
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1772-1793
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

On Γ-ideals, Γ-submonoids and Isomorphism Theorems
of Γ-monoids via Γ-submonoids

Hulsen T. Sarapuddin1,∗, Jocelyn P. Vilela1

1 Department of Mathematics and Statistics, College of Science and Mathematics,
Center of Mathematical and Theoretical Physical Sciences-PRISM, MSU-Iligan Institute of
Technology, 9200 Iligan City, Philippines

Abstract. This study introduces the concept of Γ-ideals and Γ-submonoids of Γ-monoids and
investigates their relationships with the existing Γ-order-ideals. Moreover, quotient of Γ-monoids
and isomorphism theorems via Γ-submonoids are proved.

2020 Mathematics Subject Classifications: 20M32

Key Words and Phrases: Γ-monoids, Γ-monoid Homomorphism, Γ-order-ideals, Γ-ideals, Γ-
submonoids, Isomorphism Theorem

1. Introduction

The talented monoid of a row-finite directed graph E = (E0, E1, r, s), denoted by
TE , is the commutative monoid generated by {v(i) : v ∈ E0, i ∈ Z} such that v(i) =∑
e∈s−1(v)

r(e)(i + 1) for every i ∈ Z and every v ∈ E0 that is not a sink. The additive

group Z of integers acts on TE by monoid automorphisms by shifting indices: for each
n, i ∈ Z and v ∈ E0, define nv(i) = v(i + n), which extends to an action of Z on TE

[3]. Monoids with a group Γ acting (by monoid automorphisms) on it, called Γ-monoids,
was first introduced in the paper of Hazrat and Li [1] as a tool in the study of talented
monoids. In the same paper, Γ-order-ideals of Γ-monoids are also introduced. Sebandal
and Vilela [5] prove some properties, including the isomorphism theorems for Γ-monoids
and Γ-order-ideals are established.

This paper extends the study of Γ-monoids by defining the concept of Γ-ideals and
Γ-submonoids and establishing some of their properties. Moreover, this paper studies
quotient of Γ-monoids via equivalence classes of Γ-submonoids and proves isomorphism
theorems.
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2. Preliminaries

In this section, we present some basic concepts and known results that are useful in
this study.

Definition 1. [2] A semigroup is a nonempty set M together with a binary operation ∗
on M which is associative, that is, for all a, b, c ∈ M , a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Definition 2. [2] A monoid is a semigroupM which contains an identity element 1M ∈ M
such that 1M ∗m = m ∗ 1M = m for all m ∈ M .

For a monoid M with the binary operation ∗, we may also say that M is a monoid
under ∗. A monoid M is said to be commutative if for all x, y ∈ M , x ∗ y = y ∗ x.

If no confusion arises, by a monoid M , we shall mean a triple (M, 1M , ∗) unless other-
wise specified.

Definition 3. [6] Let (M, ∗) be a monoid. A submonoid is a subset S of M which is
closed under the binary operation on M and contains the identity 1M of M .

Definition 4. [6] Let (M, ∗) and (N, ·) be monoids. A monoid homomorphism is a
mapping φ : M → N such that φ(a ∗ b) = φ(a) · φ(b) and φ(1M ) = 1N for all a, b ∈ M
where 1M and 1N are the identities in M and N , respectively.

Example 1. Consider the monoids M = (N,+) and N = (N, ·) and the mapping φ :
M → N defined by φ(x) = bx, where b ∈ N \ {0}. For any x, y ∈ M , we have φ(x+ y) =
bx+y = bx · by = φ(x) · φ(y) and φ(0) = b0 = 1. Therefore, φ is a monoid homomorphism.

Definition 5. [6] A congruence on a monoid M is an equivalence relation ρ on M which
satisfies the condition: For all u, v, x, y ∈ M , if xρy, then (u ∗ x ∗ v)ρ(u ∗ y ∗ v).

Proposition 1. [6] Let ρ be a congruence on a monoid M . Then M/ρ is a monoid with
binary operation ◦ given by ρ(x) ◦ ρ(y) = ρ(x ∗ y) for all x, y ∈ M .

Definition 6. [4] Let M be a commutative monoid. For any submonoid H of M , we
define a binary relation ρH in M by xρHy if and only if (x ∗H) ∩ (y ∗H) ̸= ∅.

Remark 1. [4] For any submonoid H of a commutative monoid M , ρH is an equivalence
relation on M .

Definition 7. [2] An action of a group (G, ◦) in a set S is a function ϕ : G×S −→ S such
that for all x ∈ S, and g1, g2 ∈ G: ϕ((1G, x)) = x and ϕ((g1 ◦ g2, x)) = ϕ((g1, ϕ((g2, x)))).
When such an action is given, G is said to act on the set S.

Example 2. Consider the group G = Z under the usual addition and the set S =
R of real numbers and the mapping ϕ : G × S → S given by ϕ((g, x)) = 2gx. Let
(g, x), (h, y) ∈ G × S such that (g, x) = (h, y). Then g = h and x = y. Thus, we have
ϕ((g, x)) = 2gx = 2hy = ϕ((h, y)) and ϕ is well-defined. Now, for any g1, g2 ∈ G and x ∈ S,
we have ϕ((0, x)) = 20x = x and ϕ((g1 + g2, x)) = 2g1+g2x = 2g12g2x = ϕ((g1, ϕ((g2, x)))).
Therefore, ϕ is an action.
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Definition 8. [3] Let M be a monoid and Γ a group. M is said to be a Γ-monoid if there
is an action ϕ : Γ×M → M of Γ on M via monoid automorphism, that is, ϕ is an action
which satisfies: for all α ∈ Γ and x, y ∈ M , ϕ((α, x ∗ y)) = ϕ((α, x)) ∗ ϕ((α, y)). For α ∈ Γ
and a ∈ M , the action of α on a shall be denoted by αa.

Example 3. Consider Γ = Z a group of integers under the usual addition and the set
M = R with the usual addition as its binary operation. Then, (M,+) is a monoid with
identity 0. Consider the action ϕ : Γ ×M → M given by ϕ((α, x)) = 2αx in Example 2.
Now, let α ∈ Γ and x, y ∈ M . Then we have ϕ((α, x + y)) = 2α(x + y) = 2αx + 2αy =
ϕ((α, x)) + ϕ((α, y)). Therefore, M is a Γ-monoid.

Example 4. Let Γ be a group of integers under addition and let T = M2(R) under matrix

addition. Consider the mapping ϕ : Γ × T → T given by

(
α,

(
a b
c d

))
7→ α

(
a b
c d

)
=(

2αa 2αb
2αc 2αd

)
. Let

(
α,

(
a b
c d

))
,

(
β,

(
e f
g h

))
∈ Γ× T such that(

α,

(
a b
c d

))
=

(
β,

(
e f
g h

))
. Then α = β and

(
a b
c d

)
=

(
e f
g h

)
. Thus,

(
2αa 2αb
2αc 2αd

)
=(

2βe 2βf
2βg 2βh

)
and ϕ is well-defined. Now, for any α, β ∈ Γ and a, b, c, d ∈ R, we have

ϕ

((
0,

(
a b
c d

)))
= 0

(
a b
c d

)
=

(
20a 20b
20c 20d

)
=

(
a b
c d

)
and

ϕ

((
α+ β,

(
a b
c d

)))
= α+β

(
a b
c d

)
=

(
2α+βa 2α+βb
2α+βc 2α+βd

)
=

(
2α2βa 2α3βb
2α4βc 2α5βd

)
= ϕ

((
α,

(
2βa 2βb
2βc 2βd

)))
= ϕ

((
α,φ

((
β,

(
a b
c d

)))))
.

Thus, ϕ is an action.

Now, let α ∈ Γ and

(
a b
c d

)
,

(
e f
g h

)
∈ T. Then we have

ϕ

((
α,

(
a b
c d

)
+

(
e f
g h

)))
= ϕ

((
α,

(
a+ e b+ f
c+ g d+ h

)))
=

(
2α(a+ e) 2α(b+ f)
2α(c+ g) 2α(d+ h)

)
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=

(
2αa+ 2αe 2αb+ 2αf
2αc+ 2αg 2αd+ 2αh

)
=

(
2αa 2αb
2αc 2αd

)
+

(
2αe 2αf
2αg 2αh

)
= ϕ

((
α,

(
a b
c d

)))
+ ϕ

((
α,

(
e f
g h

)))
.

Therefore, T is a Γ-monoid.

