EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 3, 2023, 1772-1793 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Γ -ideals, Γ -submonoids and Isomorphism Theorems of Γ -monoids via Γ -submonoids

Hulsen T. Sarapuddin^{1,*}, Jocelyn P. Vilela¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Mathematical and Theoretical Physical Sciences-PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. This study introduces the concept of Γ -ideals and Γ -submonoids of Γ -monoids and investigates their relationships with the existing Γ -order-ideals. Moreover, quotient of Γ -monoids and isomorphism theorems via Γ -submonoids are proved.

2020 Mathematics Subject Classifications: 20M32

Key Words and Phrases: Γ -monoids, Γ -monoid Homomorphism, Γ -order-ideals, Γ -ideals, Γ -submonoids, Isomorphism Theorem

1. Introduction

The talented monoid of a row-finite directed graph $E = (E^0, E^1, r, s)$, denoted by T_E , is the commutative monoid generated by $\{v(i) : v \in E^0, i \in \mathbb{Z}\}$ such that $v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$ for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink. The additive

group \mathbb{Z} of integers acts on T_E by monoid automorphisms by shifting indices: for each $n, i \in \mathbb{Z}$ and $v \in E^0$, define ${}^n v(i) = v(i + n)$, which extends to an action of \mathbb{Z} on T_E [3]. Monoids with a group Γ acting (by monoid automorphisms) on it, called Γ -monoids, was first introduced in the paper of Hazrat and Li [1] as a tool in the study of talented monoids. In the same paper, Γ -order-ideals of Γ -monoids are also introduced. Sebandal and Vilela [5] prove some properties, including the isomorphism theorems for Γ -monoids and Γ -order-ideals are established.

This paper extends the study of Γ -monoids by defining the concept of Γ -ideals and Γ -submonoids and establishing some of their properties. Moreover, this paper studies quotient of Γ -monoids via equivalence classes of Γ -submonoids and proves isomorphism theorems.

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4793

Email addresses: hulsen.sarapuddin@g.msuiit.edu.ph (H. T. Sarapuddin), jocelyn.vilela@g.msuiit.edu.ph (J. P. Vilela)

2. Preliminaries

In this section, we present some basic concepts and known results that are useful in this study.

Definition 1. [2] A semigroup is a nonempty set M together with a binary operation * on M which is associative, that is, for all $a, b, c \in M$, a * (b * c) = (a * b) * c.

Definition 2. [2] A monoid is a semigroup M which contains an identity element $1_M \in M$ such that $1_M * m = m * 1_M = m$ for all $m \in M$.

For a monoid M with the binary operation *, we may also say that M is a monoid under *. A monoid M is said to be commutative if for all $x, y \in M$, x * y = y * x.

If no confusion arises, by a monoid M, we shall mean a triple $(M, 1_M, *)$ unless otherwise specified.

Definition 3. [6] Let (M, *) be a monoid. A submonoid is a subset S of M which is closed under the binary operation on M and contains the identity 1_M of M.

Definition 4. [6] Let (M, *) and (N, \cdot) be monoids. A monoid homomorphism is a mapping $\varphi : M \to N$ such that $\varphi(a * b) = \varphi(a) \cdot \varphi(b)$ and $\varphi(1_M) = 1_N$ for all $a, b \in M$ where 1_M and 1_N are the identities in M and N, respectively.

Example 1. Consider the monoids $M = (\mathbb{N}, +)$ and $N = (\mathbb{N}, \cdot)$ and the mapping $\varphi : M \to N$ defined by $\varphi(x) = b^x$, where $b \in \mathbb{N} \setminus \{0\}$. For any $x, y \in M$, we have $\varphi(x+y) = b^{x+y} = b^x \cdot b^y = \varphi(x) \cdot \varphi(y)$ and $\varphi(0) = b^0 = 1$. Therefore, φ is a monoid homomorphism.

Definition 5. [6] A congruence on a monoid M is an equivalence relation ρ on M which satisfies the condition: For all $u, v, x, y \in M$, if $x\rho y$, then $(u * x * v)\rho(u * y * v)$.

Proposition 1. [6] Let ρ be a congruence on a monoid M. Then M/ρ is a monoid with binary operation \circ given by $\rho(x) \circ \rho(y) = \rho(x * y)$ for all $x, y \in M$.

Definition 6. [4] Let M be a commutative monoid. For any submonoid H of M, we define a binary relation ρ_H in M by $x\rho_H y$ if and only if $(x * H) \cap (y * H) \neq \emptyset$.

Remark 1. [4] For any submonoid H of a commutative monoid M, ρ_H is an equivalence relation on M.

Definition 7. [2] An action of a group (G, \circ) in a set S is a function $\phi : G \times S \longrightarrow S$ such that for all $x \in S$, and $g_1, g_2 \in G$: $\phi((1_G, x)) = x$ and $\phi((g_1 \circ g_2, x)) = \phi((g_1, \phi((g_2, x))))$. When such an action is given, G is said to act on the set S.

Example 2. Consider the group $G = \mathbb{Z}$ under the usual addition and the set $S = \mathbb{R}$ of real numbers and the mapping $\phi : G \times S \to S$ given by $\phi((g, x)) = 2^g x$. Let $(g, x), (h, y) \in G \times S$ such that (g, x) = (h, y). Then g = h and x = y. Thus, we have $\phi((g, x)) = 2^g x = 2^h y = \phi((h, y))$ and ϕ is well-defined. Now, for any $g_1, g_2 \in G$ and $x \in S$, we have $\phi((0, x)) = 2^0 x = x$ and $\phi((g_1 + g_2, x)) = 2^{g_1 + g_2} x = 2^{g_1} 2^{g_2} x = \phi((g_1, \phi((g_2, x))))$. Therefore, ϕ is an action.

Definition 8. [3] Let M be a monoid and Γ a group. M is said to be a Γ -monoid if there is an action $\phi : \Gamma \times M \to M$ of Γ on M via monoid automorphism, that is, ϕ is an action which satisfies: for all $\alpha \in \Gamma$ and $x, y \in M$, $\phi((\alpha, x * y)) = \phi((\alpha, x)) * \phi((\alpha, y))$. For $\alpha \in \Gamma$ and $a \in M$, the action of α on a shall be denoted by αa .

Example 3. Consider $\Gamma = \mathbb{Z}$ a group of integers under the usual addition and the set $M = \mathbb{R}$ with the usual addition as its binary operation. Then, (M, +) is a monoid with identity 0. Consider the action $\phi : \Gamma \times M \to M$ given by $\phi((\alpha, x)) = 2^{\alpha}x$ in Example 2. Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then we have $\phi((\alpha, x + y)) = 2^{\alpha}(x + y) = 2^{\alpha}x + 2^{\alpha}y = \phi((\alpha, x)) + \phi((\alpha, y))$. Therefore, M is a Γ -monoid.

Example 4. Let Γ be a group of integers under addition and let $T = M_2(\mathbb{R})$ under matrix addition. Consider the mapping $\phi : \Gamma \times T \to T$ given by $\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \mapsto {}^{\alpha} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2^{\alpha}a & 2^{\alpha}b \\ 2^{\alpha}c & 2^{\alpha}d \end{pmatrix}$. Let $\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right), \left(\beta, \begin{pmatrix} e & f \\ g & h \end{pmatrix}\right) \in \Gamma \times T$ such that $\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \left(\beta, \begin{pmatrix} e & f \\ g & h \end{pmatrix}\right)$. Then $\alpha = \beta$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$. Thus, $\begin{pmatrix} 2^{\alpha}a & 2^{\alpha}b \\ 2^{\alpha}c & 2^{\alpha}d \end{pmatrix} = \begin{pmatrix} 2^{\beta}e & 2^{\beta}f \\ 2^{\beta}g & 2^{\beta}h \end{pmatrix}$ and ϕ is well-defined. Now, for any $\alpha, \beta \in \Gamma$ and $a, b, c, d \in \mathbb{R}$, we have $\phi\left(\left(0, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)\right) = {}^{0} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2^{0}a & 2^{0}b \\ 2^{0}c & 2^{0}d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\phi\left(\left(\alpha + \beta, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)\right)\right) = {}^{\alpha + \beta} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $= \begin{pmatrix} 2^{\alpha + \beta a} & 2^{\alpha + \beta b} \\ 2^{\alpha + \beta c} & 2^{\alpha + \beta d} \\ 2^{\alpha + \beta c} & 2^{\alpha + \beta d} \end{pmatrix}$ $= \phi\left(\left(\alpha, \begin{pmatrix} 2^{\beta}a & 2^{\beta}b \\ 2^{\beta}c & 2^{\beta}d \end{pmatrix}\right)\right)$.

Thus, ϕ is an action.

Now, let $\alpha \in \Gamma$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\begin{pmatrix} e & f \\ g & h \end{pmatrix} \in T$. Then we have

$$\begin{split} \phi\left(\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix}\right)\right) &= & \phi\left(\left(\alpha, \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}\right)\right) \\ &= & \begin{pmatrix} 2^{\alpha}(a+e) & 2^{\alpha}(b+f) \\ 2^{\alpha}(c+g) & 2^{\alpha}(d+h) \end{pmatrix} \end{split}$$

$$= \begin{pmatrix} 2^{\alpha}a + 2^{\alpha}e & 2^{\alpha}b + 2^{\alpha}f \\ 2^{\alpha}c + 2^{\alpha}g & 2^{\alpha}d + 2^{\alpha}h \end{pmatrix}$$
$$= \begin{pmatrix} 2^{\alpha}a & 2^{\alpha}b \\ 2^{\alpha}c & 2^{\alpha}d \end{pmatrix} + \begin{pmatrix} 2^{\alpha}e & 2^{\alpha}f \\ 2^{\alpha}g & 2^{\alpha}h \end{pmatrix}$$
$$= \phi \left(\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \right) + \phi \left(\left(\alpha, \begin{pmatrix} e & f \\ g & h \end{pmatrix} \right) \right).$$

Therefore, T is a Γ -monoid.

Example 5. Consider the set $M = \{1, a, b, c, d, e\}$ and an operation * given by

*	1	a	b	c	d	e
1	1	a	b	с	d	e
a	a	a	a	a	a	a
b	b	b	b	b	b	b
c	c	c	c	c	c	c
d	d	d	d	d	d	d
e	e	e	e	e	e	e

The operation * is closed and associative since for all $x, y \in M$, x * y = x holds for all $x \neq 1$. Clearly, 1 is an identity in M. Thus, M is a monoid. With a group Γ acting trivially on M, we obtain that M is a Γ -monoid.

Definition 9. [1] Let M, M_1 and M_2 be monoids and let Γ be a group acting on M, M_1 and M_2 .

