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1. Introduction

The talented monoid of a row-finite directed graph E = (E°, E',r,s), denoted by
Tk, is the commutative monoid generated by {v(i) : v € E° i € Z} such that v(i) =
Z r(e)(i + 1) for every i € Z and every v € E° that is not a sink. The additive
e€s—1(v)
group Z of integers acts on Tr by monoid automorphisms by shifting indices: for each
n,i € Z and v € E°, define "v(i) = v(i + n), which extends to an action of Z on Tg
[3]. Monoids with a group I' acting (by monoid automorphisms) on it, called I'-monoids,
was first introduced in the paper of Hazrat and Li [1] as a tool in the study of talented
monoids. In the same paper, I'-order-ideals of I'-monoids are also introduced. Sebandal
and Vilela [5] prove some properties, including the isomorphism theorems for I-monoids
and I'-order-ideals are established.

This paper extends the study of I'-monoids by defining the concept of I'-ideals and
I'-submonoids and establishing some of their properties. Moreover, this paper studies
quotient of I'monoids via equivalence classes of I'-submonoids and proves isomorphism
theorems.
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2. Preliminaries

In this section, we present some basic concepts and known results that are useful in
this study.

Definition 1. [2] A semigroup is a nonempty set M together with a binary operation x*
on M which is associative, that is, for all a,b,c € M, a* (bxc) = (a*b) * c.

Definition 2. [2] A monoid is a semigroup M which contains an identity element 13, € M
such that 1py s m=mx* 13 = m for all m € M.

For a monoid M with the binary operation *, we may also say that M is a monoid
under . A monoid M is said to be commutative if for all z,y € M, x xy =y * x.

If no confusion arises, by a monoid M, we shall mean a triple (M, 157, %) unless other-
wise specified.

Definition 3. [6] Let (M, ) be a monoid. A submonoid is a subset S of M which is
closed under the binary operation on M and contains the identity 1,; of M.

Definition 4. [6] Let (M, x) and (N,-) be monoids. A monoid homomorphism is a
mapping ¢ : M — N such that p(a xb) = ¢(a) - p(b) and p(1pys) = 1y for all a,b € M
where 137 and 1y are the identities in M and N, respectively.

Example 1. Consider the monoids M = (N,+) and N = (N,-) and the mapping ¢ :
M — N defined by ¢(x) = b*, where b € N\ {0}. For any z,y € M, we have ¢(z +y) =
VoY = b% . bY = () - ¢(y) and ¢(0) = b = 1. Therefore, ¢ is a monoid homomorphism.

Definition 5. [6] A congruence on a monoid M is an equivalence relation p on M which
satisfies the condition: For all u,v,x,y € M, if xpy, then (u* x * v)p(u * y *v).

Proposition 1. [6] Let p be a congruence on a monoid M. Then M/p is a monoid with
binary operation o given by p(z) o p(y) = p(x *y) for all x,y € M.

Definition 6. [4] Let M be a commutative monoid. For any submonoid H of M, we
define a binary relation py in M by zpgy if and only if (zx H)N (yx H) # .

Remark 1. [4] For any submonoid H of a commutative monoid M, py is an equivalence
relation on M.

Definition 7. [2] An action of a group (G, o) in a set S is a function ¢ : G x .S — S such

that for all z € S, and g1, 92 € G: ¢((1g, 7)) = x and ¢((g1 © g2, 7)) = ¢((91, #((92,7)))).
When such an action is given, G is said to act on the set S.

Example 2. Consider the group G = Z under the usual addition and the set S =
R of real numbers and the mapping ¢ : G x S — S given by ¢((g,z)) = 292. Let
(g,2),(h,y) € G x S such that (g,z) = (h,y). Then g = h and x = y. Thus, we have
#((g,2)) = 292 = 2"y = ¢((h,y)) and ¢ is well-defined. Now, for any g1,go € G and z € S,

we have ¢((0,2)) = 2%z = 2 and ¢((g1 + ga,x)) = 291920 = 292922 = ¢((g1, #((g2, 2))))-
Therefore, ¢ is an action.



H. Sarapuddin, J. Vilela / Eur. J. Pure Appl. Math, 16 (3) (2023), 1772-1793 1774

Definition 8. [3] Let M be a monoid and I' a group. M is said to be a I'-monoid if there
is an action ¢ : I' x M — M of I on M via monoid automorphism, that is, ¢ is an action
which satisfies: for all « € T" and x,y € M, ¢((a,x *y)) = ¢((a, x)) * ¢((v,y)). For « € T
and a € M, the action of & on a shall be denoted by “a.