Example 5. Consider the set M = {1, a, b, c, d, e} and an operation ∗ given by

∗ 1 a b c d e

1 1 a b c d e

a a a a a a a

b b b b b b b

c c c c c c c

d d d d d d d

e e e e e e e

The operation ∗ is closed and associative since for all x, y ∈ M , x ∗ y = x holds for all
x ̸= 1. Clearly, 1 is an identity in M . Thus, M is a monoid. With a group Γ acting
trivially on M , we obtain that M is a Γ-monoid.

Definition 9. [1] Let M , M1 and M2 be monoids and let Γ be a group acting on M , M1

and M2.

(i) A Γ-monoid homomorphism is a monoid homomorphism ϕ : M1 −→ M2 that re-
spects the action of Γ, this means ϕ(αa) = αϕ(a).

(ii) A Γ-order-ideal of a monoid M is a subset I of M such that for any α, β ∈ Γ,
αa ∗ βb ∈ I if and only if a, b ∈ I.

Remark 2. [1] A Γ-order-ideal is a submonoid I of M which is closed under the action
of Γ.

Example 6. Let a group Γ acts trivially on both monoids M = (N,+) and N = (N, ·),
that is, for all α ∈ Γ, we have ϕ((α,m)) = αm = m and ϕ((α, n)) = αn = n for all m ∈ M
and n ∈ N . Now, let α ∈ Γ and x, y ∈ M . Then, ϕ((α, x + y)) = α(x+ y) = x + y =
αx + αy = ϕ((α, x)) + ϕ((α, y)). Thus, M and N are Γ-monoids. Consider the monoid
homomorphism φ : M → N defined by φ(x) = bx, where b ∈ N \ {0} in Example 1. For
all α ∈ Γ and a ∈ M , we have φ(αa) = φ(a) = αφ(a). Thus, by Definition 9(ii), φ is a
Γ-monoid homomorphism.

Example 7. Consider the Γ-monoid M = R under the usual addition in Example 3
and the Γ-monoid T = M2(R) under matrix addition in Example 4. Define a mapping
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ϕ : T → M by ϕ

((
a b
c d

))
= 2(a + b + c + d). Let

(
a b
c d

)
,

(
e f
g h

)
∈ T such that(

a b
c d

)
=

(
e f
g h

)
. Then a = e, b = f , c = g and d = h. Thus, 2(a + b + c + d) =

2(e + f + g + h) and ϕ is well-defined. Now, for any

(
a b
c d

)
,

(
e f
g h

)
∈ T , we have

ϕ

((
0 0
0 0

))
= 2(0 + 0 + 0 + 0) = 2(0) = 0 and

ϕ

((
a b
c d

)
+

(
e f
g h

))
= ϕ

((
a+ e b+ f
c+ g d+ h

))
= 2((a+ e) + (b+ f) + (c+ g) + (d+ h))

= 2((a+ b+ c+ d) + (e+ f + g + h))

= 2(a+ b+ c+ d) + 2(e+ f + g + h)

= ϕ

((
a b
c d

))
+ ϕ

((
e f
g h

))
.

Thus, ϕ is a monoid homomorphism. Also, for all α ∈ Γ and

(
a b
c d

)
∈ T , we have

ϕ

(
α

(
a b
c d

))
= ϕ

((
2αa 2αb
2αc 2αd

))
= 2(2αa+ 2αb+ 2αc+ 2αd)

= 2α2(a+ b+ c+ d)

= αϕ

((
a b
c d

))
.

Hence, ϕ is a Γ-monoid homomorphism.

Theorem 1. [4] Let M1 and M2 be commutative monoids and let f : M1 −→ M2 be a
homomorphism. There exists a unique homomorphism φ : M1/ ker f −→ M2 such that the
following diagram is commutative

M1 M2

M1/ ker f

rker f

f

φ

that is, φ ◦ rker f = f , where rker f (x) := ρker f (x). Moreover, φ is onto and it has a trivial
kernel, namely, kerφ = {ker f}. However, φ is an isomorphism if and only if ρf = ρker f .
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3. Γ-ideals

In this section, we discuss the properties of Γ-ideals of Γ-monoids.

Let M be a Γ-monoid and x ∈ M . By Definition 8, for all α ∈ Γ, αx ∗ α1M =
α(x ∗ 1M ) = αx and α1M ∗ αx = α(1M ∗ x) = αx. By uniqueness of the identity element in
M , α1M = 1M .

Remark 3. For a Γ-monoid M and α ∈ Γ, α1M = 1M .

Definition 10. Let M be a Γ-monoid. A left Γ-ideal (respectively, right Γ-ideal) of M
is a subset I of M such that for any α, β ∈ Γ, for all a ∈ I and m ∈ M , αm ∗ βa ∈ I
(respectively, αa ∗ βm ∈ I). A Γ-ideal of M is a subset I of M such that I is both a left
and right Γ-ideal of M .

Let (M, ∗) be a Γ-monoid and A a Γ-ideal of M with a ∈ A. Then for all α, β ∈ Γ, we
have αa = αa ∗ α1M ∈ A. Thus, we have the following remark.

Remark 4. Let (M, ∗) be a Γ-monoid and A be a Γ-ideal of M .

(i) M is a Γ-ideal.

(ii) For all α ∈ Γ and for all a ∈ A, αa ∈ A.

Lemma 1. Let A and B be Γ-ideals of a Γ-monoid M . Then A ∗B is a Γ-ideal of M .

Proof. Let A and B be Γ-ideals of a Γ-monoid M . Clearly, A ∗B ⊆ M . Let x ∈ A ∗B
and m ∈ M . Then x = a ∗ b for some a ∈ A and b ∈ B. Now, for all α, β ∈ Γ,
αx∗βm = α(a ∗ b)∗βm = αa∗αb∗βm = αa∗(αb∗βm) ∈ A∗B by Remark 4(ii) and Defini-
tion 10. Similarly, for all α, β ∈ Γ, αm∗βx ∈ A∗B. Therefore, A∗B is a Γ-ideal of M .

The following example shows that a Γ-ideal is not necessarily a Γ-order-ideal.

Example 8. Consider the set M = {1, n, h, s} and operation ∗ given by

∗ 1 n h s

1 1 n h s

n n n h s

h h h h s

s s s s s

Clearly, the operation is commutative. It can be verified that ∗ is associative. Since
1 ∗ 1 = 1, 1 ∗ n = n, 1 ∗ h = h and 1 ∗ s = s, it follows that 1 is the identity in M . Thus,
M is a commutative monoid. Let Γ be a group and the mapping ϕ : Γ×M −→ M given
by (α, a) 7→ αa = a. For any α, β ∈ Γ and a ∈ M , we have ϕ((0, a)) = 0a = a and

ϕ((α+ β, a)) = α+βa = a = ϕ(β, a) = βa = ϕ((α, βa)) = ϕ((α, ϕ((β, a)))).
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Thus, ϕ is an action. Now, let α ∈ Γ and a, b ∈ M . Then
ϕ((α, a ∗ b)) = α(a ∗ b) = a ∗ b = αa ∗ αb = ϕ((α, a)) ∗ ϕ((α, b)). Hence, M is a Γ-monoid.

Let C = {n, h, s}. Then for any α, β ∈ Γ, we have for all a ∈ C and m ∈ M ,

αa ∗ βm = αn ∗ β1 = n ∗ 1 = n ∈ C,
αa ∗ βm = αn ∗ βh = n ∗ h = h ∈ C,
αa ∗ βm = αh ∗ β1 = h ∗ 1 = h ∈ C,
αa ∗ βm = αh ∗ βh = h ∗ h = h ∈ C,
αa ∗ βm = αs ∗ β1 = s ∗ 1 = s ∈ C,
αa ∗ βm = αs ∗ βh = s ∗ h = s ∈ C,

αa ∗ βm = αn ∗ βn = n ∗ n = n ∈ C;
αa ∗ βm = αn ∗ βs = n ∗ s = s ∈ C;
αa ∗ βm = αh ∗ βn = h ∗ n = h ∈ C;
αa ∗ βm = αh ∗ βs = h ∗ s = s ∈ C;
αa ∗ βm = αs ∗ βn = s ∗ n = s ∈ C;
αa ∗ βm = αs ∗ βs = s ∗ s = s ∈ C.

Since M is commutative, βm ∗ αa = αa ∗ βm ∈ C. Thus, by Definition 10, C is a Γ-ideal.
However, the identity 1 /∈ C. Thus, C is not a Γ-order-ideal of M .

The following example shows that Γ-order-ideal is not necessarily a Γ-ideal.