- (i) A Γ -monoid homomorphism is a monoid homomorphism $\phi : M_1 \longrightarrow M_2$ that respects the action of Γ , this means $\phi(^{\alpha}a) = {}^{\alpha}\phi(a)$.
- (ii) A Γ -order-ideal of a monoid M is a subset I of M such that for any $\alpha, \beta \in \Gamma$, $\alpha a * \beta b \in I$ if and only if $a, b \in I$.

Remark 2. [1] A Γ -order-ideal is a submonoid I of M which is closed under the action of Γ .

Example 6. Let a group Γ acts trivially on both monoids $M = (\mathbb{N}, +)$ and $N = (\mathbb{N}, \cdot)$, that is, for all $\alpha \in \Gamma$, we have $\phi((\alpha, m)) = {}^{\alpha}m = m$ and $\phi((\alpha, n)) = {}^{\alpha}n = n$ for all $m \in M$ and $n \in N$. Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then, $\phi((\alpha, x + y)) = {}^{\alpha}(x + y) = x + y = {}^{\alpha}x + {}^{\alpha}y = \phi((\alpha, x)) + \phi((\alpha, y))$. Thus, M and N are Γ -monoids. Consider the monoid homomorphism $\varphi : M \to N$ defined by $\varphi(x) = b^x$, where $b \in \mathbb{N} \setminus \{0\}$ in Example 1. For all $\alpha \in \Gamma$ and $a \in M$, we have $\varphi({}^{\alpha}a) = \varphi(a) = {}^{\alpha}\varphi(a)$. Thus, by Definition 9(ii), φ is a Γ -monoid homomorphism.

Example 7. Consider the Γ -monoid $M = \mathbb{R}$ under the usual addition in Example 3 and the Γ -monoid $T = M_2(\mathbb{R})$ under matrix addition in Example 4. Define a mapping

$$\begin{aligned} \phi: T \to M \text{ by } \phi\left(\begin{pmatrix}a & b\\c & d\end{pmatrix}\right) &= 2(a+b+c+d). \text{ Let } \begin{pmatrix}a & b\\c & d\end{pmatrix}, \begin{pmatrix}e & f\\g & h\end{pmatrix} \in T \text{ such that} \\ \begin{pmatrix}a & b\\c & d\end{pmatrix} &= \begin{pmatrix}e & f\\g & h\end{pmatrix}. \text{ Then } a = e, \ b = f, \ c = g \text{ and } d = h. \text{ Thus, } 2(a+b+c+d) = \\ 2(e+f+g+h) \text{ and } \phi \text{ is well-defined. Now, for any } \begin{pmatrix}a & b\\c & d\end{pmatrix}, \begin{pmatrix}e & f\\g & h\end{pmatrix} \in T, \text{ we have} \\ \phi\left(\begin{pmatrix}0 & 0\\0 & 0\end{pmatrix}\right) &= 2(0+0+0+0) = 2(0) = 0 \text{ and} \\ \phi\left(\begin{pmatrix}a & b\\c & d\end{pmatrix} + \begin{pmatrix}e & f\\g & h\end{pmatrix}\right) &= \phi\left(\begin{pmatrix}a+e & b+f\\c+g & d+h\end{pmatrix}\right) \\ &= 2((a+e)+(b+f)+(c+g)+(d+h)) \\ &= 2((a+b+c+d)+(e+f+g+h)) \\ &= 2(a+b+c+d)+2(e+f+g+h) \\ &= \phi\left(\begin{pmatrix}a & b\\c & d\end{pmatrix}\right) + \phi\left(\begin{pmatrix}e & f\\g & h\end{pmatrix}\right). \end{aligned}$$

Thus, ϕ is a monoid homomorphism. Also, for all $\alpha \in \Gamma$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in T$, we have

$$\phi\begin{pmatrix} \alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} = \phi\begin{pmatrix} 2^{\alpha}a & 2^{\alpha}b \\ 2^{\alpha}c & 2^{\alpha}d \end{pmatrix} \\ = 2(2^{\alpha}a + 2^{\alpha}b + 2^{\alpha}c + 2^{\alpha}d) \\ = 2^{\alpha}2(a + b + c + d) \\ = {}^{\alpha}\phi\begin{pmatrix} a & b \\ c & d \end{pmatrix} .$$

Hence, ϕ is a Γ -monoid homomorphism.

Theorem 1. [4] Let M_1 and M_2 be commutative monoids and let $f : M_1 \longrightarrow M_2$ be a homomorphism. There exists a unique homomorphism $\varphi : M_1 / \ker f \longrightarrow M_2$ such that the following diagram is commutative

that is, $\varphi \circ r_{\ker f} = f$, where $r_{\ker f}(x) := \rho_{\ker f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\ker \varphi = \{\ker f\}$. However, φ is an isomorphism if and only if $\rho_f = \rho_{\ker f}$.

3. Γ -ideals

In this section, we discuss the properties of Γ -ideals of Γ -monoids.

Let M be a Γ -monoid and $x \in M$. By Definition 8, for all $\alpha \in \Gamma$, $\alpha x * \alpha 1_M = \alpha(x * 1_M) = \alpha x$ and $\alpha 1_M * \alpha x = \alpha(1_M * x) = \alpha x$. By uniqueness of the identity element in $M, \alpha 1_M = 1_M$.

Remark 3. For a Γ -monoid M and $\alpha \in \Gamma$, $^{\alpha}1_M = 1_M$.

Definition 10. Let M be a Γ -monoid. A left Γ -ideal (respectively, right Γ -ideal) of M is a subset I of M such that for any $\alpha, \beta \in \Gamma$, for all $a \in I$ and $m \in M$, $^{\alpha}m * {}^{\beta}a \in I$ (respectively, $^{\alpha}a * {}^{\beta}m \in I$). A Γ -ideal of M is a subset I of M such that I is both a left and right Γ -ideal of M.

Let (M, *) be a Γ -monoid and A a Γ -ideal of M with $a \in A$. Then for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}a = {}^{\alpha}a * {}^{\alpha}1_M \in A$. Thus, we have the following remark.

Remark 4. Let (M, *) be a Γ -monoid and A be a Γ -ideal of M.

- (i) M is a Γ -ideal.
- (ii) For all $\alpha \in \Gamma$ and for all $a \in A$, $\alpha a \in A$.

Lemma 1. Let A and B be Γ -ideals of a Γ -monoid M. Then A * B is a Γ -ideal of M.

Proof. Let A and B be Γ -ideals of a Γ -monoid M. Clearly, $A * B \subseteq M$. Let $x \in A * B$ and $m \in M$. Then x = a * b for some $a \in A$ and $b \in B$. Now, for all $\alpha, \beta \in \Gamma$, ${}^{\alpha}x * {}^{\beta}m = {}^{\alpha}(a * b) * {}^{\beta}m = {}^{\alpha}a * {}^{\alpha}b * {}^{\beta}m = {}^{\alpha}a * ({}^{\alpha}b * {}^{\beta}m) \in A * B$ by Remark 4(ii) and Definition 10. Similarly, for all $\alpha, \beta \in \Gamma, {}^{\alpha}m * {}^{\beta}x \in A * B$. Therefore, A * B is a Γ -ideal of M. \Box

The following example shows that a Γ -ideal is not necessarily a Γ -order-ideal.

Example 8. Consider the set $M = \{1, n, h, s\}$ and operation * given by

Clearly, the operation is commutative. It can be verified that * is associative. Since 1 * 1 = 1, 1 * n = n, 1 * h = h and 1 * s = s, it follows that 1 is the identity in M. Thus, M is a commutative monoid. Let Γ be a group and the mapping $\phi : \Gamma \times M \longrightarrow M$ given by $(\alpha, a) \mapsto {}^{\alpha}a = a$. For any $\alpha, \beta \in \Gamma$ and $a \in M$, we have $\phi((0, a)) = {}^{0}a = a$ and

$$\phi((\alpha + \beta, a)) = {}^{\alpha + \beta}a = a = \phi(\beta, a) = {}^{\beta}a = \phi((\alpha, {}^{\beta}a)) = \phi((\alpha, \phi((\beta, a)))).$$

Thus, ϕ is an action. Now, let $\alpha \in \Gamma$ and $a, b \in M$. Then

 $\phi((\alpha, a * b)) = {}^{\alpha}(a * b) = a * b = {}^{\alpha}a * {}^{\alpha}b = \phi((\alpha, a)) * \phi((\alpha, b)).$ Hence, M is a Γ -monoid. Let $C = \{n, h, s\}$. Then for any $\alpha, \beta \in \Gamma$, we have for all $a \in C$ and $m \in M$,

${}^{\alpha}a*{}^{\beta}m={}^{\alpha}n*{}^{\beta}1=n*1=n\in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}n*{}^{\beta}n=n*n=n\in C;$
${}^{\alpha}a*{}^{\beta}m={}^{\alpha}n*{}^{\beta}h=n*h=h\in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}n*{}^{\beta}s=n*s=s\in C;$
${}^{\alpha}a*{}^{\beta}m={}^{\alpha}h*{}^{\beta}1=h*1=h\in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}h*{}^{\beta}n=h*n=h\in C;$
${}^{\alpha}a*{}^{\beta}m={}^{\alpha}h*{}^{\beta}h=h*h=h\in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}h*{}^{\beta}s=h*s=s\in C;$
${}^{\alpha}a*{}^{\beta}m={}^{\alpha}s*{}^{\beta}1=s*1=s\in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}s*{}^{\beta}n=s*n=s\in C;$
${}^{\alpha}a*{}^{\beta}m = {}^{\alpha}s*{}^{\beta}h = s*h = s \in C,$	${}^{\alpha}a*{}^{\beta}m={}^{\alpha}s*{}^{\beta}s=s*s=s\in C.$

Since *M* is commutative, ${}^{\beta}m * {}^{\alpha}a = {}^{\alpha}a * {}^{\beta}m \in C$. Thus, by Definition 10, *C* is a Γ -ideal. However, the identity $1 \notin C$. Thus, *C* is not a Γ -order-ideal of *M*.

The following example shows that Γ -order-ideal is not necessarily a Γ -ideal.

Example 9. Consider the Γ -monoid $M = \{1, n, h, s\}$ in Example 8. Let $A = \{1, n, h\}$. Now, suppose that for all $a, b \in M$ and for all $\alpha, \beta \in \Gamma$, $\alpha a * \beta b \in A$. Then $a * b \in A$. We consider the following three cases.

Case 1. a * b = 1. Then a = 1 and b = 1. Thus $a, b \in A$. Case 2. a * b = n. Then a * b = 1 * n = n * 1 = n * n. Clearly, $a, b \in A$. Case 3. a * b = h. Then a * b = 1 * h = n * h = h * 1 = h * n. Clearly, $a, b \in A$. Thus, $a, b \in A$.