Example 3. Consider I' = Z a group of integers under the usual addition and the set
M = R with the usual addition as its binary operation. Then, (M, +) is a monoid with
identity 0. Consider the action ¢ : I' x M — M given by ¢((a,z)) = 2%z in Example 2.
Now, let « € T and z,y € M. Then we have ¢((o,x + y)) = 2%(x +y) = 2% + 2% =
d((a,2)) + ¢((a, y)). Therefore, M is a I'-monoid.

Example 4. Let I be a group of integers under addition and let T' = Ms(R) under matrix
addition. Consider the mapping ¢ : I' x T" — T given by (a, (Z 2)) — a(i 2) =

(;ii ;ZZ) . Let (a, (i Z)) , <5, (; £)> € I x T such that
<a, (Z Z)) = <5, (; £>) . Then o = S and (Z 2) = <; {L) . Thus, <;ZCCL ;ZZ) =

B B
<§BZ §5£> and ¢ is well-defined. Now, for any o, € I'" and a,b,c,d € R, we have

a b a b 20q 2% a b
o((0(2 a)) = (e )= Gor ) = (2 g) o
a b a a b
(o () = a)
20+Bg  20+8y
= (2a+5c 2a+[3d)

2098q 2036y
2048 2058

o((o 2 21)
o (o0 )

Now, let a € I and @ b , e/ € T. Then we have
c d g h

(G D)6 2) = el o))

_ <2a(a+6) 2a(b+f)>
2%(c+g) 2%(d+h)
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2% 4 2% 2%b+2%f
2%+ 2% 2%d+2%h

(2% 2% n 2% 2%f
 \2% 2% 2% 2%h

(G )G 2))

Example 5. Consider the set M = {1,a,b,c,d, e} and an operation x given by

Therefore, T is a I'-monoid.

x| 1 a b ¢ d e
1|1 a b ¢ d e
ala a a a a a
b|b b b b b b
clc ¢ ¢ ¢ ¢ ¢
d|d d d d d
ele e e e e e

The operation * is closed and associative since for all z,y € M, x x y = z holds for all
x # 1. Clearly, 1 is an identity in M. Thus, M is a monoid. With a group T" acting
trivially on M, we obtain that M is a I'-monoid.

Definition 9. [1] Let M, M; and M, be monoids and let T' be a group acting on M, M;
and Mo.

(i) A T-monoid homomorphism is a monoid homomorphism ¢ : My — My that re-
spects the action of I', this means ¢(%a) = *¢(a).

(ii) A T-order-ideal of a monoid M is a subset I of M such that for any o, € T,
“q P8 e I 'if and only if a,b € I.

Remark 2. [1] A T'-order-ideal is a submonoid I of M which is closed under the action
of I.

Example 6. Let a group I' acts trivially on both monoids M = (N, +) and N = (N, -),
that is, for all & € ', we have ¢((o,m)) = “m = m and ¢((o,n)) = *n =mnfor allm e M
and n € N. Now, let « € T and z,y € M. Then, ¢((a,z +y)) = *(z+y) =z +y =
Yz 4+ Yy = ¢((a,2)) + ¢((r,y)). Thus, M and N are I-monoids. Consider the monoid
homomorphism ¢ : M — N defined by ¢(z) = b*, where b € N\ {0} in Example 1. For
all « € T and a € M, we have ¢(“a) = p(a) = “¢(a). Thus, by Definition 9(ii), ¢ is a
I'-monoid homomorphism.

Example 7. Consider the I'-monoid M = R under the usual addition in Example 3
and the I'-monoid T" = M3(R) under matrix addition in Example 4. Define a mapping
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o : T—)Mbyqb((a Z)) =2(a+b+c+d). Let <CCL Z),(; {L) € T such that

(Z Z)z <; ;:).Thena:e,b:f,c:gandd:h. Thus, 2(a +b+c+d) =

2(e + f 4+ g+ h) and ¢ is well-defined. Now, for any (CCL Z),(; {L> € T, we have
¢<<8 8>>ZQ(O+O+0+O):2(O):Oand
a b e f _ at+e b+ f
(6 )G a) = el a0)
= 2((a+e)+ b+ f)+(c+g)+(d+h))

= 2((a+b+c+d)+(e+f+g+h))
= 2a+b+c+d)+2(e+f+g+h)