Example 9. Consider the Γ-monoid M = {1, n, h, s} in Example 8. Let A = {1, n, h}.
Now, suppose that for all a, b ∈ M and for all α, β ∈ Γ, αa ∗ βb ∈ A. Then a ∗ b ∈ A. We
consider the following three cases.
Case 1. a ∗ b = 1. Then a = 1 and b = 1. Thus a, b ∈ A.
Case 2. a ∗ b = n. Then a ∗ b = 1 ∗ n = n ∗ 1 = n ∗ n. Clearly, a, b ∈ A.
Case 3. a ∗ b = h. Then a ∗ b = 1 ∗ h = n ∗ h = h ∗ 1 = h ∗ n. Clearly, a, b ∈ A.
Thus, a, b ∈ A.

Now, suppose that a, b ∈ A. Then, we have

αa ∗ βb = α1 ∗ β1 = 1 ∗ 1 = 1 ∈ A;
αa ∗ βb = α1 ∗ βn = 1 ∗ n = n ∈ A;
αa ∗ βb = α1 ∗ βh = 1 ∗ h = h ∈ A;

αa ∗ βb = αn ∗ βn = n ∗ n = n ∈ A;
αa ∗ βb = αn ∗ βh = n ∗ h = h ∈ A;
αa ∗ βb = αh ∗ βh = h ∗ h = h ∈ A.

Thus, αa ∗ βb ∈ A. Hence, A is a Γ-order-ideal of M .
Observe that there exist n ∈ A and s ∈ M such that for any α, β ∈ Γ, αn∗βs = n∗s =

s /∈ A. Thus, by Definition 10, A is not a Γ-ideal.

Remark 5. If I is a Γ-ideal, in general I is not necessarily a Γ-order-ideal. Similarly, if
I is a Γ-order-ideal, in general I is not necessarily a Γ-ideal.

Lemma 2. Let I be a Γ-ideal of a Γ-monoid M . Then the identity 1M ∈ I if and only if
I = M .

Proof. Let I is a Γ-ideal of M . Suppose that the identity 1M ∈ I and m ∈ M . Then for
any α, β ∈ Γ, we have α1M ∗βm ∈ I. For α = β = 0, we have 01M ∗ 0m = 1M ∗m = m ∈ I.
Thus, M ⊆ I. Consequently, I = M . Conversely, suppose that I = M . Thus, the identity
1M ∈ I.
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Theorems 2 and 3 imply that there exists no proper Γ-order-ideal which is also a Γ-ideal
and vice versa.

Theorem 2. Let I be a Γ-ideal of a Γ-monoid M . Then I is a Γ-order-ideal of M if and
only if I = M .

Proof. Let I be a Γ-ideal of M . Suppose that I is a Γ-order-ideal of M . Then the
identity 1M ∈ I. By Lemma 2, I = M . Conversely, suppose that I = M . Thus, I is a
Γ-order-ideal.

Theorem 3. Let I be a Γ-order-ideal of a Γ-monoid M . Then I is a Γ-ideal of M if and
only if I = M .

Proof. Let I be a Γ-order-ideal of a Γ-monoid M . Then 1M ∈ I since I is also a
submonoid. Suppose that I is a Γ-ideal of M . By Lemma 2, I = M . Conversely, suppose
that I = M . Thus, by Remark 4(i), I is a Γ-ideal.

Lemma 3. Let A and B be Γ-ideals of a Γ-monoid M . Then A∩B and A∪B are Γ-ideals
of M .

Proof. Let A and B be Γ-ideals of M . Let x ∈ A ∩ B and m ∈ M . Then x ∈ A and
x ∈ B. Since A and B are Γ-ideals of M , for all α, β ∈ Γ, we have αx∗βm, αm∗βx ∈ A and
αx ∗ βm, αm ∗ βx ∈ B. Hence, for all α, β ∈ Γ, αx ∗ βm, αm ∗ βx ∈ A∩B. Therefore, A∩B
is a Γ-ideal of M . Now, let x ∈ A∪B and m ∈ M . Then x ∈ A or x ∈ B. Since A and B
are Γ-ideals of M , for all α, β ∈ Γ, we have αx ∗ βm, αm ∗ βx ∈ A or αx ∗ βm, αm ∗ βx ∈ B.
Hence, for all α, β ∈ Γ αx ∗ βm, αm ∗ βx ∈ A∪B. Therefore, A∪B is a Γ-ideal of M .

Theorem 4. Let I be a Γ-order-ideal of a Γ-monoid M and J a Γ-ideal of M .

(i) If J ∩ I ̸= ∅, then J ∩ I is a Γ-ideal of I.

(ii) If M is commutative, then J ∪ I is a Γ-order-ideal of M .

Proof. Let I be a Γ-order-ideal of M and J a Γ-ideal of M .

(i) Let x ∈ J ∩ I and a ∈ I. Then x ∈ J and x ∈ I. Since J is a Γ-ideal of M , for all
α, β ∈ Γ, αx ∗ βa, αa ∗ βx ∈ J . Also, since I is a Γ-order-ideal of M , for all α, β ∈ Γ,
αx ∗ βa, αa ∗ βx ∈ I. Thus, for all α, β ∈ Γ, αx ∗ βa, αa ∗ βx ∈ J ∩ I. Therefore, J ∩ I
is a Γ-ideal of I.

(ii) Suppose that αx ∗ βa ∈ J ∪ I for all α, β ∈ Γ. Then, αx ∗ βa ∈ J or αx ∗ βa ∈ I.
Since I is a Γ-order-ideal of M , it follows that x, a ∈ I ⊆ J ∪ I. Now, suppose that
x, a ∈ J ∪ I. Consider the following cases.

Case 1. x, a ∈ I. Then, since I is a Γ-order-ideal of M , for all α, β ∈ Γ, αx ∗ βa ∈ I ⊆
J ∪ I.

Case 2. x ∈ I, a ∈ J . Then, since J is a Γ-ideal of M and M is commutative, for all
α, β ∈ Γ, we have αx ∗ βa = βa ∗ αx ∈ J ⊆ J ∪ I.
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Case 3. x ∈ J, a ∈ I. Then, since J is a Γ-ideal of M , for all α, β ∈ Γ, we have
αx ∗ βa ∈ J ⊆ J ∪ I.

Case 4. x, a ∈ J . Then, since J is a Γ-ideal of M , for all α, β ∈ Γ, we have αx ∗ βa ∈
J ⊆ J ∪ I.

Thus, J ∪ I is a Γ-order-ideal of M .

Definition 11. Let (M, ∗) and (N, ·) be Γ-monoids and φ : M → N a Γ-monoid homo-
morphism. The kernel of φ is denoted and defined by kerφ = {m ∈ M : φ(m) = 1N}.

Proposition 2. Let (M, ∗) and (N, ·) be Γ-monoids and φ : M → N a Γ-monoid homo-
morphism.

(i) If φ is surjective and I is a Γ-ideal of M , then φ(I) is a Γ-ideal of N .

(ii) If J is a Γ-ideal of N , then φ−1(J) is a Γ-ideal of M .

Proof. Let φ : M → N be a Γ-monoid homomorphism.

(i) Let x ∈ φ(I) and z ∈ N . Since φ is surjective, z = φ(n) for some n ∈ M and
x = φ(y) for some y ∈ I. Then for all α, β ∈ Γ,

αx ∗ βz = αφ(y) · βφ(n) = φ(αy) · φ(βn) = φ(αy ∗ βn).

Since I is a Γ-ideal of M , αy ∗ βn ∈ I, so, αx ∗ βz ∈ φ(I). Similarly, for all α, β ∈ Γ,
αz ∗ βx ∈ φ(I). Therefore, φ(I) is a Γ-ideal of N .

(ii) Let y ∈ φ−1(J) and m ∈ M . Then φ(y) ∈ J and φ(m) ∈ N . Thus, for all α, β ∈ Γ,
φ(αy ∗ βm) = φ(αy) · φ(βm) = αφ(y) · βφ(m) ∈ J , since J is a Γ-ideal of N . Hence,
αy ∗ βm ∈ φ−1(J) for all α, β ∈ Γ. Similarly, for all α, β ∈ Γ, αm ∗ βy ∈ φ−1(J).
Therefore, φ−1(J) is a Γ-ideal of M .

Example 10. Consider the Γ-monoid homomorphism φ : M → N defined by φ(x) = bx,
where b ̸= 0 in Example 6. Note that

kerφ = {x ∈ M : φ(x) = 1} = {x ∈ M : bx = 1} = {x ∈ M : b = 1 or x = 0}.