Now, suppose that $a, b \in A$. Then, we have

${}^{\alpha}a * {}^{\beta}b = {}^{\alpha}1 * {}^{\beta}1 = 1 * 1 = 1 \in A;$	${}^{\alpha}a*{}^{\beta}b={}^{\alpha}n*{}^{\beta}n=n*n=n\in A;$
${}^{\alpha}a*{}^{\beta}b={}^{\alpha}1*{}^{\beta}n=1*n=n\in A;$	${}^{\alpha}a*{}^{\beta}b={}^{\alpha}n*{}^{\beta}h=n*h=h\in A;$
${}^{\alpha}a * {}^{\beta}b = {}^{\alpha}1 * {}^{\beta}h = 1 * h = h \in A$:	${}^{\alpha}a * {}^{\beta}b = {}^{\alpha}h * {}^{\beta}h = h * h = h \in A.$

Thus, ${}^{\alpha}a * {}^{\beta}b \in A$. Hence, A is a Γ -order-ideal of M.

Observe that there exist $n \in A$ and $s \in M$ such that for any $\alpha, \beta \in \Gamma$, $\alpha n * \beta s = n * s = s \notin A$. Thus, by Definition 10, A is not a Γ -ideal.

Remark 5. If I is a Γ -ideal, in general I is not necessarily a Γ -order-ideal. Similarly, if I is a Γ -order-ideal, in general I is not necessarily a Γ -ideal.

Lemma 2. Let I be a Γ -ideal of a Γ -monoid M. Then the identity $1_M \in I$ if and only if I = M.

Proof. Let I is a Γ -ideal of M. Suppose that the identity $1_M \in I$ and $m \in M$. Then for any $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}1_M * {}^{\beta}m \in I$. For $\alpha = \beta = 0$, we have ${}^{0}1_M * {}^{0}m = 1_M * m = m \in I$. Thus, $M \subseteq I$. Consequently, I = M. Conversely, suppose that I = M. Thus, the identity $1_M \in I$.

Theorems 2 and 3 imply that there exists no proper Γ -order-ideal which is also a Γ -ideal and vice versa.

Theorem 2. Let I be a Γ -ideal of a Γ -monoid M. Then I is a Γ -order-ideal of M if and only if I = M.

Proof. Let I be a Γ -ideal of M. Suppose that I is a Γ -order-ideal of M. Then the identity $1_M \in I$. By Lemma 2, I = M. Conversely, suppose that I = M. Thus, I is a Γ -order-ideal.

Theorem 3. Let I be a Γ -order-ideal of a Γ -monoid M. Then I is a Γ -ideal of M if and only if I = M.

Proof. Let I be a Γ -order-ideal of a Γ -monoid M. Then $1_M \in I$ since I is also a submonoid. Suppose that I is a Γ -ideal of M. By Lemma 2, I = M. Conversely, suppose that I = M. Thus, by Remark 4(i), I is a Γ -ideal.

Lemma 3. Let A and B be Γ -ideals of a Γ -monoid M. Then $A \cap B$ and $A \cup B$ are Γ -ideals of M.

Proof. Let A and B be Γ -ideals of M. Let $x \in A \cap B$ and $m \in M$. Then $x \in A$ and $x \in B$. Since A and B are Γ -ideals of M, for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in A$ and ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in B$. Hence, for all $\alpha, \beta \in \Gamma, {}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in A \cap B$. Therefore, $A \cap B$ is a Γ -ideal of M. Now, let $x \in A \cup B$ and $m \in M$. Then $x \in A$ or $x \in B$. Since A and B are Γ -ideals of M, for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in A$ or ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in B$. Hence, for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in A$ or ${}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in B$. Hence, for all $\alpha, \beta \in \Gamma {}^{\alpha}x *{}^{\beta}m, {}^{\alpha}m *{}^{\beta}x \in A \cup B$. Therefore, $A \cup B$ is a Γ -ideal of M. \Box

Theorem 4. Let I be a Γ -order-ideal of a Γ -monoid M and J a Γ -ideal of M.

- (i) If $J \cap I \neq \emptyset$, then $J \cap I$ is a Γ -ideal of I.
- (ii) If M is commutative, then $J \cup I$ is a Γ -order-ideal of M.

Proof. Let I be a Γ -order-ideal of M and J a Γ -ideal of M.

- (i) Let $x \in J \cap I$ and $a \in I$. Then $x \in J$ and $x \in I$. Since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma, \alpha x * \beta a, \alpha a * \beta x \in J$. Also, since I is a Γ -order-ideal of M, for all $\alpha, \beta \in \Gamma, \alpha x * \beta a, \alpha a * \beta x \in I$. Thus, for all $\alpha, \beta \in \Gamma, \alpha x * \beta a, \alpha a * \beta x \in J \cap I$. Therefore, $J \cap I$ is a Γ -ideal of I.
- (ii) Suppose that ${}^{\alpha}x * {}^{\beta}a \in J \cup I$ for all $\alpha, \beta \in \Gamma$. Then, ${}^{\alpha}x * {}^{\beta}a \in J$ or ${}^{\alpha}x * {}^{\beta}a \in I$. Since I is a Γ -order-ideal of M, it follows that $x, a \in I \subseteq J \cup I$. Now, suppose that $x, a \in J \cup I$. Consider the following cases.
- Case 1. $x, a \in I$. Then, since I is a Γ -order-ideal of M, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta a \in I \subseteq J \cup I$.
- Case 2. $x \in I$, $a \in J$. Then, since J is a Γ -ideal of M and M is commutative, for all $\alpha, \beta \in \Gamma$, we have $\alpha x * \beta a = \beta a * \alpha x \in J \subseteq J \cup I$.

- Case 3. $x \in J, a \in I$. Then, since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}x * {}^{\beta}a \in J \subseteq J \cup I$.
- Case 4. $x, a \in J$. Then, since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma$, we have $\alpha x * \beta a \in J \subseteq J \cup I$.

Thus, $J \cup I$ is a Γ -order-ideal of M.

Definition 11. Let (M, *) and (N, \cdot) be Γ -monoids and $\varphi : M \to N$ a Γ -monoid homomorphism. The *kernel of* φ is denoted and defined by ker $\varphi = \{m \in M : \varphi(m) = 1_N\}$.

Proposition 2. Let (M, *) and (N, \cdot) be Γ -monoids and $\varphi : M \to N$ a Γ -monoid homomorphism.

- (i) If φ is surjective and I is a Γ -ideal of M, then $\varphi(I)$ is a Γ -ideal of N.
- (ii) If J is a Γ -ideal of N, then $\varphi^{-1}(J)$ is a Γ -ideal of M.

Proof. Let $\varphi: M \to N$ be a Γ -monoid homomorphism.

(i) Let $x \in \varphi(I)$ and $z \in N$. Since φ is surjective, $z = \varphi(n)$ for some $n \in M$ and $x = \varphi(y)$ for some $y \in I$. Then for all $\alpha, \beta \in \Gamma$,

$${}^{\alpha}x*{}^{\beta}z = {}^{\alpha}\varphi(y)\cdot{}^{\beta}\varphi(n) = \varphi({}^{\alpha}y)\cdot\varphi({}^{\beta}n) = \varphi({}^{\alpha}y*{}^{\beta}n).$$

Since I is a Γ -ideal of M, $^{\alpha}y * {}^{\beta}n \in I$, so, $^{\alpha}x * {}^{\beta}z \in \varphi(I)$. Similarly, for all $\alpha, \beta \in \Gamma$, $^{\alpha}z * {}^{\beta}x \in \varphi(I)$. Therefore, $\varphi(I)$ is a Γ -ideal of N.

(ii) Let $y \in \varphi^{-1}(J)$ and $m \in M$. Then $\varphi(y) \in J$ and $\varphi(m) \in N$. Thus, for all $\alpha, \beta \in \Gamma$, $\varphi(^{\alpha}y * {}^{\beta}m) = \varphi(^{\alpha}y) \cdot \varphi(^{\beta}m) = {}^{\alpha}\varphi(y) \cdot {}^{\beta}\varphi(m) \in J$, since J is a Γ -ideal of N. Hence, ${}^{\alpha}y * {}^{\beta}m \in \varphi^{-1}(J)$ for all $\alpha, \beta \in \Gamma$. Similarly, for all $\alpha, \beta \in \Gamma, {}^{\alpha}m * {}^{\beta}y \in \varphi^{-1}(J)$. Therefore, $\varphi^{-1}(J)$ is a Γ -ideal of M.

Example 10. Consider the Γ -monoid homomorphism $\varphi : M \to N$ defined by $\varphi(x) = b^x$, where $b \neq 0$ in Example 6. Note that

$$\ker \varphi = \{x \in M : \varphi(x) = 1\} = \{x \in M : b^x = 1\} = \{x \in M : b = 1 \text{ or } x = 0\}.$$

Take $x = 0 \in \ker \varphi$, $m = 2 \in M$, and b = 2. Then for all $\alpha, \beta \in \Gamma$, $\varphi(^{\alpha}x + {}^{\beta}m) = \varphi(^{\alpha}0 + {}^{\beta}2) = \varphi(0 + 2) = \varphi(2) = 2^2 \neq 1$. This implies that ${}^{\alpha}x + {}^{\beta}m \notin \ker \varphi$. By Definition 10, ker φ is not a Γ -ideal of M.

Remark 6. For any Γ -monoids M and N, the kernel of a Γ -monoid homomorphism $\varphi: M \to N$ is not necessarily a Γ -ideal of M.

Proposition 3. Let (M, *) and (N, \cdot) be Γ -monoids and $\varphi : M \to N$ a Γ -monoid homomorphism. Then ker φ is a Γ -ideal of M if and only if ker $\varphi = M$.

1780

Proof. Let $\varphi : M \to N$ be a Γ -monoid homomorphism. Then $1_M \in \ker \varphi$. Suppose that $\ker \varphi$ is a Γ -ideal of M. Then by Lemma 2, $\ker \varphi = M$. Now, suppose that $\ker \varphi = M$. Then by Remark 4(i), $\ker \varphi$ is a Γ -ideal of M.

By Proposition 3, ker φ is a Γ -ideal if and only if φ is a zero map. Thus, isomorphism theorems via Γ -ideals are irrelevant.

4. Γ-submonoids

This section presents the discussions on Γ -submonoids of Γ -monoids.

Definition 12. Let (M, *) be a Γ -monoid. A Γ -submonoid is a subset S of M such that the identity $1_M \in S$ and, for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S$, $\alpha s * \beta t \in S$.