= o0 a) ()

Thus, ¢ is a monoid homomorphism. Also, for all « € I" and (CCL

afa b _ 2% 2%
o((e0) = o (Ced
= 2(2%+2%b+ 2%+ 2%d)
= 2°2(a+b+c+d)

()

Hence, ¢ is a I'-monoid homomorphism.

b

d) € T, we have

Theorem 1. [4] Let My and My be commutative monoids and let f : My — My be a
homomorphism. There exists a unique homomorphism ¢ : M/ ker f — My such that the
following diagram is commutative

M1—>M2

[ /

Ml/kerf

that is, Y 0 Tier f = [, where Tier f() := prer f(x). Moreover, ¢ is onto and it has a trivial
kernel, namely, ker ¢ = {ker f}. However, ¢ is an isomorphism if and only if pf = pier f-
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3. I'-ideals

In this section, we discuss the properties of I'-ideals of I'-monoids.

Let M be a I'monoid and x € M. By Definition &8, for all a € I, ®x % “1); =
Yz x1py) =% and “1pr x“x = *(1p * ) = “z. By uniqueness of the identity element in
M, ®1y = 1a.

Remark 3. For a I'monoid M and o € T', “1y = 1.

Definition 10. Let M be a I''monoid. A left I'-ideal (respectively, right I'-ideal) of M
is a subset I of M such that for any o, € T, for all a € T and m € M, “m «Pa € I
(respectively, “a * #m € I). A T-ideal of M is a subset I of M such that I is both a left
and right I'-ideal of M.

Let (M, *) be a I'-monoid and A a I'-ideal of M with a € A. Then for all a, 8 € ', we
have “a = “a x *1); € A. Thus, we have the following remark.

Remark 4. Let (M, *) be a I'monoid and A be a I'-ideal of M.
(i) M is a I'-ideal.
(ii) For all &« € I" and for all a € A, “a € A.
Lemma 1. Let A and B be T'-ideals of a T'-monoid M. Then A x B is a I'-ideal of M.

Proof. Let A and B be I'-ideals of a I'-monoid M. Clearly, A* B C M. Let x € Ax B
and m € M. Then z = a * b for some ¢ € A and b € B. Now, for all o, € T,
xxBm = *(axb)xPm = Yax*bxm = “ax(“bxm) € Ax B by Remark 4(ii) and Defini-
tion 10. Similarly, for all o, 8 € T', *“m* P2 € Ax B. Therefore, Ax B is a I-ideal of M. [

The following example shows that a I'-ideal is not necessarily a I'-order-ideal.

Example 8. Consider the set M = {1,n,h, s} and operation * given by

x| 1 n h s
111 n h s
nin n h s
h|lh h h s
s|s s s s

Clearly, the operation is commutative. It can be verified that * is associative. Since
1x1=1,1«xn=mn,1xh=hand 1xs=s, it follows that 1 is the identity in M. Thus,
M is a commutative monoid. Let I' be a group and the mapping ¢ : I' x M — M given
by (a,a) — “a = a. For any a, 3 € I and a € M, we have ¢((0,a)) = %a = a and

d((a+B,a)) ="Pa=a=¢(B,a) ="a=¢((a,"a)) = (o, 9((8,))))-
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Thus, ¢ is an action. Now, let o € " and a,b € M. Then
d((a,axb) =% axb)=axb="ax=¢((a,a)) * ¢((a,b)). Hence, M is a I'-monoid.
Let C = {n,h,s}. Then for any «, 5 € I', we have for all a € C' and m € M,

«Pm=nxPl=nx1=necC, nxPp=nxn=necC;

B xBm =
axPm=nxPh=nxh=heC, a*ﬁm: pxPs=nxrs=seC,
YxPm=hxP1=hx1=heC, YaxPm=h«Pn=hxn=heC;
YaxPm=h«Ph=hxh=hecC, YxPm="hxBs=hxs=s¢cC;
YxPm=2sxP1=s5x1=5€C, a*ﬁm: xBpn=sxn=s€eC;
YaxPm=%xPh=sxh=secC, #«Pm="%xPs=sxs=s€eC.

Since M is commutative, #m % ®a = “a x #m € C. Thus, by Definition 10, C' is a I'-ideal.
However, the identity 1 ¢ C. Thus, C' is not a I'-order-ideal of M.

The following example shows that I'-order-ideal is not necessarily a I'-ideal.