Take x = 0 ∈ kerφ, m = 2 ∈ M , and b = 2. Then for all α, β ∈ Γ, φ(αx + βm) =
φ(α0 + β2) = φ(0 + 2) = φ(2) = 22 ̸= 1. This implies that αx + βm /∈ kerφ. By
Definition 10, kerφ is not a Γ-ideal of M .

Remark 6. For any Γ-monoids M and N , the kernel of a Γ-monoid homomorphism
φ : M → N is not necessarily a Γ-ideal of M .

Proposition 3. Let (M, ∗) and (N, ·) be Γ-monoids and φ : M → N a Γ-monoid homo-
morphism. Then kerφ is a Γ-ideal of M if and only if kerφ = M.
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Proof. Let φ : M → N be a Γ-monoid homomorphism. Then 1M ∈ kerφ. Suppose
that kerφ is a Γ-ideal ofM . Then by Lemma 2, kerφ = M . Now, suppose that kerφ = M .
Then by Remark 4(i), kerφ is a Γ-ideal of M .

By Proposition 3, kerφ is a Γ-ideal if and only if φ is a zero map. Thus, isomorphism
theorems via Γ-ideals are irrelevant.

4. Γ-submonoids

This section presents the discussions on Γ-submonoids of Γ-monoids.

Definition 12. Let (M, ∗) be a Γ-monoid. A Γ-submonoid is a subset S of M such that
the identity 1M ∈ S and, for all α, β ∈ Γ and for all s, t ∈ S, αs ∗ βt ∈ S.

Let S be a Γ-submonoid of M . Then 1M ∈ S and for all α, β ∈ Γ and for all s, t ∈ S,
we have αs ∗ βt ∈ S. Take α = β = 0. Thus, we have s ∗ t = 0s ∗ 0t ∈ S. Hence, S is a
submonoid of M .

Remark 7. Let S be a Γ-submonoid of a Γ-monoid M .

(i) S is a submonoid of M , hence a monoid itself.

(ii) For all s ∈ S and for all α ∈ Γ, αs ∈ S.

(iii) M is a Γ-submonoid of M .

Let S be a Γ-submonoid of a Γ-monoid M and let ϕ : Γ × M → M be the action
(by monoid automorphism) of a group Γ on M . By Remark 7, S is a monoid. Moreover,
by restricting the action ϕ to S, ϕ acts on S by monoid automorphism and hence, S is a
Γ-monoid.

Remark 8. A Γ-submonoid of a Γ-monoid is itself a Γ-monoid.

Example 11. Consider the set M = {0, 1, x, y, z, s, b} and an operation + given by

+ 0 1 x y z s b

0 0 1 x y z s b

1 1 1 1 s s s b

x x 1 1 s s s b

y y s s y y s b

z z s s y y s b

s s s s s s s b

b b b b b b b s
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It was shown in [5] thatM is a commutative Γ-monoid with identity 0, where the trivial
group Γ = {0} acts trivially on M . Let S = {0, y, s, b}, U = {0, 1, y, s, b}, V = {0, 1, x}
and W = {0, y}. Note that the identity 0 is in S,U, V and W . Now, we have

00 + 00 = 0 + 0 = 0 ∈ S,
00 + 0s = 0 + s = s ∈ S,
0y + 0y = y + y = y ∈ S,
0y + 0b = y + b = b ∈ S,
0s+ 0b = s+ b = b ∈ S,

00 + 0y = 0 + y = y ∈ S;
00 + 0b = 0 + b = b ∈ S;
0y + 0s = y + s = s ∈ S;
0s+ 0s = s+ s = s ∈ S;
0b+ 0b = b+ b = b ∈ S.

Thus, by Definition 12, S is Γ-submonoid of M . Similarly, U, V and W are Γ-submonoids
of M . Consider the Γ-submonoid S = {0, y, s, b}. Now, take 0 ∈ S and z ∈ M . Then
0 ∗ z = z /∈ S. Thus, S is not a Γ-ideal of M .

Remark 9. Let M be a Γ-monoid. A Γ-submonoid of M is not necessarily a Γ-ideal of
M .

Theorems 5 and 6 imply that there is no proper Γ-submonoid which is also a Γ-ideal
and vice versa.

Theorem 5. Let S be a Γ-submonoid of a Γ-monoid M . Then S is a Γ-ideal of M if and
only if S = M .

Proof. Let S be a Γ-submonoid of M . Suppose that S is a Γ-ideal of M . Since S is a
Γ-submonoid, 1M ∈ S and thus, by Lemma 2, S = M . Conversely, suppose that S = M .
Then, by Remark 4(i), S is a Γ-ideal of M .

Theorem 6. Let I be a Γ-ideal of a Γ-monoid M . Then I is a Γ-submonoid of M if and
only if I = M .

Proof. Let I be a Γ-ideal of a Γ-monoid M . Suppose that I is a Γ-submonoid of M .
Then 1M ∈ I and I = M . Conversely, suppose that I = M . By Remark 7(iii), I is a
Γ-submonoid of M .

Example 12. Consider the Γ-submonoid S = {0, y, s, b} in Example 11. Note that
x ∗ z = s ∈ S. However, x, z /∈ S. Thus, S is not a Γ-order-ideal of M .

Note that if S is a Γ-order-ideal of a Γ-monoid M , then by Remark 2, S is a submonoid
and 1M ∈ S. Also, since S is a Γ-order-ideal, for all α, β ∈ Γ and for all s, t ∈ S, we have
αs ∗ βt ∈ S. Thus, S is a Γ-submonoid of M and the following remark holds.

Remark 10. Every Γ-order-ideal of a Γ-monoid M is a Γ-submonoid of M . However, a
Γ-submonoid of M is not necessarily a Γ-order-ideal of M .

The following example shows that a Γ-submonoid is not necessarily a normal sub-
monoid.
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Example 13. Consider the Γ-submonoid U = {0, 1, y, s, b} in Example 11 which is also
commutative. Observe that y, z ∈ M such that y, y ∗ z = y ∈ U . However, z /∈ U . Thus,
U is not a normal submonoid of M .

Remark 11. In general, a Γ-submonoid of a Γ-monoid M is not necessarily a normal
submonoid of M .

Theorem 7. Let S be a subset of a Γ-monoid M . Then S is a Γ-order-ideal if and only
if S is a Γ-submonoid such that x ∗ y ∈ S implies x, y ∈ S.

Proof. Let S be a subset of a Γ-monoid M . Suppose S is a Γ-order-ideal of M . Then
by Remark 10, S is a Γ-submonoid and for α = β = 0, we have x ∗ y = 0x ∗ 0y ∈ S implies
x, y ∈ S since S is a Γ-order-ideal. Now, suppose S is a Γ-submonoid such that x ∗ y ∈ S
implies x, y ∈ S. Then for all α, β ∈ Γ and for all x, y ∈ S, αx ∗ βy ∈ S. Suppose for all
α, β ∈ Γ, αx ∗ βy ∈ S. Take α = β = 0. Then x ∗ y = 0x ∗ 0y ∈ S which implies that
x, y ∈ S. Therefore, S is a Γ-order-ideal.

Lemma 4. Let A and B be Γ-submonoids of a Γ-monoid M . Then

(i) A ∩B is a Γ-submonoid of M .

(ii) If M is commutative and A, B are normal, then A∩B is a normal Γ-submonoid of
M .

Proof. Let A and B be Γ-submonoids of a Γ-monoid M .

(i) Since A and B are Γ-submonoids of M , the identity 1M ∈ A and 1M ∈ B. Thus,
1M ∈ A∩B. Now, let a, b ∈ A∩B. Then, a, b ∈ A and a, b ∈ B. Since A and B are
Γ-submonoids, for all α, β ∈ Γ, αa ∗ βb ∈ A and αa ∗ βb ∈ B. Hence, αa ∗ βb ∈ A∩B.
Therefore, A ∩B is a Γ-submonoid of M .

(ii) By (i), A∩B is a Γ-submonoid of M . It remains to show that A∩B is normal. Let
x, x ∗ y ∈ A ∩ B. Then x, x ∗ y ∈ A and x, x ∗ y ∈ B. Since A and B are normal,
y ∈ A and y ∈ B. Therefore, y ∈ A ∩ B and A ∩ B is a normal Γ-submonoid of
M .

Example 14. Consider the Γ-submonoids V = {0, 1, x} and W = {0, y} in Example 11.
Then, V ∪W = {0, 1, x, y}. Now, for x, y ∈ V ∪W , we have x ∗ y = s /∈ V ∪W . Thus,
V ∪W is not a Γ-submonoid of M .

Remark 12. The union of two Γ-submonoids of a Γ-monoid M is not necessarily a Γ-
submonoid of M .