Let S be a Γ -submonoid of M. Then $1_M \in S$ and for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S$, we have $\alpha s * \beta t \in S$. Take $\alpha = \beta = 0$. Thus, we have $s * t = {}^{0}s * {}^{0}t \in S$. Hence, S is a submonoid of M.

Remark 7. Let S be a Γ -submonoid of a Γ -monoid M.

- (i) S is a submonoid of M, hence a monoid itself.
- (ii) For all $s \in S$ and for all $\alpha \in \Gamma$, $\alpha s \in S$.
- (iii) M is a Γ -submonoid of M.

Let S be a Γ -submonoid of a Γ -monoid M and let $\phi : \Gamma \times M \to M$ be the action (by monoid automorphism) of a group Γ on M. By Remark 7, S is a monoid. Moreover, by restricting the action ϕ to S, ϕ acts on S by monoid automorphism and hence, S is a Γ -monoid.

Remark 8. A Γ -submonoid of a Γ -monoid is itself a Γ -monoid.

Example 11. Consider the set $M = \{0, 1, x, y, z, s, b\}$ and an operation + given by

+	0	1	x	y	z	s	b
0	0	1	x	y	z	s	b
1	1	1	1	s	s	s	b
x	x	1	1	s	s	s	b
y	y	s	s	y	y	s	b
z	z	s	s	y	y	s	b
s	s	s	s	s	s	s	b
b	b	b	b	b	b	b	s

It was shown in [5] that M is a commutative Γ -monoid with identity 0, where the trivial group $\Gamma = \{0\}$ acts trivially on M. Let $S = \{0, y, s, b\}$, $U = \{0, 1, y, s, b\}$, $V = \{0, 1, x\}$ and $W = \{0, y\}$. Note that the identity 0 is in S, U, V and W. Now, we have

Thus, by Definition 12, S is Γ -submonoid of M. Similarly, U, V and W are Γ -submonoids of M. Consider the Γ -submonoid $S = \{0, y, s, b\}$. Now, take $0 \in S$ and $z \in M$. Then $0 * z = z \notin S$. Thus, S is not a Γ -ideal of M.

Remark 9. Let M be a Γ -monoid. A Γ -submonoid of M is not necessarily a Γ -ideal of M.

Theorems 5 and 6 imply that there is no proper Γ -submonoid which is also a Γ -ideal and vice versa.

Theorem 5. Let S be a Γ -submonoid of a Γ -monoid M. Then S is a Γ -ideal of M if and only if S = M.

Proof. Let S be a Γ -submonoid of M. Suppose that S is a Γ -ideal of M. Since S is a Γ -submonoid, $1_M \in S$ and thus, by Lemma 2, S = M. Conversely, suppose that S = M. Then, by Remark 4(i), S is a Γ -ideal of M.

Theorem 6. Let I be a Γ -ideal of a Γ -monoid M. Then I is a Γ -submonoid of M if and only if I = M.

Proof. Let I be a Γ -ideal of a Γ -monoid M. Suppose that I is a Γ -submonoid of M. Then $1_M \in I$ and I = M. Conversely, suppose that I = M. By Remark 7(iii), I is a Γ -submonoid of M.

Example 12. Consider the Γ -submonoid $S = \{0, y, s, b\}$ in Example 11. Note that $x * z = s \in S$. However, $x, z \notin S$. Thus, S is not a Γ -order-ideal of M.

Note that if S is a Γ -order-ideal of a Γ -monoid M, then by Remark 2, S is a submonoid and $1_M \in S$. Also, since S is a Γ -order-ideal, for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S$, we have $\alpha s * \beta t \in S$. Thus, S is a Γ -submonoid of M and the following remark holds.

Remark 10. Every Γ -order-ideal of a Γ -monoid M is a Γ -submonoid of M. However, a Γ -submonoid of M is not necessarily a Γ -order-ideal of M.

The following example shows that a Γ -submonoid is not necessarily a normal submonoid.

Example 13. Consider the Γ -submonoid $U = \{0, 1, y, s, b\}$ in Example 11 which is also commutative. Observe that $y, z \in M$ such that $y, y * z = y \in U$. However, $z \notin U$. Thus, U is not a normal submonoid of M.

Remark 11. In general, a Γ -submonoid of a Γ -monoid M is not necessarily a normal submonoid of M.

Theorem 7. Let S be a subset of a Γ -monoid M. Then S is a Γ -order-ideal if and only if S is a Γ -submonoid such that $x * y \in S$ implies $x, y \in S$.

Proof. Let S be a subset of a Γ -monoid M. Suppose S is a Γ -order-ideal of M. Then by Remark 10, S is a Γ -submonoid and for $\alpha = \beta = 0$, we have $x * y = {}^{0}x * {}^{0}y \in S$ implies $x, y \in S$ since S is a Γ -order-ideal. Now, suppose S is a Γ -submonoid such that $x * y \in S$ implies $x, y \in S$. Then for all $\alpha, \beta \in \Gamma$ and for all $x, y \in S$, ${}^{\alpha}x * {}^{\beta}y \in S$. Suppose for all $\alpha, \beta \in \Gamma, {}^{\alpha}x * {}^{\beta}y \in S$. Take $\alpha = \beta = 0$. Then $x * y = {}^{0}x * {}^{0}y \in S$ which implies that $x, y \in S$. Therefore, S is a Γ -order-ideal. \Box

Lemma 4. Let A and B be Γ -submonoids of a Γ -monoid M. Then

- (i) $A \cap B$ is a Γ -submonoid of M.
- (ii) If M is commutative and A, B are normal, then A ∩ B is a normal Γ-submonoid of M.

Proof. Let A and B be Γ -submonoids of a Γ -monoid M.

- (i) Since A and B are Γ -submonoids of M, the identity $1_M \in A$ and $1_M \in B$. Thus, $1_M \in A \cap B$. Now, let $a, b \in A \cap B$. Then, $a, b \in A$ and $a, b \in B$. Since A and B are Γ -submonoids, for all $\alpha, \beta \in \Gamma$, $\alpha a * \beta b \in A$ and $\alpha a * \beta b \in B$. Hence, $\alpha a * \beta b \in A \cap B$. Therefore, $A \cap B$ is a Γ -submonoid of M.
- (ii) By (i), A ∩ B is a Γ-submonoid of M. It remains to show that A ∩ B is normal. Let x, x * y ∈ A ∩ B. Then x, x * y ∈ A and x, x * y ∈ B. Since A and B are normal, y ∈ A and y ∈ B. Therefore, y ∈ A ∩ B and A ∩ B is a normal Γ-submonoid of M.

Example 14. Consider the Γ -submonoids $V = \{0, 1, x\}$ and $W = \{0, y\}$ in Example 11. Then, $V \cup W = \{0, 1, x, y\}$. Now, for $x, y \in V \cup W$, we have $x * y = s \notin V \cup W$. Thus, $V \cup W$ is not a Γ -submonoid of M.

Remark 12. The union of two Γ -submonoids of a Γ -monoid M is not necessarily a Γ -submonoid of M.

Theorem 8. Let (M, *) and (N, \cdot) be Γ -monoids and $\varphi : M \to N$ a Γ -monoid homomorphism.

(i) If S is a Γ-submonoid of M, then φ(S) is a Γ-submonoid of N. In particular, φ(M) is a Γ-submonoid of N.

- (ii) If T is a Γ -submonoid of N, then $\varphi^{-1}(T)$ is a Γ -submonoid of M.
- (iii) ker φ is a Γ -submonoid of M.
- (iv) If M is commutative, then ker φ is normal.

Proof. Let $\varphi: M \to N$ be a Γ -monoid homomorphism.

- (i) Let S be a Γ -submonoid of M. Then $1_M \in S$ and $1_N = \varphi(1_M) \in \varphi(S)$. Let $x, y \in \varphi(S)$. Then $x = \varphi(a)$ and $y = \varphi(b)$ for some $a, b \in S$. Since S is a Γ -submonoid, for all $\alpha, \beta \in \Gamma$, $\alpha a * \beta b \in S$. Now, for all $\alpha, \beta \in \Gamma$, we have $\alpha x \cdot \beta y = \alpha \varphi(a) \cdot \beta \varphi(b) = \varphi(\alpha a) \cdot \varphi(\beta b) = \varphi(\alpha a * \beta b)$. Since $\alpha a * \beta b \in S$, it follows that $\alpha x \cdot \beta y = \varphi(\alpha a * \beta b) \in \varphi(S)$. Thus, $\varphi(S)$ is a Γ -submonoid of N.
- (ii) Let T be a Γ -submonoid of N. Then, $\varphi(1_M) = 1_N \in T$ and $1_M \in \varphi^{-1}(T)$. Let $x, y \in \varphi^{-1}(T)$. Then $\varphi(x), \varphi(y) \in T$. Now, for all $\alpha, \beta \in \Gamma$, we have $\varphi(^{\alpha}x * {}^{\beta}y) = \varphi(^{\alpha}x) \cdot \varphi(^{\beta}y) = {}^{\alpha}\varphi(x) \cdot {}^{\beta}\varphi(y) \in T$ since T is a Γ -submonoid of N. This implies that for all $\alpha, \beta \in \Gamma$, we have ${}^{\alpha}x * {}^{\beta}y \in \varphi^{-1}(T)$. Therefore, $\varphi^{-1}(T)$ is a Γ -submonoid of M.
- (iii) Since φ is a Γ -monoid homomorphism, $\varphi(1_M) = 1_N$. Thus, $1_M \in \ker \varphi$. Now, let $x, y \in \ker \varphi$. Then $\varphi(x) = 1_N$ and $\varphi(y) = 1_N$. Thus, by Remark 3, for all $\alpha, \beta \in \Gamma$,

$$\varphi(^{\alpha}x*^{\beta}y) = \varphi(^{\alpha}x) \cdot \varphi(^{\beta}y) = {}^{\alpha}\varphi(x) \cdot {}^{\beta}\varphi(y) = {}^{\alpha}1_N \cdot {}^{\beta}1_N = 1_N \cdot 1_N = 1_N.$$

Hence, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta y \in \ker \varphi$. Therefore, $\ker \varphi$ is a Γ -submonoid of M.

(iv) Let $x, x * y \in \ker \varphi$. Then $\varphi(x) = 1_N$ and $\varphi(x * y) = 1_N$. Thus, $\varphi(y) = 1_N \cdot \varphi(y) = \varphi(x) \cdot \varphi(y) = \varphi(x * y) = 1_N$. This implies that $y \in \ker \varphi$ and thus, $\ker \varphi$ is normal.