Example 9. Consider the I-monoid M = {1,n,h,s} in Example 8. Let A = {1,n,h}.
Now, suppose that for all a,b € M and for all a, 3 €T, “axPbc A. Then axbe A. We
consider the following three cases.
Case 1. axb=1. Thena=1and b =1. Thus a,b € A.
Case 2. axb=mn. Thenaxb=1xn=nx%1=mnx*n. Clearly, a,b € A.
Case 3. axb=h. Thenaxb=1xh=nxh=hx1=hxn. Clearly, a,b € A.
Thus, a,b € A.
Now, suppose that a,b € A. Then, we have

GxPh=21xP1=1x1=1¢€ A; YaxPb=nxPn=nxn=nec A
xPp=21xPn=1xn=ne A4 YaxPb=nxPh=nxh="heA;
xPhb="1%Ph=1xh="he A YxPb="nxPh=hxh=h¢c A

Thus, “a * #b € A. Hence, A is a I-order-ideal of M.
Observe that there exist n € A and s € M such that for any a, 3 € T, “nxPs =nxs =
s ¢ A. Thus, by Definition 10, A is not a I'-ideal.

Remark 5. If I is a I'-ideal, in general I is not necessarily a I'-order-ideal. Similarly, if
I is a I'-order-ideal, in general I is not necessarily a I'-ideal.

Lemma 2. Let I be a I'-ideal of a I'-monoid M. Then the identity 15 € I if and only if
I=M.

Proof. Let I is a I'-ideal of M. Suppose that the identity 1p; € I and m € M. Then for
any o, 5 € T, we have ®1y,%8m € I. For a = =0, we have %1, +m = 1, «m =m € I.
Thus, M C I. Consequently, I = M. Conversely, suppose that I = M. Thus, the identity
1rp € 1. OJ
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Theorems 2 and 3 imply that there exists no proper I'-order-ideal which is also a I'-ideal
and vice versa.

Theorem 2. Let I be a I'-ideal of a I'-monoid M. Then I is a I'-order-ideal of M if and
only if I = M.

Proof. Let I be a I'-ideal of M. Suppose that I is a I'-order-ideal of M. Then the
identity 1p; € I. By Lemma 2, I = M. Conversely, suppose that I = M. Thus, [ is a
I-order-ideal. O]

Theorem 3. Let I be a I'-order-ideal of a I'-monoid M. Then I is a I'-ideal of M if and
only if I = M.

Proof. Let I be a I'-order-ideal of a I'monoid M. Then 1), € I since [ is also a
submonoid. Suppose that I is a I'-ideal of M. By Lemma 2, I = M. Conversely, suppose
that I = M. Thus, by Remark 4(i), [ is a I-ideal. O

Lemma 3. Let A and B be I'-ideals of a I'-monoid M. Then ANB and AUB are I'-ideals
of M.

Proof. Let A and B be I'-ideals of M. Let t € AN B and m € M. Then x € A and
x € B. Since A and B are T'-ideals of M, for all i, 8 € ', we have ®z*®m, *m*Pz € A and
“xxBm,*m«Pr € B. Hence, for all o, B € T, “x % Pm,*m« Pz € AN B. Therefore, AN B
is a I'-ideal of M. Now, let t € AUB and m € M. Then x € A or x € B. Since A and B
are I-ideals of M, for all o, B € T, we have %z *Pm,*m« Pz € A or “x*Pm,*m Pz € B.
Hence, for all o, 8 € T “x % Pm,*m + Pz € AU B. Therefore, AU B is a I'-ideal of M. [

Theorem 4. Let I be a I'-order-ideal of a I'-monoid M and J a I'-ideal of M.
(i) If INI # @, then JN I is a T'-ideal of I.
(ii) If M is commutative, then J U I is a I'-order-ideal of M.
Proof. Let I be a I'-order-ideal of M and J a I'-ideal of M.

(i) Let z € JNI and @ € I. Then x € J and = € I. Since J is a I'-ideal of M, for all
a,BeT, *xxPa,*axPx e J. Also, since I is a T'-order-ideal of M, for all a, 3 € T,
gz xPa,®axPx € I. Thus, for all o, 8 €T, “x xPa,%ax Pz € JNI. Therefore, JNIT
is a I'-ideal of I.

(ii) Suppose that ®z * Pa € JUTI for all a, 8 € . Then, ®z * Pa € J or ®z x Pa € I.
Since [ is a I'-order-ideal of M, it follows that z,a € I C J U I. Now, suppose that
z,a € JUI. Consider the following cases.

