.

(9)
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The recursive relation from Adomian decomposition method implies

A [φ0 (τ)] =
1

v
δ0 +

1

v2
δ1 + . . .+

1

vn
δn−1 (0) +

1

vn−1
A [ψ (τ)] . (10)

From equation (9), one can get

A [φn+1 (τ)] =
1

vn−2
A [k (τ − v)] A [An(τ)] . (11)

Operating the inverse Aboodh transform to the equations in (10) and (11) recursively, one
can obtain the values of the components φ0 (τ) , φ1 (τ) , · · · .
The solution of the Volterra IDE (1) is

φ (τ) = φ0 (τ) + φ1 (τ) + . . . .

Remark 1. A necessary condition for equation (11) to be well defined is that

lim
v→∞

1

vn−2
A [k (τ)] = 0.

The presented method is effective in establishing approximate solutions of nonlinear
Volterra IDEs. To test the validity of the method, we discuss some applications and
compute the maximum absolute error, defined as

AbsErr = max |φexact − φapp|,

which is given in some interval.

4. Applications

In this section, we apply ADM to solve some applications of Volterra IDEs, and com-
pute the maximum absolute error to show the efficiency of our results.

Problem 1. Consider the following nonlinear Volterra integral equation:

φ (τ) = 2τ − τ4

12
+

1

4

∫ τ

0
(τ − u)φ2 (u) du. (12)

Solution The exact solution of equation (12) is φ (τ) = 2τ .
To get the solution by ADM, we apply Aboodh transform to equation (12) to get

Φ (v) = A

[
2τ − τ4

12

]
+

1

4
vA [τ ]A

[
φ2 (τ)

]
=

2

v3
− 5!

12 v6
+

1

4
v
1

v3
A
[
φ2 (τ)

]
. (13)

Substituting the value of the series solution Φ (v) and the Adomian components for φ2 (u),
we obtain

A [φ0 (τ)] =
2

v3
− 5!

12v6
,
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A [φn+1 (τ)] =
1

4v2
A [An (τ)] , n ≥ 0.

For the nonlinear term φ2 (v), it can be decomposed using the formula in equation (7),
one can obtain the following components

A0 = φ2
0,

A1 = 2φ0φ1,

A2 = φ2
1 + 2φ0φ2, (14)

A3 = 2φ1φ2 + 2φ0φ3,

A4 = φ2
2 + 2φ1φ3 + 2φ0φ4.

Making comparisons in the iterative form of equation (7) and applying the inverse Aboodh
transform, we obtain

φ0 (τ) = 2τ − τ4

12
,

φ1 (τ) =
τ4

12
− τ7

126
+

τ10

51840
,

φ2 (τ) =
τ7

504
− τ10

181440
+

127 τ13

56609280
− τ16

298598400
,

φ3 (τ) =
τ4

12
− τ7

504
+

τ10

2792
− 19τ13

14152320
+

71τ16

2264371200
− 7893 τ19

575787643000000
.

Thus, the approximate solution can be expressed as

φ (τ) = φ0 (τ) + φ1 (τ) + φ2 (τ) + φ3 (τ) + . . .

= 2τ +
τ4

12
− τ7

126
− τ10

362880
+

51τ13

56609280
+ . . . .

Table 2, below presents the values of the exact solution and approximate solution of
Problem 1, and to test the efficiency we compute the absolute error.

Table 2: The exact and approximate solution of equation (12), and the absolute error.

Nodes Exact Solution Approximate Solution Absolute Error

0.0 0.0 0.0000000000 0.0000000000
0.1 0.2 0.2000083325 0.0000083325
0.2 0.4 0.4001332317 0.0001332317
0.3 0.6 0.6006732643 0.0006732643
0.4 0.8 0.8021203322 0.0021203322
0.5 1.0 1.0051463480 0.0051463480
0.6 1.2 1.2105779450 0.0105779450
0.7 1.4 1.4193552730 0.0193552730
0.8 1.6 1.6328034650 0.0328034650
0.9 1.8 1.8508857190 0.0508857190
1.0 2.0 1.8833526250 0.1166473750



R. Saadeh / Eur. J. Pure Appl. Math, 16 (3) (2023), 1491-1507 1498

In the following figure below, we sketch the exact and approximate solutions in Figure
1 below. In Figure 2, we sketch the absolute error of the exact and approximate solution
of Problem 1.