Theorem 9. Let J be a Γ -ideal and S a Γ -submonoid of a Γ -monoid M such that $J \cap S \neq \emptyset$. Then (i) $J \cap S$ is a Γ -ideal of S; (ii) $J \cup S$ is a Γ -submonoid of M.

Proof. Let J be a Γ -ideal and S a Γ -submonoid of M such that $J \cap S \neq \emptyset$.

- (i) Let $x \in J \cap S$ and $s \in S$. Then $x \in J$ and $x, s \in S$. Since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma, \alpha x * \beta s, \alpha s * \beta x \in J$. Also, since S is a Γ -submonoid of M, for all $\alpha, \beta \in \Gamma, \alpha x * \beta s, \alpha s * \beta x \in S$. Thus, for all $\alpha, \beta \in \Gamma, \alpha x * \beta s, \alpha s * \beta x \in J \cap S$ and so, $J \cap S$ is a Γ -ideal of S.
- (ii) Let $x, y \in J \cup S$. We consider the following cases.

Case 1. $x, y \in J$. Since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta y \in J \subseteq J \cup S$. Case 2. $x \in J, y \in S$. Since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta y \in J \subseteq J \cup S$. Case 3. $x, y \in S$. Since S is a Γ -submonoid of M, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta y \in S \subseteq J \cup S$. Case 4. $y \in J, x \in S$. Since J is a Γ -ideal of M, for all $\alpha, \beta \in \Gamma$, $\alpha x * \beta y \in J \subseteq J \cup S$.

Also, since S is a Γ -submonoid of M, $1_M \in S \subseteq J \cup S$. Therefore, $J \cup S$ is a Γ -submonoid of M.

Remark 13. Theorem 4(i) is also a consequence of Theorem9(i).

Lemma 5. Let A and B be Γ -submonoids of a commutative Γ -monoid M. Then A * B is a Γ -submonoid of M.

Proof. Let $x, y \in A * B$ and $\alpha, \beta \in \Gamma$. Then $x = a_1 * b_1$ and $y = a_2 * b_2$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Since A and B are Γ -submonoids, ${}^{\alpha}a_1 * {}^{\beta}a_2 \in A$ and ${}^{\alpha}b_1 * {}^{\beta}b_2 \in B$. Note that $1_M = 1_M * 1_M \in A * B$. Since M is commutative,

$${}^{\alpha}x * {}^{\beta}y = {}^{\alpha}(a_1 * b_1) * {}^{\beta}(a_2 * b_2) = ({}^{\alpha}a_1 * {}^{\alpha}b_1) * ({}^{\beta}a_2 * {}^{\beta}b_2) = ({}^{\alpha}a_1 * {}^{\beta}a_2) * ({}^{\alpha}b_1 * {}^{\beta}b_2).$$

This implies that ${}^{\alpha}x * {}^{\beta}y \in A * B$. Therefore, A * B is a Γ -submonoid of M.

Lemma 6. Let A and B be Γ -submonoids of a commutative Γ -monoid M. Then the map $f: A \to A * B$ defined by $f(a) = a * 1_M$ is a Γ -monoid homomorphism.

Proof. Let $x, y \in A$ such that x = y. Then $f(x) = x * 1_M = x = y = y * 1_M = f(y)$ and f is well-defined. Let $x, y \in A$. Then

- (i) $f(x * y) = x * y * 1_M = x * y = (x * 1_M) * (y * 1_M) = f(x) * f(y),$
- (ii) $f(1_M) = 1_M * 1_M$, the identity in A * B.

Thus, f is a monoid homomorphism. Now, for all $\alpha \in \Gamma$ and $x \in A$,

$$f(^{\alpha}x) = {}^{\alpha}x * 1_M = {}^{\alpha}x * {}^{\alpha}1_M = {}^{\alpha}(x * 1_M) = {}^{\alpha}f(x).$$

Thus, f is a Γ -monoid homomorphism.

5. Quotient Γ -monoids

In [5], the quotient Γ -monoid M/S was established using the equivalence relation in Definition 6 such that the commutative Γ -monoid M and Γ -order-ideal S of M were treated as commutative monoid and submonoid, respectively. Further, the third isomorphism theorem for Γ -monoids via Γ -order-ideals was proved.

Here, we define an equivalence relation and construct quotient Γ -monoids via Γ -submonoids. Moreover, we prove the isomorphism theorems.

Definition 13. Let M be a Γ -monoid. For any Γ -submonoid S of M and for all $x, y \in M$, we define a binary relation ρ_S in M by $x\rho_S y$ if and only if for all $\alpha \in \Gamma$, $({}^{\alpha}x * S) \cap ({}^{\alpha}y * S) \neq \emptyset$.

The next example shows that if a Γ -submonoid S of a Γ -monoid M is not commutative, then ρ_S is not an equivalence relation.

Example 15. Consider the Γ -monoid $M = \{1, a, b, c, d, e\}$ in Example 5 with operation * given by

*	1	a	b	c	d	e
1	1	a	b	с	d	e
a	a	a	a	a	a	a
b	b	b	b	b	b	b
c	c	c	c	c	c	c
d	d	d	d	d	d	d
e	e	e	e	e	e	e

Let $S = \{1, a, b\}$. Then, by routine calculation, S is a Γ -submonoid of M. Also, S is not commutative since $a * b = a \neq b = b * a$. Now, for all $\alpha \in \Gamma$, we have ${}^{\alpha}1 * S = 1 * S = \{1, a, b\}$, ${}^{\alpha}a * S = a * S = \{a\}$ and ${}^{\alpha}b * S = b * S = \{b\}$. Thus, $({}^{\alpha}a * S) \cap ({}^{\alpha}1 * S) = \{a\} \neq \emptyset$ which implies that $a\rho_S 1$. Also, $({}^{\alpha}1 * S) \cap ({}^{\alpha}b * S) = \{b\} \neq \emptyset$ which implies that $1\rho_S b$. However, $({}^{\alpha}a * S) \cap ({}^{\beta}b * S) = \emptyset$ which implies that a is not related to b under ρ_S , that is, ρ_S is not transitive, hence not an equivalence relation.

The following result tells us that ρ_S is an equivalence relation for any commutative Γ -submonoid S of a Γ -monoid M. Further, if M is commutative, then ρ_S is a congruence relation on M.

Theorem 10. Let S be a commutative Γ -submonoid of a Γ -monoid M. Then

- (i) ρ_S is an equivalence relation on M.
- (ii) If M is commutative, then ρ_S is a congruence relation on M.

Proof. Let S be a commutative Γ -submonoid of a Γ -monoid M.

(i) Let $x \in M$ and S a Γ -submonoid of M. Then, for $\alpha \in \Gamma$, we have $({}^{\alpha}x * S) \cap ({}^{\alpha}x * S) = {}^{\alpha}x * S \neq \emptyset$ since ${}^{\alpha}x = {}^{\alpha}x * 1_M \in {}^{\alpha}x * S$. Thus, $x\rho_S x$ and ρ_S is reflexive.

Let $x\rho_S y$. Then, for all $\alpha \in \Gamma$, $({}^{\alpha}x * S) \cap ({}^{\alpha}y * S) \neq \emptyset$. Thus, $({}^{\alpha}y * S) \cap ({}^{\alpha}x * S) = ({}^{\alpha}x * S) \cap ({}^{\alpha}y * S) \neq \emptyset$. Hence, $y\rho_S x$ and ρ_S is symmetric. Now, let $x\rho_S y$ and $y\rho_S z$. Then, for all $\alpha, \beta \in \Gamma$, $({}^{\alpha}x * S) \cap ({}^{\alpha}y * S) \neq \emptyset$ and $({}^{\beta}y = {}^{\alpha}y + {}^{\beta}y) = {}^{\alpha}y + {}^{\beta}y + {}^{\beta$

 $({}^{\beta}y * S) \cap ({}^{\beta}z * S) \neq \emptyset$. Thus, we have ${}^{\alpha}x * s_1 = {}^{\alpha}y * s_2$ and ${}^{\beta}y * s_3 = {}^{\beta}z * s_4$ for some $s_1, s_2, s_3, s_4 \in S$. Hence, for all $\alpha \in \Gamma$, ${}^{\alpha}x * s_1 * s_3 = {}^{\alpha}y * s_2 * s_3 = {}^{\alpha}z * s_2 * s_4$ and $s_1 * s_3, s_2 * s_4 \in S$ since S is a Γ -submonoid. Hence, $({}^{\alpha}x * S) \cap ({}^{\alpha}z * S) \neq \emptyset$ and $x\rho_S z$. Therefore, ρ_S is transitive. Consequently, ρ_S is an equivalence relation on M.

(ii) Let M be a commutative Γ -monoid. Suppose that $x\rho_S y$ and $u, v \in M$. Then, we have for all $\alpha, \beta \in \Gamma$, $({}^{\alpha}x * S) \cap ({}^{\alpha}y * S) \neq \emptyset$ and thus, ${}^{\alpha}x * s_1 = {}^{\alpha}y * s_2$ for some $s_1, s_2 \in S$. Hence, $({}^{\alpha}x * s_1) * {}^{\alpha}(u * v) = ({}^{\alpha}y * s_2) * {}^{\alpha}(u * v)$. Since M is commutative, for all $\alpha \in \Gamma$, ${}^{\alpha}(u * x * v) * s_1 = {}^{\alpha}(u * y * v) * s_2$ and $(u * x * v)\rho_S(u * y * v)$. Thus, ρ_S is a congruence relation on M.

Definition 14. Let S be a commutative Γ -submonoid of a Γ -monoid M. Then for all $x \in M$, the equivalence class of x is denoted and defined by $\rho_S(x) = \{y \in M : x\rho_S y\}$.

Let S be a commutative Γ -submonoid of a Γ -monoid M and let $m \in M$. Then for all $\alpha \in \Gamma$, $(^{\alpha}m * S) \cap (^{\alpha}m * S) = ^{\alpha}m * S \neq \emptyset$ since for $\alpha = 0, m = m * 1_M \in m * S$. Thus, $m \in \rho_S(m)$. Hence, the following remark holds.

Remark 14. Let S be a commutative Γ -submonoid of a Γ -monoid M and let $m_1, m_2 \in M$.

- (i) For all $m \in M$, $m \in \rho_S(m)$.
- (ii) $\rho_S(m_1) = \rho_S(m_2)$ if and only if $({}^{\alpha}m_1 * S) \cap ({}^{\alpha}m_2 * S) \neq \emptyset$ for all $\alpha \in \Gamma$.

The quotient M/S using equivalence relation in Definition 6, where M is a monoid and S is a submonoid of M is different from M/S using the equivalence relation in Definition 13, where M is a Γ -monoid and S is a Γ -submonoid as shown in the following example.