Case 1. z,a € I. Then, since I is a T-order-ideal of M, for all o, € T, “x xPa e I C
JUI.

Case 2. x € I, a € J. Then, since J is a I'-ideal of M and M is commutative, for all
a,B €T, we have “z xPa=PBax% e JC JUI.
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Case 3. x € J,a € I. Then, since J is a I'-ideal of M, for all o, € T', we have
apxBae JC JUI

Case 4. x,a € J. Then, since J is a I-ideal of M, for all ., 3 € T, we have ®z % Pa €
JCJUIL

Thus, J U I is a I'-order-ideal of M. O

Definition 11. Let (M, x*) and (IV,-) be I'-monoids and ¢ : M — N a I'monoid homo-
morphism. The kernel of ¢ is denoted and defined by kerp = {m € M : ¢(m) = 1x}.

Proposition 2. Let (M, x) and (N,-) be I'-monoids and ¢ : M — N a I'-monoid homo-
morphism.

(i) If ¢ is surjective and I is a T'-ideal of M, then (1) is a T'-ideal of N.
(i) If J is a T-ideal of N, then p=1(J) is a T'-ideal of M.
Proof. Let ¢ : M — N be a I'-monoid homomorphism.

(i) Let x € ¢(I) and z € N. Since ¢ is surjective, z = ¢(n) for some n € M and
x = p(y) for some y € I. Then for all o, B € T,

@ fn).

“wxlz= p(n) = @(“y) - o(*n) = p(*y *

e(y) -
Since I is a T-ideal of M, ®y x8n € I, so, ®x * Pz € o(I). Similarly, for all o, 3 € T,
@z % B2 € o(I). Therefore, ¢(I) is a I'-ideal of N.

(ii) Let y € p~1(J) and m € M. Then ¢(y) € J and ¢(m) € N. Thus, for all o, B € T,
o(“y *Bm) = o(“y) - p(Pm) = *p(y) - Bp(m) € J, since J is a I-ideal of N. Hence,
Y xPm € ¢71(J) for all a, B € T. Similarly, for all o, 8 € T, “m x Py € ¢~ 1(J).
Therefore, p~1(J) is a [-ideal of M. O

Example 10. Consider the I'-monoid homomorphism ¢ : M — N defined by ¢p(x) = b*,
where b # 0 in Example 6. Note that

kerop={zeM:p)=1}={zeM:b*=1}={zeM:b=1orx=0}.

Take z = 0 € kergp, m = 2 € M, and b = 2. Then for all a,8 € T, o(“z + Pm) =
©(“0 4+ 82) = (0 +2) = p(2) = 22 # 1. This implies that ®z 4+ #m ¢ kerp. By
Definition 10, ker ¢ is not a I'-ideal of M.

Remark 6. For any I'-monoids M and N, the kernel of a I'monoid homomorphism
@ : M — N is not necessarily a I'-ideal of M.

Proposition 3. Let (M, x) and (N,-) be I'-monoids and ¢ : M — N a I'-monoid homo-
morphism. Then ker ¢ is a I'-ideal of M if and only if ker o = M.
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Proof. Let ¢ : M — N be a I''monoid homomorphism. Then 1;; € ker¢. Suppose
that ker ¢ is a I'-ideal of M. Then by Lemma 2, ker ¢ = M. Now, suppose that ker p = M.
Then by Remark 4(i), ker ¢ is a I-ideal of M. O

By Proposition 3, ker ¢ is a I'-ideal if and only if ¢ is a zero map. Thus, isomorphism
theorems via I'-ideals are irrelevant.

4. T'-submonoids

This section presents the discussions on I'-submonoids of I'-monoids.

Definition 12. Let (M, *) be a I-monoid. A T'-submonoid is a subset S of M such that
the identity 17 € S and, for all @, 3 € T and for all s,t € S, “s* Pt € S.

Let S be a I'-submonoid of M. Then 1;; € S and for all o, 5 € I" and for all s,t € S,
we have ®s Pt € S. Take o = 8 = 0. Thus, we have s xt = %s %% € S. Hence, S is a
submonoid of M.

Remark 7. Let S be a I'-submonoid of a I'-monoid M.
(i) S is a submonoid of M, hence a monoid itself.
(ii) For all s € S and for all« € T, “s € S.
(iii) M is a I'-submonoid of M.