Figure 1: The exact and approximate solutions of the Problem 1.

Figure 2: The absolute error of the exact and approximate solutions of equation 12.

Problem 2. Consider the following nonlinear Volterra integral equation:

φ (τ) = τ +

∫ τ

0
φ2 (u) du. (15)

Solution. The exact solution of equation (15) is φ (τ) = tan τ .
Applying Aboodh transform to equation (15), we get

Φ (v) =
1

v2
+

1

v
A
[
φ2 (τ)

]
. (16)

Thus, by similar arguments to Problem 1, one can obtain

φ0 (τ) = τ,

φ1 (τ) =
τ3

3
,
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φ2 (τ) =
2τ5

15
,

φ3 (τ) =
17τ7

315
.

Thus, the approximate solution can be expressed as

φ (τ) = τ +
τ3

3
+

2τ5

15
+

17τ7

315
+ . . . .

Table 3 below presents the values of the exact solution and approximate solution of Prob-
lem 2, and to test the efficiency we compute the absolute error below.

Table 3: The exact and approximate solutions of equation (15) and the absolute error.

Nodes Exact Solution Approximate Solution Absolute Error

0.0 0.00000000000 0.0000000000 0.0000000000
0.1 0.1002940335 0.1003346721 0.0000406386
0.2 0.2026262629 0.2027100241 0.0000837612
0.3 0.3092040035 0.3093358029 0.0001317994
0.4 0.4226035289 0.4227870883 0.0001835594
0.5 0.5460413117 0.5462549603 0.0002136486
0.6 0.6837824776 0.6838787656 0.0000962880
0.7 0.8418070516 0.8411871844 0.0006198672
0.8 1.0289756740 1.0256752970 0.0033003770
0.9 1.2592215210 1.2475448490 0.0116766720
1.0 1.5560303730 1.5206349210 0.03539545198

In the following figure below, we sketch the exact and approximate solutions of Problem
2 in Figure 3 below.

Figure 3: The exact and approximate solutions of Problem 2.
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Figure 4: The absolute error of the exact and approximate solutions of equation 15.

Problem 3. Consider the following nonlinear Volterra IDE of the form

φ′ (τ) =
3

2
eτ − 1

2
e3τ +

∫ τ

0
eu−τφ3 (τ) dτ. (17)

φ (0) = 1. (18)

Solution. Applying Aboodh transform to equation (17), we get

Φ (v) =
1

v
+

3

2v(v − 1)
− 1

2v (v − 3)
+ v

1

v (v − 1)
A
[
φ3 (τ)

]
.

In an equivalent form, we have

Φ (v) =
1

v
+

3

2v(v − 1)
− 1

2v (v − 3)
+

1

v − 1
A
[
φ3 (τ)

]
.

Now, we have

A [φ0 (τ)] =
1

v
+

3

2v(v − 1)
− 1

2v (v − 3)
,

A [φn+1 (τ)] =
1

v − 1
A [An(τ)] , n ≥ 0.

(19)

The Adomian polynomials An(τ) of φ
3 (τ), can be determined as

A0 = φ3
0,

A1 = 3φ2
0φ1,

A2 = 3φ2
0φ2 + 3φ0φ

3
1,

A3 = 3φ2
0φ3 + 6φ0φ1φ2 + φ3

1.
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Taking the inverse Aboodh transform to the functions (19) and use the given recursive
relation, one can obtain

φ0 (τ) = 1 + τ − 1

2
τ3 − τ4

2
− 13

40
τ5 + . . . ,

φ1 (τ) =
1

2
τ2 +

2

3
τ3 +

5

12
τ4 +

7

120
τ5 + . . . ,

φ2 (τ) =
1

8
τ4 +

11

40
τ5 + . . . .