Theorem 8. Let (M, ∗) and (N, ·) be Γ-monoids and φ : M → N a Γ-monoid homomor-
phism.

(i) If S is a Γ-submonoid of M , then φ(S) is a Γ-submonoid of N . In particular, φ(M)
is a Γ-submonoid of N .
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(ii) If T is a Γ-submonoid of N , then φ−1(T ) is a Γ-submonoid of M .

(iii) kerφ is a Γ-submonoid of M .

(iv) If M is commutative, then kerφ is normal.

Proof. Let φ : M → N be a Γ-monoid homomorphism.

(i) Let S be a Γ-submonoid of M . Then 1M ∈ S and 1N = φ(1M ) ∈ φ(S). Let
x, y ∈ φ(S). Then x = φ(a) and y = φ(b) for some a, b ∈ S. Since S is a Γ-
submonoid, for all α, β ∈ Γ, αa ∗ βb ∈ S. Now, for all α, β ∈ Γ, we have αx · βy =
αφ(a) · βφ(b) = φ(αa) · φ(βb) = φ(αa ∗ βb). Since αa ∗ βb ∈ S, it follows that
αx · βy = φ(αa ∗ βb) ∈ φ(S). Thus, φ(S) is a Γ-submonoid of N .

(ii) Let T be a Γ-submonoid of N . Then, φ(1M ) = 1N ∈ T and 1M ∈ φ−1(T ). Let
x, y ∈ φ−1(T ). Then φ(x), φ(y) ∈ T . Now, for all α, β ∈ Γ, we have φ(αx ∗ βy) =
φ(αx) ·φ(βy) = αφ(x) · βφ(y) ∈ T since T is a Γ-submonoid of N . This implies that
for all α, β ∈ Γ, we have αx ∗ βy ∈ φ−1(T ). Therefore, φ−1(T ) is a Γ-submonoid of
M .

(iii) Since φ is a Γ-monoid homomorphism, φ(1M ) = 1N . Thus, 1M ∈ kerφ. Now, let
x, y ∈ kerφ. Then φ(x) = 1N and φ(y) = 1N . Thus, by Remark 3, for all α, β ∈ Γ,

φ(αx ∗ βy) = φ(αx) · φ(βy) = αφ(x) · βφ(y) = α1N · β1N = 1N · 1N = 1N .

Hence, for all α, β ∈ Γ, αx ∗ βy ∈ kerφ. Therefore, kerφ is a Γ-submonoid of M .

(iv) Let x, x ∗ y ∈ kerφ. Then φ(x) = 1N and φ(x ∗ y) = 1N . Thus,
φ(y) = 1N · φ(y) = φ(x) · φ(y) = φ(x ∗ y) = 1N . This implies that y ∈ kerφ and
thus, kerφ is normal.

Theorem 9. Let J be a Γ-ideal and S a Γ-submonoid of a Γ-monoid M such that
J ∩ S ̸= ∅. Then (i) J ∩ S is a Γ-ideal of S; (ii) J ∪ S is a Γ-submonoid of M .

Proof. Let J be a Γ-ideal and S a Γ-submonoid of M such that J ∩ S ̸= ∅.

(i) Let x ∈ J ∩S and s ∈ S. Then x ∈ J and x, s ∈ S. Since J is a Γ-ideal of M , for all
α, β ∈ Γ, αx ∗ βs, αs ∗ βx ∈ J . Also, since S is a Γ-submonoid of M , for all α, β ∈ Γ,
αx ∗ βs, αs ∗ βx ∈ S. Thus, for all α, β ∈ Γ, αx ∗ βs, αs ∗ βx ∈ J ∩ S and so, J ∩ S is
a Γ-ideal of S.

(ii) Let x, y ∈ J ∪ S. We consider the following cases.

Case 1. x, y ∈ J . Since J is a Γ-ideal of M , for all α, β ∈ Γ, αx ∗ βy ∈ J ⊆ J ∪ S.

Case 2. x ∈ J, y ∈ S. Since J is a Γ-ideal of M , for all α, β ∈ Γ, αx ∗ βy ∈ J ⊆ J ∪ S.

Case 3. x, y ∈ S. Since S is a Γ-submonoid of M , for all α, β ∈ Γ, αx ∗ βy ∈ S ⊆ J ∪ S.

Case 4. y ∈ J, x ∈ S. Since J is a Γ-ideal of M , for all α, β ∈ Γ, αx ∗ βy ∈ J ⊆ J ∪ S.
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Also, since S is a Γ-submonoid of M , 1M ∈ S ⊆ J ∪S. Therefore, J ∪S is a Γ-submonoid
of M .

Remark 13. Theorem 4(i) is also a consequence of Theorem9(i).

Lemma 5. Let A and B be Γ-submonoids of a commutative Γ-monoid M . Then A ∗ B
is a Γ-submonoid of M .

Proof. Let x, y ∈ A∗B and α, β ∈ Γ. Then x = a1∗b1 and y = a2∗b2 for some a1, a2 ∈ A
and b1, b2 ∈ B. Since A and B are Γ-submonoids, αa1 ∗ βa2 ∈ A and αb1 ∗ βb2 ∈ B. Note
that 1M = 1M ∗ 1M ∈ A ∗B. Since M is commutative,

αx ∗ βy = α(a1 ∗ b1) ∗ β(a2 ∗ b2) = (αa1 ∗ αb1) ∗ (βa2 ∗ βb2) = (αa1 ∗ βa2) ∗ (αb1 ∗ βb2).

This implies that αx ∗ βy ∈ A ∗B. Therefore, A ∗B is a Γ-submonoid of M .

Lemma 6. Let A and B be Γ-submonoids of a commutative Γ-monoid M . Then the map
f : A → A ∗B defined by f(a) = a ∗ 1M is a Γ-monoid homomorphism.

Proof. Let x, y ∈ A such that x = y. Then f(x) = x ∗ 1M = x = y = y ∗ 1M = f(y)
and f is well-defined. Let x, y ∈ A. Then

(i) f(x ∗ y) = x ∗ y ∗ 1M = x ∗ y = (x ∗ 1M ) ∗ (y ∗ 1M ) = f(x) ∗ f(y),

(ii) f(1M ) = 1M ∗ 1M , the identity in A ∗B.

Thus, f is a monoid homomorphism. Now, for all α ∈ Γ and x ∈ A,

f(αx) = αx ∗ 1M = αx ∗ α1M = α(x ∗ 1M ) = αf(x).

Thus, f is a Γ-monoid homomorphism.

5. Quotient Γ-monoids

In [5], the quotient Γ-monoid M/S was established using the equivalence relation in
Definition 6 such that the commutative Γ-monoidM and Γ-order-ideal S ofM were treated
as commutative monoid and submonoid, respectively. Further, the third isomorphism
theorem for Γ-monoids via Γ-order-ideals was proved.

Here, we define an equivalence relation and construct quotient Γ-monoids via Γ-
submonoids. Moreover, we prove the isomorphism theorems.

Definition 13. Let M be a Γ-monoid. For any Γ-submonoid S of M and for all x, y ∈ M ,
we define a binary relation ρS in M by xρSy if and only if for all α ∈ Γ, (αx∗S)∩(αy∗S) ̸=
∅.

The next example shows that if a Γ-submonoid S of a Γ-monoid M is not commutative,
then ρS is not an equivalence relation.
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Example 15. Consider the Γ-monoid M = {1, a, b, c, d, e} in Example 5 with operation
∗ given by

∗ 1 a b c d e

1 1 a b c d e

a a a a a a a

b b b b b b b

c c c c c c c

d d d d d d d

e e e e e e e

Let S = {1, a, b}. Then, by routine calculation, S is a Γ-submonoid of M . Also, S is not
commutative since a∗b = a ̸= b = b∗a. Now, for all α ∈ Γ, we have α1∗S = 1∗S = {1, a, b},
αa ∗ S = a ∗ S = {a} and αb ∗ S = b ∗ S = {b}. Thus, (αa ∗ S)∩ (α1 ∗ S) = {a} ≠ ∅ which
implies that aρS1. Also, (

α1 ∗ S) ∩ (αb ∗ S) = {b} ≠ ∅ which implies that 1ρSb. However,
(αa ∗S)∩ (βb ∗S) = ∅ which implies that a is not related to b under ρS , that is, ρS is not
transitive, hence not an equivalence relation.

The following result tells us that ρS is an equivalence relation for any commutative
Γ-submonoid S of a Γ-monoid M . Further, if M is commutative, then ρS is a congruence
relation on M .

Theorem 10. Let S be a commutative Γ-submonoid of a Γ-monoid M . Then

(i) ρS is an equivalence relation on M .