Let S be a I'-submonoid of a I'monoid M and let ¢ : I' x M — M be the action
(by monoid automorphism) of a group I' on M. By Remark 7, S is a monoid. Moreover,
by restricting the action ¢ to .S, ¢ acts on S by monoid automorphism and hence, S is a
I"-monoid.

Remark 8. A I'-submonoid of a I'-monoid is itself a I'-monoid.

Example 11. Consider the set M = {0,1,z,y, z,s,b} and an operation + given by

+10 1 =z y z s b
0]0 1 = y 2z s b
171 1 1 s s s b
z|lz 1 1 s s s b
yly s y y s b
z|lz s s y y s b
s |s s s s b
b |b b b b s
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It was shown in [5] that M is a commutative I'-monoid with identity 0, where the trivial
group I' = {0} acts trivially on M. Let S = {0,y,s,b}, U = {0,1,y,s,b}, V ={0,1,z}
and W = {0,y}. Note that the identity 0 is in S,U,V and W. Now, we have

%04+%=04+0=0¢€5, 04+%=0+y=yes;
04+%=0+s=s€b, %0+%=0+b=0beS;
Oy+%y=y+y=yes, Oy 40 =yt+s=s€S;
O +% =y+b=0bcS, Os 40 =s+s=5€8;
Os +% =s4+b=0beS, b+%=b+b=0beS.

Thus, by Definition 12, S is I'-submonoid of M. Similarly, U,V and W are I'-submonoids
of M. Consider the I'-~submonoid S = {0,y,s,b}. Now, take 0 € S and z € M. Then
Oxz=2z¢S. Thus, S is not a I'-ideal of M.

Remark 9. Let M be a I'monoid. A I'-submonoid of M is not necessarily a I'-ideal of
M.

Theorems 5 and 6 imply that there is no proper I'-submonoid which is also a I'-ideal
and vice versa.

Theorem 5. Let S be a I'-submonoid of a I'-monoid M. Then S is a I'-ideal of M if and
only if S=M.

Proof. Let S be a I'-submonoid of M. Suppose that S is a I'-ideal of M. Since S is a
I'-submonoid, 1; € S and thus, by Lemma 2, S = M. Conversely, suppose that S = M.
Then, by Remark 4(i), S is a I'-ideal of M. O

Theorem 6. Let I be a I'-ideal of a I'-monoid M. Then I is a I'-submonoid of M if and
only if I = M.

Proof. Let I be a I'-ideal of a I'-monoid M. Suppose that I is a I'-submonoid of M.
Then 1py € I and I = M. Conversely, suppose that I = M. By Remark 7(iii), I is a
I'-submonoid of M. O

Example 12. Consider the I'-submonoid S = {0,y,s,b} in Example 11. Note that
x*z=s¢€S. However, z,z ¢ S. Thus, S is not a I'-order-ideal of M.

Note that if S is a I'-order-ideal of a I'-monoid M, then by Remark 2, S is a submonoid
and 1); € S. Also, since S is a I'-order-ideal, for all o, 8 € " and for all s,t € S, we have
“s %P8t € §. Thus, S is a T-submonoid of M and the following remark holds.

Remark 10. Every I'-order-ideal of a I'monoid M is a ['-submonoid of M. However, a
I'-submonoid of M is not necessarily a I'-order-ideal of M.

The following example shows that a I'-submonoid is not necessarily a normal sub-
monoid.
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Example 13. Consider the I'-submonoid U = {0, 1,y,s,b} in Example 11 which is also
commutative. Observe that y,z € M such that y,y x z =y € U. However, z ¢ U. Thus,
U is not a normal submonoid of M.

Remark 11. In general, a I'-submonoid of a I'monoid M is not necessarily a normal
submonoid of M.

Theorem 7. Let S be a subset of a I'-monoid M. Then S is a I'-order-ideal if and only
if S is a I'-submonoid such that x xy € S implies x,y € S.

Proof. Let S be a subset of a ['-monoid M. Suppose S is a ['-order-ideal of M. Then
by Remark 10, S is a I'-submonoid and for & = 3 = 0, we have x xy = Y2 % € S implies
xz,y € S since S is a ['-order-ideal. Now, suppose S is a ['-submonoid such that z xy € S
implies z,y € S. Then for all o, € I and for all z,y € S, “x %y € S. Suppose for all
a,B €T, “cxPy e S Take o = f =0. Then z xy = "2 % € S which implies that
xz,y € S. Therefore, S is a I'-order-ideal. O

Lemma 4. Let A and B be I'-submonoids of a I'-monoid M. Then
(i) AN B is a I'-submonoid of M.