Hence, the approximate series solution of Problem 3 is

φ (τ) = 1 + τ +
τ2

2!
+
τ3

3!
+
τ4

4!
+ . . . ,

which converges to the exact solution φ (τ) = eτ . Table 4 below, presents the values of
the exact solution and approximate solution of Problem 3, and to test the efficiency we
compute the absolute error.

Table 4: The exact and approximate solution of Problem 3, and the absolute error.

Nodes Exact Solution Approximate Solution Absolute Error

0.0 1 1 0
0.1 1.1051709181 1.1051709181 2.2204460493× 10−16

0.2 1.2214027582 1.2214027582 0
0.3 1.3498588076 1.3498588076 2.2204460493× 10−16

0.4 1.4918246976 1.4918246976 2.2204460492× 10−16

0.5 1.6487212707 1.6487212707 8.8817841970× 10−16

0.6 1.8221188004 1.8221188004 9.5479180118× 10−15

0.7 2.0137527075 2.0137527075 8.1268325403× 10−14

0.8 2.2255409285 2.2255409285 5.3290705182× 10−13

0.9 2.4596031112 2.4596031112 2.7911006839× 10−12

1.0 2.7182818285 2.7182818284 1.228617207× 10−11

In the following figure below, we sketch the exact and approximate solutions in Figure
5 below. We also sketch the absolute error of the exact and approximate solutions of
Problem 3.
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Figure 5: The exact and approximate solutions of Problem 3.

Figure 6: The absolute error of the exact and approximate solutions of Problem 3.

Problem 4. Consider the following nonlinear Volterra IDE of the form

φ′ (τ) = −2 sin τ − 2τ

3
cos τ +

∫ τ

0
cos (u− τ)φ2 (τ) dτ, (20)

φ (0) = 1. (21)

Solution. Applying the same procedure from the previous examples, we can obtain

φ0 (τ) = 1− τ − τ2 +
1

2
τ3 +

1

12
τ4 − 11

120
τ5 + . . . ,

φ1 (τ) =
1

2
τ2 − 1

3
τ3 − 1

8
τ4 +

1

6
τ5 + . . . ,

φ2 (τ) =
1

12
τ4 − 1

12
τ5 + . . . .

Thus, the approximate solution of (20) and (21) can be expressed as

φ (τ) =

(
1− τ2

2!
+
τ4

4!
+ . . .

)
−
(
τ − τ3

3!
− τ5

5!
+ . . .

)
,
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which converge to the exact solution

φ (τ) = cos τ − sin τ .

Table 5 below presents the values of the exact solution and approximate solution of Prob-
lem 4, and to test the efficiency we compute the absolute error.

Table 5: The exact and ARA-DM solutions of Problem 4, and the absolute error.

Nodes Exact Solution Approximate Solution Absolute Error

0.0 1 1 0
0.1 0.8951707486 0.8951709167 0.0000001680
0.2 0.7813972470 0.7814026667 0.0000054196
0.3 0.6598162825 0.65985775 0.0000414675
0.4 0.5316426517 0.5318186667 0.00017601497
0.5 0.3981570233 0.3986979167 0.0005408933
0.6 0.2606931415 0.262048 0.0013548589
0.7 0.12062450 0.1235714167 0.0029469166
0.8 -0.0206493816 -0.0148693333 0.0057800482
0.9 -0.1617169414 -0.151241750 0.0104751914
1.0 -0.3011686789 -0.2833333333 0.0178353456

In the following figure below, we sketch the exact and approximate solutions of Problem
4 in Figure 7 below.

Figure 7: The exact and approximate solutions of the nonlinear Problem 4.
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Figure 8: The absolute error of the exact and approximate solutions of Problem 4.

5. Conclusion

The purpose of this study is to provide a new efficient method for solving nonlinear
Volterra IDEs. We presented approximate solutions of a family of nonlinear IDE in a form
of infinite series solutions using the ADM, that is a combines Aboodh transform with
the decomposition technique. Some examples of Volterra IDEs are discussed to verify the
validity and applicability of the proposed method. As a result, it turned out that the
ADM is an effective and simple method for solving nonlinear IDEs. In the future, we will
modify the method [29, 30] and solve nonlinear fractional integral equations of several
types [23–25, 33].
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