(ii) If M is commutative, then ρS is a congruence relation on M .

Proof. Let S be a commutative Γ-submonoid of a Γ-monoid M .

(i) Let x ∈ M and S a Γ-submonoid of M . Then, for α ∈ Γ, we have (αx∗S)∩(αx∗S) =
αx ∗ S ̸= ∅ since αx = αx ∗ 1M ∈ αx ∗ S. Thus, xρSx and ρS is reflexive.

Let xρSy. Then, for all α ∈ Γ, (αx ∗ S) ∩ (αy ∗ S) ̸= ∅. Thus,
(αy ∗ S) ∩ (αx ∗ S) = (αx ∗ S) ∩ (αy ∗ S) ̸= ∅. Hence, yρSx and ρS is symmetric.

Now, let xρSy and yρSz. Then, for all α, β ∈ Γ, (αx ∗ S) ∩ (αy ∗ S) ̸= ∅ and
(βy ∗ S) ∩ (βz ∗ S) ̸= ∅. Thus, we have αx ∗ s1 = αy ∗ s2 and βy ∗ s3 = βz ∗ s4 for
some s1, s2, s3, s4 ∈ S. Hence, for all α ∈ Γ, αx ∗ s1 ∗ s3 = αy ∗ s2 ∗ s3 = αz ∗ s2 ∗ s4
and s1 ∗ s3, s2 ∗ s4 ∈ S since S is a Γ-submonoid. Hence, (αx ∗S)∩ (αz ∗S) ̸= ∅ and
xρSz. Therefore, ρS is transitive. Consequently, ρS is an equivalence relation on M .

(ii) Let M be a commutative Γ-monoid. Suppose that xρSy and u, v ∈ M . Then, we
have for all α, β ∈ Γ, (αx ∗ S) ∩ (αy ∗ S) ̸= ∅ and thus, αx ∗ s1 = αy ∗ s2 for some
s1, s2 ∈ S. Hence, (αx ∗ s1) ∗ α(u ∗ v) = (αy ∗ s2) ∗ α(u ∗ v). Since M is commutative,
for all α ∈ Γ, α(u ∗ x ∗ v) ∗ s1 = α(u ∗ y ∗ v) ∗ s2 and (u ∗ x ∗ v)ρS(u ∗ y ∗ v). Thus,
ρS is a congruence relation on M .
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Definition 14. Let S be a commutative Γ-submonoid of a Γ-monoid M . Then for all
x ∈ M , the equivalence class of x is denoted and defined by ρS(x) = {y ∈ M : xρSy}.

Let S be a commutative Γ-submonoid of a Γ-monoid M and let m ∈ M . Then for all
α ∈ Γ, (αm ∗ S) ∩ (αm ∗ S) = αm ∗ S ̸= ∅ since for α = 0, m = m ∗ 1M ∈ m ∗ S. Thus,
m ∈ ρS(m). Hence, the following remark holds.

Remark 14. Let S be a commutative Γ-submonoid of a Γ-monoidM and letm1,m2 ∈ M .

(i) For all m ∈ M , m ∈ ρS(m).

(ii) ρS(m1) = ρS(m2) if and only if (αm1 ∗ S) ∩ (αm2 ∗ S) ̸= ∅ for all α ∈ Γ.

The quotient M/S using equivalence relation in Definition 6, where M is a monoid and
S is a submonoid ofM is different fromM/S using the equivalence relation in Definition 13,
where M is a Γ-monoid and S is a Γ-submonoid as shown in the following example.

Example 16. Let Γ = Z the additive group of integers and M = Z8 = {0, 1, 2, 3, 4, 5, 6, 7}
under addition modulo 8. Then M is a monoid with identity 0. Consider a mapping
ϕ : Γ × M → M given by ϕ((α,m)) = 7αm. Let (α, x), (β, y) ∈ Γ × M such that

(α, x) = (β, y). Then α = β and x = y. Thus, 7αx = 7βy and ϕ is well-defined. Now, let
α, β ∈ Γ and m ∈ M . Observe that

(i) ϕ((0,m)) = 70m = m;

(ii) ϕ((α+ β,m)) = 7α+βm = 7α7βm = ϕ((α, ϕ((β,m)))).

This implies that ϕ is an action. Now, let α ∈ Γ and x, y ∈ M . Then

ϕ((α, x+8 y)) = ϕ((α, x+8 y)) = 7α(x+8 y) = 7αx+8 7αy = ϕ((α, x)) +8 ϕ((α, y)).

Therefore, M is a Γ-monoid.
Let S = {0, 4}. Observe that the identity 0 ∈ S and 0 +8 0 = 0, 0 +8 4 = 4 +8 0 = 4,

4 +8 4 = 0 ∈ S. This implies that S is a submonoid of M . Now, note that

0 +8 S = 0 +8 {0, 4} = {0, 4}, 4 +8 S = 4 +8 {0, 4} = {0, 4};
1 +8 S = 1 +8 {0, 4} = {1, 5}, 5 +8 S = 5 +8 {0, 4} = {1, 5};
2 +8 S = 2 +8 {0, 4} = {2, 6}, 6 +8 S = 6 +8 {0, 4} = {2, 6};
4 +8 S = 4 +8 {0, 4} = {0, 4}, 7 +8 S = 7 +8 {0, 4} = {3, 7}.

Moreover, ρS(0) = {0, 4}, ρS(1) = {1, 5}, ρS(2) = {2, 6}, ρS(3) = {3, 7}, ρS(4) =
{0, 4}, ρS(5) = {1, 5}, ρS(6) = {2, 6}, and ρS(7) = {3, 7}. Thus, the quotient M/S =
{ρS(0), ρS(1), ρS(2), ρS(3)} using the equivalence relation in Definition 6.

Now, observe that for all α ∈ Γ, 7α = 1 or 7α = 7. Note that the identity 0 ∈ S and
for all α, β ∈ Γ,

α0 +8
β0 = 7α0 +8 7β0 = 0 +8 0 ∈ S;
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α0 +8
β4 = 7α0 +8 7β4 = 7β4 = 4 ∈ S;

α4 +8
β4 = 7α4 +8 7β4 = 0 or 4 ∈ S.

This implies that S is a Γ-submonoid of M . Now, note that for all α ∈ Γ,

α0 +8 S = α0 +8 {0, 4} = 7α0 +8 {0, 4} = {0, 4};
α1 +8 S = α1 +8 {0, 4} = 7α1 +8 {0, 4} = {1, 5} or {3, 7};
α2 +8 S = α2 +8 {0, 4} = 7α2 +8 {0, 4} = {2, 6};
α3 +8 S = α3 +8 {0, 4} = 7α3 +8 {0, 4} = {1, 5} or {3, 7};
α4 +8 S = α4 +8 {0, 4} = 7α4 +8 {0, 4} = {0, 4};
α5 +8 S = α5 +8 {0, 4} = 7α5 +8 {0, 4} = {1, 5} or {3, 7};
α6 +8 S = α6 +8 {0, 4} = 7α6 +8 {0, 4} = {2, 6};
α7 +8 S = α7 +8 {0, 4} = 7α7 +8 {0, 4} = {1, 5} or {3, 7}.

Moreover, we have ρS(0) = ρS(4) = {0, 4}, ρS(2) = ρS(6) = {2, 6}, and ρS(1) = ρS(3) =
ρS(5) = ρS(7) = {1, 3, 5, 7}. Thus, the quotient M/S = {ρS(0), ρS(1), ρS(2)} using the
Definition 13. Observe that M/S yield is not equal to M/S above. Moreover, ρS(0) is the
same with ρS(0) above, however, ρS(1)s are different. This implies that their equivalence
classes are not equal. Hence, M/S via Γ-submonoid is different from M/S via submonoid,
where M is a monoid.

Theorem 11. If M is a commutative Γ-monoid and S a Γ-submonoid of M , then M/S
is a Γ-monoid.