Example 16. Let $\Gamma = \mathbb{Z}$ the additive group of integers and $M = \mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ under addition modulo 8. Then M is a monoid with identity $\overline{0}$. Consider a mapping $\phi : \Gamma \times M \to M$ given by $\phi((\alpha, \overline{m})) = \overline{7^{\alpha}m}$. Let $(\alpha, \overline{x}), (\beta, \overline{y}) \in \Gamma \times M$ such that $(\alpha, \overline{x}) = (\beta, \overline{y})$. Then $\alpha = \beta$ and $\overline{x} = \overline{y}$. Thus, $\overline{7^{\alpha}x} = \overline{7^{\beta}y}$ and ϕ is well-defined. Now, let $\alpha, \beta \in \Gamma$ and $m \in M$. Observe that

(i)
$$\phi((0,\overline{m})) = \overline{7^0m} = \overline{m};$$

(ii)
$$\phi((\alpha + \beta, \overline{m})) = \overline{7^{\alpha + \beta}m} = \overline{7^{\alpha}7^{\beta}m} = \phi((\alpha, \phi((\beta, \overline{m})))).$$

This implies that ϕ is an action. Now, let $\alpha \in \Gamma$ and $\overline{x}, \overline{y} \in M$. Then

$$\phi((\alpha,\overline{x}+_{8}\overline{y})) = \phi((\alpha,\overline{x}+_{8}\overline{y})) = \overline{7^{\alpha}(x+_{8}\overline{y})} = \overline{7^{\alpha}x} +_{8}\overline{7^{\alpha}y} = \phi((\alpha,\overline{x})) +_{8}\phi((\alpha,\overline{y})).$$

Therefore, M is a Γ -monoid.

Let $S = \{\overline{0}, \overline{4}\}$. Observe that the identity $\overline{0} \in S$ and $\overline{0} +_8 \overline{0} = \overline{0}$, $\overline{0} +_8 \overline{4} = \overline{4} +_8 \overline{0} = \overline{4}$, $\overline{4} +_8 \overline{4} = \overline{0} \in S$. This implies that S is a submonoid of M. Now, note that

$\overline{0} +_8 S = \overline{0} +_8 \{\overline{0}, \overline{4}\} = \{\overline{0}, \overline{4}\},$	$\overline{4} +_8 S = \overline{4} +_8 \{\overline{0}, \overline{4}\} = \{\overline{0}, \overline{4}\};$
$\overline{1} +_8 S = \overline{1} +_8 \{\overline{0}, \overline{4}\} = \{\overline{1}, \overline{5}\},$	$\overline{5} +_8 S = \overline{5} +_8 \{\overline{0}, \overline{4}\} = \{\overline{1}, \overline{5}\};$
$\overline{2} +_8 S = \overline{2} +_8 \{\overline{0}, \overline{4}\} = \{\overline{2}, \overline{6}\},$	$\overline{6} +_8 S = \overline{6} +_8 \{\overline{0}, \overline{4}\} = \{\overline{2}, \overline{6}\};$
$\overline{4} +_8 S = \overline{4} +_8 \{\overline{0}, \overline{4}\} = \{\overline{0}, \overline{4}\},$	$\overline{7} +_8 S = \overline{7} +_8 \{\overline{0}, \overline{4}\} = \{\overline{3}, \overline{7}\}.$

Moreover, $\rho_S(\overline{0}) = \{\overline{0}, \overline{4}\}, \ \rho_S(\overline{1}) = \{\overline{1}, \overline{5}\}, \ \rho_S(\overline{2}) = \{\overline{2}, \overline{6}\}, \ \rho_S(\overline{3}) = \{\overline{3}, \overline{7}\}, \ \rho_S(\overline{4}) = \{\overline{0}, \overline{4}\}, \ \rho_S(\overline{5}) = \{\overline{1}, \overline{5}\}, \ \rho_S(\overline{6}) = \{\overline{2}, \overline{6}\}, \ \text{and} \ \rho_S(\overline{7}) = \{\overline{3}, \overline{7}\}.$ Thus, the quotient $M/S = \{\rho_S(\overline{0}), \rho_S(\overline{1}), \rho_S(\overline{2}), \rho_S(\overline{3})\}$ using the equivalence relation in Definition 6.

Now, observe that for all $\alpha \in \Gamma$, $\overline{7^{\alpha}} = \overline{1}$ or $\overline{7^{\alpha}} = \overline{7}$. Note that the identity $\overline{0} \in S$ and for all $\alpha, \beta \in \Gamma$,

$${}^{\alpha}\overline{0} + {}_{8}{}^{\beta}\overline{0} = \overline{7^{\alpha}0} + {}_{8}\overline{7^{\beta}0} = \overline{0} + {}_{8}\overline{0} \in S;$$

$${}^{\alpha}\overline{0} + {}_{8}{}^{\beta}\overline{4} = \overline{7}{}^{\alpha}\overline{0} + {}_{8}{}^{7\beta}4 = 7{}^{\beta}4 = \overline{4} \in S;$$
$${}^{\alpha}\overline{4} + {}_{8}{}^{\beta}\overline{4} = \overline{7}{}^{\alpha}\overline{4} + {}_{8}{}^{7\beta}\overline{4} = \overline{0} \text{ or } \overline{4} \in S.$$

This implies that S is a Γ -submonoid of M. Now, note that for all $\alpha \in \Gamma$,

$$\begin{aligned} {}^{\alpha}\overline{0} +_8 S &= {}^{\alpha}\overline{0} +_8 \{0,4\} = 7{}^{\alpha}\overline{0} +_8 \{0,4\} = \{0,4\}; \\ {}^{\alpha}\overline{1} +_8 S &= {}^{\alpha}\overline{1} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{1}} +_8 \{\overline{0},\overline{4}\} = \{\overline{1},\overline{5}\} \text{ or } \{\overline{3},\overline{7}\}; \\ {}^{\alpha}\overline{2} +_8 S &= {}^{\alpha}\overline{2} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{2}} +_8 \{\overline{0},\overline{4}\} = \{\overline{2},\overline{6}\}; \\ {}^{\alpha}\overline{3} +_8 S &= {}^{\alpha}\overline{3} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{3}} +_8 \{\overline{0},\overline{4}\} = \{\overline{1},\overline{5}\} \text{ or } \{\overline{3},\overline{7}\}; \\ {}^{\alpha}\overline{4} +_8 S &= {}^{\alpha}\overline{4} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{4}} +_8 \{\overline{0},\overline{4}\} = \{\overline{0},\overline{4}\}; \\ {}^{\alpha}\overline{5} +_8 S &= {}^{\alpha}\overline{5} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{5}} +_8 \{\overline{0},\overline{4}\} = \{\overline{1},\overline{5}\} \text{ or } \{\overline{3},\overline{7}\}; \\ {}^{\alpha}\overline{6} +_8 S &= {}^{\alpha}\overline{6} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{6}} +_8 \{\overline{0},\overline{4}\} = \{\overline{2},\overline{6}\}; \\ {}^{\alpha}\overline{7} +_8 S &= {}^{\alpha}\overline{7} +_8 \{\overline{0},\overline{4}\} = \overline{7{}^{\alpha}\overline{7}} +_8 \{\overline{0},\overline{4}\} = \{\overline{1},\overline{5}\} \text{ or } \{\overline{3},\overline{7}\}. \end{aligned}$$

Moreover, we have $\rho_S(\overline{0}) = \rho_S(\overline{4}) = \{\overline{0}, \overline{4}\}, \ \rho_S(\overline{2}) = \rho_S(\overline{6}) = \{\overline{2}, \overline{6}\}, \ \text{and} \ \rho_S(\overline{1}) = \rho_S(\overline{3}) = \rho_S(\overline{5}) = \rho_S(\overline{7}) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}.$ Thus, the quotient $M/S = \{\rho_S(\overline{0}), \rho_S(\overline{1}), \rho_S(\overline{2})\}$ using the Definition 13. Observe that M/S yield is not equal to M/S above. Moreover, $\rho_S(\overline{0})$ is the same with $\rho_S(\overline{0})$ above, however, $\rho_S(\overline{1})$ s are different. This implies that their equivalence classes are not equal. Hence, M/S via Γ -submonoid is different from M/S via submonoid, where M is a monoid.

Theorem 11. If M is a commutative Γ -monoid and S a Γ -submonoid of M, then M/S is a Γ -monoid.

Proof. Let *M* be a commutative Γ-monoid and *S* a Γ-submonoid of *M*. By Proposition 1, since ρ_S is a congruence on *M*, we have $M/\rho_S = M/S$ is a monoid with binary operation \circ given by $\rho_S(x) \circ \rho_S(y) = \rho_S(x * y)$ with identity $\rho_S(1_M)$. Consider a mapping $\phi : \Gamma \times M/S \longrightarrow M/S$ given by $(\alpha, \rho_S(x)) \mapsto {}^{\alpha}\rho_S(x) = \rho_S({}^{\alpha}x)$ for all $\alpha \in \Gamma$ and $x \in M$. Let $(\alpha, \rho_S(x)), (\beta, \rho_S(y)) \in \Gamma \times M/S$ such that $(\alpha, \rho_S(x)) = (\beta, \rho_S(y))$. Then $\alpha = \beta$ and $\rho_S(x) = \rho_S(y)$. Thus, by Remark 14(ii), $({}^{\alpha'}x * S) \cap ({}^{\alpha'}y * S) \neq \emptyset$ for all $\alpha' \in \Gamma$, which implies that ${}^{\alpha'}x * s_1 = {}^{\alpha'}y * s_2$ for some $s_1, s_2 \in S$. Accordingly, ${}^{\alpha}({}^{\alpha'}x * s_1) = {}^{\alpha}({}^{\alpha'}x * S) \cap ({}^{\alpha+\alpha'}y * S) \neq \emptyset$. This means that

$$\phi(\alpha, \rho_S(x)) = {}^{\alpha}\rho_S(x) = \rho_S({}^{\alpha}x) = \rho_S({}^{\beta}y) = {}^{\beta}\rho_S(y) = \phi(\beta, \rho_S(y)).$$

Hence, ϕ is well-defined.

Now, for any $\alpha, \beta \in \Gamma$ and $x \in M$, $\phi((0, \rho_S(x))) = {}^0\rho_S(x) = \rho_S({}^0x) = \rho_S(x)$ and $\phi((\alpha + \beta, \rho_S(x))) = {}^{\alpha+\beta}\rho_S(x) = {}^{\alpha}({}^{\beta}\rho_S(x)) = \phi((\alpha, \phi((\beta, \rho_S(x)))))$. Thus, ϕ is an action. Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then

$$\phi((\alpha, \rho_S(x) \circ \rho_S(y))) = {}^{\alpha}(\rho_S(x) \circ \rho_S(y)) \\ = {}^{\alpha}(\rho_S(x * y))$$

$$= \rho_S(^{\alpha}(x * y))$$

$$= \rho_S(^{\alpha}x * ^{\alpha}y)$$

$$= \rho_S(^{\alpha}x) \circ \rho_S(^{\alpha}y)$$

$$= ^{\alpha}\rho_S(x) \circ ^{\alpha}\rho_S(y)$$

$$= \phi((\alpha, \rho_S(x))) \circ \phi((\alpha, \rho_S(y)))$$

Therefore, M/S is a Γ -monoid.