(ii) If M is commutative and A, B are normal, then AN B is a normal T'-submonoid of

M.
Proof. Let A and B be I'-~submonoids of a I"-monoid M.

(i) Since A and B are I'-submonoids of M, the identity 15 € A and 1) € B. Thus,
1y € ANB. Now, let a,b € AN B. Then, a,b € A and a,b € B. Since A and B are
I'-submonoids, for all o, 8 € T, “a+%b € A and “ax”b € B. Hence, “ax”b e AN B.
Therefore, AN B is a I'-~submonoid of M.

(ii) By (i), AN B is a I'-submonoid of M. It remains to show that AN B is normal. Let
z,xxy € ANB. Then z,z*xy € A and x,x xy € B. Since A and B are normal,
y € Aand y € B. Therefore, y € AN B and AN B is a normal I'-submonoid of
M. O

Example 14. Consider the I'-submonoids V' = {0,1,z} and W = {0,y} in Example 11.
Then, VUW = {0,1,z,y}. Now, for z,y € VUW, we have zxy = s ¢ V UW. Thus,
V U W is not a I'-submonoid of M.

Remark 12. The union of two I'-submonoids of a I'monoid M is not necessarily a I'-
submonoid of M.

Theorem 8. Let (M,*) and (N,-) be I'-monoids and ¢ : M — N a I'-monoid homomor-
phism.

(i) If S is a T'-submonoid of M, then ¢(S) is a I'-submonoid of N. In particular, p(M)
is a ['-submonoid of N.
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(i) If T is a T-submonoid of N, then ¢~ (T) is a I'-submonoid of M.
(iii) ker ¢ is a I'-submonoid of M.
(iv) If M is commutative, then ker ¢ is normal.
Proof. Let ¢ : M — N be a I'-monoid homomorphism.

(i) Let S be a I'-submonoid of M. Then 1y € S and 1y = ¢(1p) € ©(S). Let
z,y € p(S). Then x = p(a) and y = ¢(b) for some a,b € S. Since S is a I'-
submonoid, for all o, 8 € T, “a xPb € S. Now, for all o, € T, we have “x - Py =
“po(a) - Pp(b) = p(“a) - p(Pb) = @(“a * Pb). Since “a x Pb € S, it follows that
gz By = p(%a*Pb) € p(S). Thus, ¢(S) is a T-submonoid of N.

(ii) Let T be a I'-submonoid of N. Then, ¢(1p) = 1y € T and 1p; € ¢ }(T). Let
z,y € o YT). Then p(z),p(y) € T. Now, for all o, 3 € T, we have p(“x * Py) =
o(“x) - o(Py) = *p(x) - Bp(y) € T since T is a T-submonoid of N. This implies that
for all o, B € T, we have “x x %y € ¢~1(T). Therefore, ¢~1(T) is a I'-submonoid of
M.

(iii) Since ¢ is a I'-monoid homomorphism, ¢(137) = 1x. Thus, 1y € kerp. Now, let
x,y € ker p. Then p(z) = 1y and ¢(y) = 1. Thus, by Remark 3, for all a, 8 € T,

B

«

o(“x*Py) = p(“x) - o(Py) = “p(z) - Po(y) = “In - Ply = 1y - 1y = 1n.

Hence, for all a, 8 € T, ®x By € ker . Therefore, ker ¢ is a I-submonoid of M.
(iv) Let z,z xy € ker . Then ¢(x) = 1y and ¢(x *y) = 1n. Thus,
oY) = 1Ix - oy) = o(z) - ¢(y) = ¢(x xy) = 1x. This implies that y € ker ¢ and

thus, ker ¢ is normal. O

Theorem 9. Let J be a I'-ideal and S a I'-submonoid of a I'-monoid M such that
JNS #@. Then () JNS is a T-ideal of S; (i) J U S is a T'-submonoid of M.

Proof. Let J be a I'-ideal and S a I'-submonoid of M such that J NS # &.

(i) Let z € JNS and s € S. Then x € J and z,s € S. Since J is a I'-ideal of M, for all
a,BeT, “xxPs *sxPx e J. Also, since S is a T-submonoid of M, for all o, 8 € T,
“xxPs @sxPr e S. Thus, for all a, B €T, ®x xPs,%s %Pz € JN S and so, JN S is
a I'-ideal of S.