Proof. Let M be a commutative Γ-monoid and S a Γ-submonoid of M . By Proposi-
tion 1, since ρS is a congruence on M , we have M/ρS = M/S is a monoid with binary
operation ◦ given by ρS(x) ◦ ρS(y) = ρS(x ∗ y) with identity ρS(1M ). Consider a map-
ping ϕ : Γ × M/S −→ M/S given by (α, ρS(x)) 7→ αρS(x) = ρS(

αx) for all α ∈ Γ
and x ∈ M . Let (α, ρS(x)), (β, ρS(y)) ∈ Γ × M/S such that (α, ρS(x)) = (β, ρS(y)).
Then α = β and ρS(x) = ρS(y). Thus, by Remark 14(ii), (α

′
x ∗ S) ∩ (α

′
y ∗ S) ̸= ∅

for all α′ ∈ Γ, which implies that α′
x ∗ s1 = α′

y ∗ s2 for some s1, s2 ∈ S. Accord-
ingly, α(α

′
x ∗ s1) = α(α

′
x) ∗ αs1 = α(α

′
y ∗ s2) = α(α

′
y) ∗ αs2. Since S is a Γ-submonoid,

αs1,
αs2 ∈ S and (α+α′

x ∗ S) ∩ (α+α′
y ∗ S) ̸= ∅. This means that

ϕ(α, ρS(x)) =
αρS(x) = ρS(

αx) = ρS(
βy) = βρS(y) = ϕ(β, ρS(y)).

Hence, ϕ is well-defined.
Now, for any α, β ∈ Γ and x ∈ M , ϕ((0, ρS(x))) = 0ρS(x) = ρS(

0x) = ρS(x) and
ϕ((α+ β, ρS(x))) =

α+βρS(x) =
α(βρS(x)) = ϕ((α, ϕ((β, ρS(x))))). Thus, ϕ is an action.

Now, let α ∈ Γ and x, y ∈ M . Then

ϕ((α, ρS(x) ◦ ρS(y))) = α(ρS(x) ◦ ρS(y))
= α(ρS(x ∗ y))
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= ρS(
α(x ∗ y))

= ρS(
αx ∗ αy)

= ρS(
αx) ◦ ρS(αy)

= αρS(x) ◦ αρS(y)

= ϕ((α, ρS(x))) ◦ ϕ((α, ρS(y))).

Therefore, M/S is a Γ-monoid.

Proposition 4. Let S be a normal Γ-submonoid of a commutative Γ-monoid M . Then
ρS(h) = ρS(1M ) if and only if h ∈ S.

Proof. Suppose h ∈ S. Let x ∈ ρS(h). Then, for all α ∈ Γ, (αx∗S)∩(αh∗S) ̸= ∅. This
implies that there exist h1, h2 ∈ S such that αx ∗ h1 = αh ∗ h2 ∈ S. Since S is a normal
Γ-submonoid and h1,

αx ∗ h1 ∈ S, it follows that αx ∈ S for all α ∈ Γ. Accordingly, for all
α ∈ Γ, αx∗α1M = α1M∗αx implies (αx∗S)∩(α1M∗S) ̸= ∅. Hence, xρS1M and x ∈ ρS(1M ).
It follows that ρS(h) ⊆ ρS(1M ). Let x ∈ ρS(1M ). Then, (αx ∗ S) ∩ (α1M ∗ S) ̸= ∅ for all
α ∈ Γ. Thus, there exist h1, h2 ∈ S such that for all α ∈ Γ, αx ∗ h1 = α1M ∗ h2 ∈ S. Since
S is a normal Γ-submonoid and h1,

αx∗h1 ∈ S, it follows that αx ∈ S. Observe that for all
α ∈ Γ, αh = αh∗1M ∈ S since S is a Γ-submonoid. Accordingly, αx∗αh = αh∗αx implies
(αx ∗ S) ∩ (αh ∗ S) ̸= ∅. Hence, xρSh and x ∈ ρS(h). Consequently, ρS(1M ) ⊆ ρS(h).
Therefore, ρS(1M ) = ρS(h).

Now, suppose ρS(1M ) = ρS(h). Then, by Remark 14(ii), (α1M ∗ S) ∩ (αh ∗ S) ̸= ∅ for
all α ∈ Γ. Thus, there exist h1, h2 ∈ S such that αh ∗ h2 = α1M ∗ h1 ∈ S for all α ∈ Γ.
Since S is a normal Γ-submonoid and h2,

αh ∗ h2 ∈ S, it follows that αh ∈ S for all α ∈ Γ.
Therefore, h ∈ S.

Proposition 5. Let S be a normal Γ-submonoid of a commutative Γ-monoid M . Then
M = S if and only if M/S = {ρS(1M )}.

Proof. Suppose M = S. Let x ∈ M/S = M/M . Then x = ρM (y) for some y ∈ M .
By Proposition 4, we have ρM (1M ) = ρM (y) = x. Hence, M/M = M/S = {ρM (1M )}.
Conversely, suppose M/S = {ρS(1M )}. Let x ∈ M . Then ρS(x) ∈ M/S. Thus, ρS(x) =
ρS(1M ). By Proposition 4, x ∈ S. Hence, M ⊆ S. Accordingly, M = S.

Proposition 6. Let S be a normal Γ-submonoid of a commutative Γ-monoid M . Every
Γ-submonoid of M/S is of the form R/S, where R is a Γ-submonoid of M containing S.

Proof. Let H be a Γ-submonoid of M/S. Then H ⊆ M/S. Let R = {m ∈ M :
ρS(m) ∈ H}. We show that R is a Γ-submonoid of M . Note that the identity in M/S is
ρS(1M ) ∈ H and thus, 1M ∈ R. Now, let x, y ∈ R and α, β ∈ Γ. Then ρS(x), ρS(y) ∈ H
and αρS(x) ∗ βρS(y) ∈ H since H is a Γ-submonoid. Accordingly, we have ρS(

αx ∗ βy) =
ρS(

αx) ◦ ρS(βy) = αρS(x) ◦ βρS(y) ∈ H. It follows that αx ∗ βy ∈ R. Accordingly, R is a
Γ-submonoid of M . Now, we show that S ⊆ R. Let x ∈ S. Then by Proposition 4, we
have ρS(x) = ρS(1M ). Since ρS(1M ) is the identity in M/S and H is a Γ-submonoid of
M/S, we must have ρS(x) = ρS(1M ) ∈ H. Thus, x ∈ R. Therefore, S ⊆ R.
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Theorem 12. Let M be a commutative Γ-monoid and S a normal Γ-submonoid of M .
Then the mapping πS : M −→ M/S given by πS(x) = ρS(x) is a Γ-monoid epimorphism
with kernel S.

Proof. Let x, y ∈ M such that x = y. Then, πS(x) = ρS(x) = ρS(y) = π(y). Thus, πS
is well-defined. Now, let x, y ∈ M . Then, we have
πS(x ∗ y) = ρS(x ∗ y) = ρS(x) ◦ ρS(y) = πS(x) ◦ πS(y) and πS(1M ) = ρS(1M ). Thus, by
Definition 4, πS is a monoid homomorphism. Since απS(x) =

αρS(x) = ρS(
αx) = πS(

αx),
by Definition, πS is a Γ-monoid homomorphism. Now, let b ∈ M/S. Then, b = ρS(a)
for some a ∈ M . Thus, b = ρS(a) = πS(a) and so, π is surjective. Therefore, πS is an
epimorphism. Now, since S is normal, by Proposition 4 we have

kerπS = {m ∈ M : ρS(m) = ρS(1M )} = {m ∈ M : m ∈ S} = S ∩M = S

as desired.

The map πS in Theorem 12 is called the canonical epimorphism.

Proposition 7. Let M be a Γ-monoid. Then for any A ⊆ M and S a commutative
Γ-submonoid of M , π−1

S (πS(A)) =
⋃

x∈A ρS(x).

Proof. Suppose y ∈ π−1
S (πS(A)). Then ρS(y) = πS(y) ∈ πS(A). Since πS is an

epimorphism, there exists an x ∈ A such that πS(x) = ρS(y). Hence, ρS(x) = ρS(y).
By Remark 14(ii), (αx ∗ S) ∩ (αy ∗ S) ̸= ∅ for all α ∈ Γ, that is, xρSy. This implies
that y ∈ ρS(x) for some x ∈ A. It follows that y ∈

⋃
x∈A ρS(x) so that π−1

S (πS(A)) ⊆⋃
x∈A ρS(x). Conversely, suppose y ∈

⋃
x∈A ρS(x). Then y ∈ ρS(x) for some x ∈ A. This

implies that yρSx, that is, (αy ∗ S) ∩ (αx ∗ S) ̸= ∅ for all α ∈ Γ. By Remark 14(ii),
ρS(y) = ρS(x). Thus, πS(y) = πS(x). Since πS(x) ∈ πS(A), it follows that πS(y) ∈
πS(A) implying that y ∈ π−1

S (πS(A)). Hence,
⋃

x∈A ρS(x) ⊆ π−1
S (πS(A)). Therefore,

π−1
S (πS(A)) =

⋃
x∈A ρS(x).