Proposition 4. Let S be a normal Γ -submonoid of a commutative Γ -monoid M. Then $\rho_S(h) = \rho_S(1_M)$ if and only if $h \in S$.

Proof. Suppose $h \in S$. Let $x \in \rho_S(h)$. Then, for all $\alpha \in \Gamma$, $({}^{\alpha}x*S) \cap ({}^{\alpha}h*S) \neq \emptyset$. This implies that there exist $h_1, h_2 \in S$ such that ${}^{\alpha}x * h_1 = {}^{\alpha}h * h_2 \in S$. Since S is a normal Γ -submonoid and $h_1, {}^{\alpha}x * h_1 \in S$, it follows that ${}^{\alpha}x \in S$ for all $\alpha \in \Gamma$. Accordingly, for all $\alpha \in \Gamma, {}^{\alpha}x*{}^{\alpha}1_M = {}^{\alpha}1_M*{}^{\alpha}x$ implies $({}^{\alpha}x*S) \cap ({}^{\alpha}1_M*S) \neq \emptyset$. Hence, $x\rho_S 1_M$ and $x \in \rho_S(1_M)$. It follows that $\rho_S(h) \subseteq \rho_S(1_M)$. Let $x \in \rho_S(1_M)$. Then, $({}^{\alpha}x*S) \cap ({}^{\alpha}1_M*S) \neq \emptyset$ for all $\alpha \in \Gamma$. Thus, there exist $h_1, h_2 \in S$ such that for all $\alpha \in \Gamma, {}^{\alpha}x*h_1 = {}^{\alpha}1_M*h_2 \in S$. Since S is a normal Γ -submonoid and $h_1, {}^{\alpha}x*h_1 \in S$, it follows that ${}^{\alpha}x \in S$. Observe that for all $\alpha \in \Gamma, {}^{\alpha}h = {}^{\alpha}h*1_M \in S$ since S is a Γ -submonoid. Accordingly, ${}^{\alpha}x*{}^{\alpha}h = {}^{\alpha}h*{}^{\alpha}x$ implies $({}^{\alpha}x*S) \cap ({}^{\alpha}h*S) \neq \emptyset$. Hence, $x\rho_Sh$ and $x \in \rho_S(h)$. Consequently, $\rho_S(1_M) \subseteq \rho_S(h)$. Therefore, $\rho_S(1_M) = \rho_S(h)$.

Now, suppose $\rho_S(1_M) = \rho_S(h)$. Then, by Remark 14(ii), $(^{\alpha}1_M * S) \cap (^{\alpha}h * S) \neq \emptyset$ for all $\alpha \in \Gamma$. Thus, there exist $h_1, h_2 \in S$ such that $^{\alpha}h * h_2 = ^{\alpha}1_M * h_1 \in S$ for all $\alpha \in \Gamma$. Since S is a normal Γ -submonoid and $h_2, ^{\alpha}h * h_2 \in S$, it follows that $^{\alpha}h \in S$ for all $\alpha \in \Gamma$. Therefore, $h \in S$.

Proposition 5. Let S be a normal Γ -submonoid of a commutative Γ -monoid M. Then M = S if and only if $M/S = \{\rho_S(1_M)\}$.

Proof. Suppose M = S. Let $x \in M/S = M/M$. Then $x = \rho_M(y)$ for some $y \in M$. By Proposition 4, we have $\rho_M(1_M) = \rho_M(y) = x$. Hence, $M/M = M/S = \{\rho_M(1_M)\}$. Conversely, suppose $M/S = \{\rho_S(1_M)\}$. Let $x \in M$. Then $\rho_S(x) \in M/S$. Thus, $\rho_S(x) = \rho_S(1_M)$. By Proposition 4, $x \in S$. Hence, $M \subseteq S$. Accordingly, M = S.

Proposition 6. Let S be a normal Γ -submonoid of a commutative Γ -monoid M. Every Γ -submonoid of M/S is of the form R/S, where R is a Γ -submonoid of M containing S.

Proof. Let H be a Γ -submonoid of M/S. Then $H \subseteq M/S$. Let $R = \{m \in M : \rho_S(m) \in H\}$. We show that R is a Γ -submonoid of M. Note that the identity in M/S is $\rho_S(1_M) \in H$ and thus, $1_M \in R$. Now, let $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then $\rho_S(x), \rho_S(y) \in H$ and ${}^{\alpha}\rho_S(x) * {}^{\beta}\rho_S(y) \in H$ since H is a Γ -submonoid. Accordingly, we have $\rho_S({}^{\alpha}x * {}^{\beta}y) = \rho_S({}^{\alpha}x) \circ \rho_S({}^{\beta}y) = {}^{\alpha}\rho_S(x) \circ {}^{\beta}\rho_S(y) \in H$. It follows that ${}^{\alpha}x * {}^{\beta}y \in R$. Accordingly, R is a Γ -submonoid of M. Now, we show that $S \subseteq R$. Let $x \in S$. Then by Proposition 4, we have $\rho_S(x) = \rho_S(1_M)$. Since $\rho_S(1_M)$ is the identity in M/S and H is a Γ -submonoid of M/S, we must have $\rho_S(x) = \rho_S(1_M) \in H$. Thus, $x \in R$. Therefore, $S \subseteq R$.

1789

Theorem 12. Let M be a commutative Γ -monoid and S a normal Γ -submonoid of M. Then the mapping $\pi_S : M \longrightarrow M/S$ given by $\pi_S(x) = \rho_S(x)$ is a Γ -monoid epimorphism with kernel S.

Proof. Let $x, y \in M$ such that x = y. Then, $\pi_S(x) = \rho_S(x) = \rho_S(y) = \pi(y)$. Thus, π_S is well-defined. Now, let $x, y \in M$. Then, we have

 $\pi_S(x * y) = \rho_S(x * y) = \rho_S(x) \circ \rho_S(y) = \pi_S(x) \circ \pi_S(y)$ and $\pi_S(1_M) = \rho_S(1_M)$. Thus, by Definition 4, π_S is a monoid homomorphism. Since ${}^{\alpha}\pi_S(x) = {}^{\alpha}\rho_S(x) = \rho_S({}^{\alpha}x) = \pi_S({}^{\alpha}x)$, by Definition, π_S is a Γ -monoid homomorphism. Now, let $b \in M/S$. Then, $b = \rho_S(a)$ for some $a \in M$. Thus, $b = \rho_S(a) = \pi_S(a)$ and so, π is surjective. Therefore, π_S is an epimorphism. Now, since S is normal, by Proposition 4 we have

$$\ker \pi_S = \{ m \in M : \rho_S(m) = \rho_S(1_M) \} = \{ m \in M : m \in S \} = S \cap M = S$$

as desired.

The map π_S in Theorem 12 is called the *canonical epimorphism*.

Proposition 7. Let M be a Γ -monoid. Then for any $A \subseteq M$ and S a commutative Γ -submonoid of M, $\pi_S^{-1}(\pi_S(A)) = \bigcup_{x \in A} \rho_S(x)$.

Proof. Suppose $y \in \pi_S^{-1}(\pi_S(A))$. Then $\rho_S(y) = \pi_S(y) \in \pi_S(A)$. Since π_S is an epimorphism, there exists an $x \in A$ such that $\pi_S(x) = \rho_S(y)$. Hence, $\rho_S(x) = \rho_S(y)$. By Remark 14(ii), $(^{\alpha}x * S) \cap (^{\alpha}y * S) \neq \emptyset$ for all $\alpha \in \Gamma$, that is, $x\rho_S y$. This implies that $y \in \rho_S(x)$ for some $x \in A$. It follows that $y \in \bigcup_{x \in A} \rho_S(x)$ so that $\pi_S^{-1}(\pi_S(A)) \subseteq \bigcup_{x \in A} \rho_S(x)$. Conversely, suppose $y \in \bigcup_{x \in A} \rho_S(x)$. Then $y \in \rho_S(x)$ for some $x \in A$. This implies that $y\rho_S x$, that is, $(^{\alpha}y * S) \cap (^{\alpha}x * S) \neq \emptyset$ for all $\alpha \in \Gamma$. By Remark 14(ii), $\rho_S(y) = \rho_S(x)$. Thus, $\pi_S(y) = \pi_S(x)$. Since $\pi_S(x) \in \pi_S(A)$, it follows that $\pi_S(y) \in \pi_S(A)$ implying that $y \in \pi_S^{-1}(\pi_S(A))$. Hence, $\bigcup_{x \in A} \rho_S(x) \subseteq \pi_S^{-1}(\pi_S(A))$. Therefore, $\pi_S^{-1}(\pi_S(A)) = \bigcup_{x \in A} \rho_S(x)$.

6. Isomorphism Theorems

In [5], the isomorphism theorems for Γ -monoids via Γ -order-ideals are established. Here, we prove isomorphism theorems for Γ -monoids via Γ -submonoids.

As shown already in Example 16, the quotient M/S in our discussion is not the same with the quotient discussed in [5].

Theorem 13. Let (M, *) and (N, \cdot) be commutative Γ -monoids and let $f : M \to N$ be a Γ -monoid homomorphism. There exists a unique Γ -monoid homomorphism $\varphi : M/\ker f \to N$ such that the following diagram is commutative

$$\begin{array}{ccc}
M & \xrightarrow{f} & N \\
& & \downarrow^{\pi_{\ker f}} & & \\
M/\ker f & & & \\
\end{array}$$

$$\square$$

that is, $\varphi \circ \pi_{\ker f} = f$, where $\pi_{\ker f}(x) := \rho_{\ker f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\ker \varphi = \{\ker f\}$. However, φ is a Γ -monoid isomorphism if and only if $\rho_f = \rho_{\ker f}$.

Proof. Let (M, *) and (N, \cdot) be commutative Γ-monoids and let $f : M \to N$ be a Γ-monoid homomorphism. Since Γ-monoids are monoids and Γ-monoid homomorphism is a monoid homomorphism, by Theorem 1, there exists a unique monoid homomorphism $\varphi : M/\ker f \to N$ such that the following diagram is commutative

that is, $\varphi \circ \pi_{\ker f} = f$, where $\pi_{\ker f}(x) := \rho_{\ker f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\ker \varphi = \{\ker f\}$. However, φ is an isomorphism if and only if $\rho_f = \rho_{\ker f}$. Thus, it remains to show that φ is a Γ -monoid homomorphism. Now, let $\rho_{\ker f}(x) \in M/\ker f$ and $\alpha \in \Gamma$. Since f is a Γ -monoid homomorphism, we have

$$\varphi({}^{\alpha}\rho_{\ker f}(x)) = \varphi(\rho_{\ker f}({}^{\alpha}x)) = f({}^{\alpha}x) = {}^{\alpha}f(x) = {}^{\alpha}\varphi(\rho_{\ker f}(x)).$$

Hence, φ is a Γ -monoid homomorphism.

Corollary 1. Let M and N be commutative Γ -monoids and $f: M \to N$ be a Γ -monoid homomorphism. Then f induces a Γ -monoid isomorphism $M/\ker f \cong Imf$.

Proof. Suppose $f: M \to N$ is a Γ-monoid homomorphism. Then, by Theorem 13, there exists a Γ-monoid homomorphism $\varphi: M/\ker f \to N$. If we set $N = \operatorname{Im} f$, then $\varphi: M/\ker f \to \operatorname{Im} f$ is a Γ-monoid epimorphism. Thus, $\ker \varphi = \{\rho_{\ker f}(x) : f(x) = 1_N\} = \{\ker f\}$ implies that $\rho_{\ker f}(x) = \ker f$ and $x \in \ker f$. Hence, by Proposition 4, $\rho_{\ker f}(x) = \rho_{\ker f}(1_M)$ which implies that $\ker \varphi = \{\rho_{\ker f}(1_M)\}$ and φ is injective. Accordingly, $M/\ker f \cong \operatorname{Im} f$.

Corollary 2. Let K and L be normal Γ -submonoids of a commutative Γ -monoid M. Then $K/(K \cap L) \cong (K * L)/L$.

Proof. Consider the map $f: K \to K * L$ defined by $f(k) = k * 1_M$ and $\pi_L : K * L \to (K*L)/L$ defined by $\pi_L(k*l) = \rho_L(k*l)$. Then $\varphi: K \to (K*L)/L$ defined by $\varphi(k) = \rho_L(k)$ is a Γ -monoid homomorphism. Let $x \in (K*L)/L$. Then $x = \rho_L(k*l)$ for some $k \in K$ and $l \in L$. Observe that $x = \rho_L(k*l) = \rho_L(k) \circ \rho_L(l) = \rho_L(k) \circ \rho_L(1_M) = \rho_L(k)$. So, there is a $k \in K$ such that $\varphi(k) = \rho_L(k) = x$ and φ is onto. Moreover,

$$\ker \varphi = \{k \in K : \rho_L(k) = \rho_L(1_M)\} = \{k \in K : k \in L\} = K \cap L.$$

By Corollary 1, $K/\ker \varphi \cong \operatorname{Im} \varphi = (K * L)/L$.

The following theorem is the counterpart to the third isomorphism theorem of groups for Γ -monoids via Γ -submonoids.

Theorem 14. Let S and T be normal Γ -submonoids of a commutative Γ -monoid M with $S \subseteq T$. Then $(M/S)/(T/S) \cong M/T$.

Proof. Define $f: M/S \to M/T$ by $f(\rho_S(h)) = \rho_T(h)$ for all $\rho_S(h) \in M/S$. Let $\rho_S(h_1), \rho_S(h_2) \in M/S$ and suppose that $\rho_S(h_1) = \rho_S(h_2)$. Then, $({}^{\alpha}h_1 * S) \cap ({}^{\alpha}h_2 * S) \neq \emptyset$ for all $\alpha \in \Gamma$. Thus, ${}^{\alpha}h_1 * w_1 = {}^{\alpha}h_2 * w_2$ for some $w_1, w_2 \in S \subseteq T$. Thus, $({}^{\alpha}h_1 * T) \cap ({}^{\alpha}h_2 * T) \neq \emptyset$ for all $\alpha \in \Gamma$. By Remark 14(ii), $\rho_T(h_1) = \rho_T(h_2)$. Thus, $f(\rho_S(h_1)) = f(\rho_S(h_2))$. Hence, f is well-defined.

Let $\rho_S(h_1), \rho_S(h_2) \in M/S$. Then

 $f(\rho_S(h_1) \circ \rho_S(h_2)) = f(\rho_S(h_1 * h_2)) = \rho_T(h_1) \circ \rho_T(h_2) = f(\rho_S(h_1)) \circ f(\rho_S(h_2)).$

Hence, f is a homomorphism.

Let $\rho_S(h) \in \ker f$. Then $f(\rho_S(h)) = \rho_T(1_M)$, the identity in M/T. Thus, $\rho_T(h) = \rho_T(1_M)$. By Proposition 4, $h \in T$. Hence, $\rho_S(h) \in T/S$. Thus, $\ker f \subseteq T/S$. Let $\rho_S(h) \in T/S$. Then $h \in T$. By Proposition 4, $\rho_T(h) = \rho_T(1_M)$. Thus, $f(\rho_S(h)) = \rho_T(h) = \rho_T(1_M)$. Accordingly, $\rho_S(h) \in \ker f$. Hence, $T/S \subseteq \ker f$. So, $T/S = \ker f$.

For $\rho_S(x), \rho_S(y) \in M/S$ and $\alpha \in \Gamma$, recall that $\rho_S(x)\rho_f\rho_S(y)$ if and only if $f({}^{\alpha}\rho_S(x)) = f({}^{\alpha}\rho_S(y))$. We claim that $\rho_f = \rho_{\ker f}$.

Let $\rho_S(z) \in M/S$. We show that $\rho_f(\rho_S(z)) = \rho_{\ker f}(\rho_S(z))$.

Let $\rho_S(w) \in \rho_{\ker f}(\rho_S(z))$. Then $({}^{\alpha}\rho_S(z) \circ \ker f) \cap ({}^{\alpha}\rho_S(w) \circ \ker f) \neq \emptyset$. Thus, there exist $y_1, y_2 \in \ker f$ such that ${}^{\alpha}\rho_S(z) \circ y_1 = {}^{\alpha}\rho_S(w) \circ y_2$. Hence, $f({}^{\alpha}\rho_S(z)) = f({}^{\alpha}\rho_S(z)) \circ \rho_T(1_M) = f({}^{\alpha}\rho_S(z)) \circ f(y_1) = f({}^{\alpha}\rho_S(z) \circ y_1)$ and

 $\begin{aligned} f({}^{\alpha}\rho_{S}(w)) &= f({}^{\alpha}\rho_{S}(w)) \circ \rho_{T}(1_{M}) = f({}^{\alpha}\rho_{S}(w)) \circ f(y_{2}) = f({}^{\alpha}\rho_{S}(w) \circ y_{2}). \text{ So, by well-}\\ \text{definedness of } f, \text{ we have } f({}^{\alpha}\rho_{S}(z)) &= f({}^{\alpha}\rho_{S}(z) \circ y_{1}) = f({}^{\alpha}\rho_{S}(w) \circ y_{2}) = f({}^{\alpha}\rho_{S}(w)).\\ \text{Accordingly, } \rho_{S}(w) &\in \rho_{f}(\rho_{S}(z)). \text{ Thus, } \rho_{\text{ker } f}(\rho_{S}(z)) \subseteq \rho_{f}(\rho_{S}(z)). \end{aligned}$

Now, let $\rho_S(w) \in \rho_f(\rho_S(z))$ and $\alpha \in \Gamma$. Then $f({}^{\alpha}\rho_S(z)) = f({}^{\alpha}\rho_S(w))$, that is, ${}^{\alpha}\rho_T(z) = {}^{\alpha}\rho_T(w)$. Thus, $\rho_T({}^{\alpha}z) = \rho_T({}^{\alpha}w)$ implies $({}^{\alpha}w * T) \cap ({}^{\alpha}z * T) \neq \emptyset$. Thus, there exist $h_1, h_2 \in T$ such that ${}^{\alpha}w * h_1 = {}^{\alpha}z * h_2$. Hence, $\rho_S(h_1), \rho_S(h_2) \in T/S = \ker f$. Consequently, $\rho_S({}^{\alpha}w) \circ \rho_S(h_1) = \rho_S({}^{\alpha}w * h_1) = \rho_S({}^{\alpha}z * h_2) = \rho_S({}^{\alpha}z) \circ \rho_S(h_2)$ for all $\alpha \in \Gamma$. This implies that $({}^{\alpha}\rho_S(w) \circ \ker f) \cap ({}^{\alpha}\rho_S(z) \circ \ker f) \neq \emptyset$. Hence, $\rho_S(w) \in \rho_{\ker f}(\rho_S(z))$. Accordingly, $\rho_f(\rho_S(z)) \subseteq \rho_{\ker f}(\rho_S(z))$.

Therefore, $\rho_f(\rho_S(z)) = \rho_{\ker f}(\rho_S(z))$ for all $\rho_S(z) \in M/S$, that is, $\rho_f = \rho_{\ker f}$. By Theorem 13, these all imply that $(M/S)/(T/S) = (M/S)/\ker f \cong M/T$.

7. Conclusion

: In this paper, we have shown that Γ -ideals and Γ -submonoids of a Γ -monoid M are not equivalent to the existing Γ -order-ideals of M. For any Γ -monoids M and N, we proved that the kernel of a Γ -monoid homomorphism $\varphi : M \to N$ is a Γ -submonoid of M. Also, for any Γ -submonoid S of a Γ -monoid M, ρ_S is a congruence relation if M is commutative and thus, $M/S = M/\rho_S$ is defined for commutative Γ -monoid M. Moreover, isomorphism theorems for Γ -monoids via Γ -submonoids were proved.

Acknowledgements

The authors would like to thank the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)-Philippines, and MSU-Iligan Institute of Technology for funding this research.

References

- R. Hazrat and H. Li. The talented monoid of a Leavitt path algebra. Journal of Algebra 547, pages 430–455, 2020.
- [2] T. W. Hungerford. Algebra. 1980.
- [3] D. Gonçalvez L. G. Cordeiro and R. Hazrat. The talented monoid of a directed graph with applications to graph algebras. *Rev. Mat. Iberoam*, 38:223–256, 2022.
- [4] Y. Give' on. Normal monoids and factor monoids of commutative monoids. 1963.
- [5] A. Sebandal and J. Vilela. The Jordan-Hölder theorem for monoids with group action. Journal of Algebra and Its Application, 22(4):1–18, 2023.
- [6] B. Steinberg. Representation Theory of Finite Monoids. 2016.