6. Isomorphism Theorems

In [5], the isomorphism theorems for Γ-monoids via Γ-order-ideals are established.
Here, we prove isomorphism theorems for Γ-monoids via Γ-submonoids.

As shown already in Example 16, the quotient M/S in our discussion is not the same
with the quotient discussed in [5].

Theorem 13. Let (M, ∗) and (N, ·) be commutative Γ-monoids and let f : M → N be a Γ-
monoid homomorphism. There exists a unique Γ-monoid homomorphism φ : M/ ker f →
N such that the following diagram is commutative

M N

M/ ker f

πker f

f

φ
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that is, φ ◦πker f = f , where πker f (x) := ρker f (x). Moreover, φ is onto and it has a trivial
kernel, namely, kerφ = {ker f}. However, φ is a Γ-monoid isomorphism if and only if
ρf = ρker f .

Proof. Let (M, ∗) and (N, ·) be commutative Γ-monoids and let f : M → N be a
Γ-monoid homomorphism. Since Γ-monoids are monoids and Γ-monoid homomorphism
is a monoid homomorphism, by Theorem 1, there exists a unique monoid homomorphism
φ : M/ ker f → N such that the following diagram is commutative

M N

M/ ker f

πker f

f

φ

that is, φ ◦ πker f = f , where πker f (x) := ρker f (x). Moreover, φ is onto and it has a
trivial kernel, namely, kerφ = {ker f}. However, φ is an isomorphism if and only if
ρf = ρker f . Thus, it remains to show that φ is a Γ-monoid homomorphism. Now, let
ρker f (x) ∈ M/ ker f and α ∈ Γ. Since f is a Γ-monoid homomorphism, we have

φ(αρker f (x)) = φ(ρker f (
αx)) = f(αx) = αf(x) = αφ(ρker f (x)).

Hence, φ is a Γ-monoid homomorphism.

Corollary 1. Let M and N be commutative Γ-monoids and f : M → N be a Γ-monoid
homomorphism. Then f induces a Γ-monoid isomorphism M/ ker f ∼= Imf .

Proof. Suppose f : M → N is a Γ-monoid homomorphism. Then, by Theorem 13,
there exists a Γ-monoid homomorphism φ : M/ ker f → N . If we set N = Imf , then
φ : M/ ker f → Imf is a Γ-monoid epimorphism. Thus, kerφ = {ρker f (x) : f(x) =
1N} = {ker f} implies that ρker f (x) = ker f and x ∈ ker f . Hence, by Proposition 4,
ρker f (x) = ρker f (1M ) which implies that kerφ = {ρker f (1M )} and φ is injective. Accord-
ingly, M/ ker f ∼= Imf .

Corollary 2. Let K and L be normal Γ-submonoids of a commutative Γ-monoid M . Then
K/(K ∩ L) ∼= (K ∗ L)/L.

Proof. Consider the map f : K → K ∗ L defined by f(k) = k ∗ 1M and πL : K ∗ L →
(K∗L)/L defined by πL(k∗l) = ρL(k∗l). Then φ : K → (K∗L)/L defined by φ(k) = ρL(k)
is a Γ-monoid homomorphism. Let x ∈ (K ∗ L)/L. Then x = ρL(k ∗ l) for some k ∈ K
and l ∈ L. Observe that x = ρL(k ∗ l) = ρL(k)◦ρL(l) = ρL(k)◦ρL(1M ) = ρL(k). So, there
is a k ∈ K such that φ(k) = ρL(k) = x and φ is onto. Moreover,

kerφ = {k ∈ K : ρL(k) = ρL(1M )} = {k ∈ K : k ∈ L} = K ∩ L.

By Corollary 1, K/ kerφ ∼= Imφ = (K ∗ L)/L.

The following theorem is the counterpart to the third isomorphism theorem of groups
for Γ-monoids via Γ-submonoids.
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Theorem 14. Let S and T be normal Γ-submonoids of a commutative Γ-monoid M with
S ⊆ T . Then (M/S)/(T/S) ∼= M/T .

Proof. Define f : M/S → M/T by f(ρS(h)) = ρT (h) for all ρS(h) ∈ M/S. Let
ρS(h1), ρS(h2) ∈ M/S and suppose that ρS(h1) = ρS(h2). Then, (

αh1 ∗S)∩ (αh2 ∗S) ̸= ∅
for all α ∈ Γ. Thus, αh1 ∗w1 =

αh2 ∗w2 for some w1, w2 ∈ S ⊆ T . Thus, (αh1 ∗T )∩ (αh2 ∗
T ) ̸= ∅ for all α ∈ Γ. By Remark 14(ii), ρT (h1) = ρT (h2). Thus, f(ρS(h1)) = f(ρS(h2)).
Hence, f is well-defined.

Let ρS(h1), ρS(h2) ∈ M/S. Then

f(ρS(h1) ◦ ρS(h2)) = f(ρS(h1 ∗ h2)) = ρT (h1) ◦ ρT (h2) = f(ρS(h1)) ◦ f(ρS(h2)).

Hence, f is a homomorphism.
Let ρS(h) ∈ ker f . Then f(ρS(h)) = ρT (1M ), the identity in M/T . Thus, ρT (h) =

ρT (1M ). By Proposition 4, h ∈ T . Hence, ρS(h) ∈ T/S. Thus, ker f ⊆ T/S. Let
ρS(h) ∈ T/S. Then h ∈ T . By Proposition 4, ρT (h) = ρT (1M ). Thus, f(ρS(h)) =
ρT (h) = ρT (1M ). Accordingly, ρS(h) ∈ ker f . Hence, T/S ⊆ ker f . So, T/S = ker f .

For ρS(x), ρS(y) ∈ M/S and α ∈ Γ, recall that ρS(x)ρfρS(y) if and only if f(αρS(x)) =
f(αρS(y)). We claim that ρf = ρker f .

Let ρS(z) ∈ M/S. We show that ρf (ρS(z)) = ρker f (ρS(z)).
Let ρS(w) ∈ ρker f (ρS(z)). Then (αρS(z) ◦ ker f) ∩ (αρS(w) ◦ ker f) ̸= ∅. Thus,

there exist y1, y2 ∈ ker f such that αρS(z) ◦ y1 = αρS(w) ◦ y2. Hence, f(αρS(z)) =
f(αρS(z)) ◦ ρT (1M ) = f(αρS(z)) ◦ f(y1) = f(αρS(z) ◦ y1) and
f(αρS(w)) = f(αρS(w)) ◦ ρT (1M ) = f(αρS(w)) ◦ f(y2) = f(αρS(w) ◦ y2). So, by well-
definedness of f , we have f(αρS(z)) = f(αρS(z) ◦ y1) = f(αρS(w) ◦ y2) = f(αρS(w)).
Accordingly, ρS(w) ∈ ρf (ρS(z)). Thus, ρker f (ρS(z)) ⊆ ρf (ρS(z)).

Now, let ρS(w) ∈ ρf (ρS(z)) and α ∈ Γ. Then f(αρS(z)) = f(αρS(w)), that is,
αρT (z) =

αρT (w). Thus, ρT (
αz) = ρT (

αw) implies (αw ∗ T ) ∩ (αz ∗ T ) ̸= ∅. Thus, there exist
h1, h2 ∈ T such that αw∗h1 = αz∗h2. Hence, ρS(h1), ρS(h2) ∈ T/S = ker f . Consequently,
ρS(

αw) ◦ ρS(h1) = ρS(
αw ∗ h1) = ρS(

αz ∗ h2) = ρS(
αz) ◦ ρS(h2) for all α ∈ Γ. This implies

that (αρS(w) ◦ ker f) ∩ (αρS(z) ◦ ker f) ̸= ∅. Hence, ρS(w) ∈ ρker f (ρS(z)). Accordingly,
ρf (ρS(z)) ⊆ ρker f (ρS(z)).

Therefore, ρf (ρS(z)) = ρker f (ρS(z)) for all ρS(z) ∈ M/S, that is, ρf = ρker f . By
Theorem 13, these all imply that (M/S)/(T/S) = (M/S)/ ker f ∼= M/T .

7. Conclusion

: In this paper, we have shown that Γ-ideals and Γ-submonoids of a Γ-monoid M
are not equivalent to the existing Γ-order-ideals of M . For any Γ-monoids M and N , we
proved that the kernel of a Γ-monoid homomorphism φ : M → N is a Γ-submonoid of
M . Also, for any Γ-submonoid S of a Γ-monoid M , ρS is a congruence relation if M is
commutative and thus, M/S = M/ρS is defined for commutative Γ-monoid M . Moreover,
isomorphism theorems for Γ-monoids via Γ-submonoids were proved.
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