(ii) Let z,y € JUS. We consider the following cases.

Case 1. x,y € J. Since J is a I-ideal of M, for all o, 5 € T, “z Py c JC JUS.
Case 2. x € J,y € S. Since J is a I'-ideal of M, for all o, 8 € T, “z Py e JC JUS.
Case 3. x,y € S. Since S is a I'-submonoid of M, for all a, 3 € T, “zxPy € S C JUS.
Case 4. y € J,x € S. Since J is a I'-ideal of M, for all o, B € T, “zx Py e JC JUS.
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Also, since S is a I'-submonoid of M, 1, € S C JUS. Therefore, JU S is a I'-submonoid
of M. O

Remark 13. Theorem 4(i) is also a consequence of Theorem9(i).

Lemma 5. Let A and B be I'-submonoids of a commutative I'-monoid M. Then A x B
15 a I'-submonoid of M.

Proof. Let x,y € AxB and «, 8 € I'. Then & = ay*b; and y = ag*bs for some ay,as € A
and b1, by € B. Since A and B are I'-submonoids, “aq * Bas € A and *by * Pby € B. Note
that 1y, = 157 * 1p7 € A x B. Since M is commutative,

O x Py = Yay « b)) % Plag * ba) = (“ay * %b1) * (Pag x Pby) = (“ay * Pag) = (“by = Pby).
This implies that “x * fy € A« B. Therefore, A * B is a I'-submonoid of M. 0

Lemma 6. Let A and B be I'-submonoids of a commutative I'-monoid M. Then the map
f:A— Ax B defined by f(a) = ax 1y is a T-monoid homomorphism.

Proof. Let x,y € A such that z = y. Then f(z) =zx*x1lyy =x =y =yx*x 1y = f(y)
and f is well-defined. Let x,y € A. Then

() flexy) =zrysly =wxy=(zxly)*(yxlu) = fz)* f(y),
(ii) f(1ar) = 1ar * 1y, the identity in A x B.
Thus, f is a monoid homomorphism. Now, for all « € I" and x € A,
f(z)=zx1py =%« =%xx1py) = f(z).

Thus, f is a I''monoid homomorphism. O

5. Quotient I'-monoids

In [5], the quotient I'-monoid M /S was established using the equivalence relation in
Definition 6 such that the commutative I'-monoid M and I'-order-ideal S of M were treated
as commutative monoid and submonoid, respectively. Further, the third isomorphism
theorem for I'-monoids via I'-order-ideals was proved.

Here, we define an equivalence relation and construct quotient I'-monoids via I'-
submonoids. Moreover, we prove the isomorphism theorems.

Definition 13. Let M be a [-monoid. For any I'-submonoid S of M and for all z,y € M,
we define a binary relation pg in M by zpgy if and only if for all « € ', (“zxS)N(Yy*S) #
.

The next example shows that if a I'-submonoid S of a I'-monoid M is not commutative,
then pg is not an equivalence relation.
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Example 15. Consider the I-monoid M = {1,a,b,c,d,e} in Example 5 with operation
* given by

x| 1 a b ¢ d e
1|1 a b ¢ d e
ala a a a a a
b|b b b b b b
clc ¢ ¢ ¢ ¢ ¢
d|d d d d d
ele e e e e e

Let S = {1,a,b}. Then, by routine calculation, S is a I'-submonoid of M. Also, S is not
commutative since axb = a # b = bxa. Now, for all & € T', we have “1xS = 1xS = {1, a, b},
YaxS =axS={a}and *bx S =bxS = {b}. Thus, (“axS)N(*1%S) = {a} # @ which
implies that apgl. Also, (*1%.S5)N (*bx S) = {b} # @ which implies that 1pgb. However,
(“axS)N (Pb*S) = @ which implies that a is not related to b under pg, that is, pg is not
transitive, hence not an equivalence relation.

The following result tells us that pg is an equivalence relation for any commutative
I'-submonoid S of a I'-monoid M. Further, if M is commutative, then pg is a congruence
relation on M.

Theorem 10. Let S be a commutative I'-submonoid of a I'-monoid M. Then
(i) ps is an equivalence relation on M.
(ii) If M is commutative, then pg is a congruence relation on M.
Proof. Let S be a commutative I'-submonoid of a I'-monoid M.

(i) Let x € M and S a I'-submonoid of M. Then, for « € T', we have (*x*S)N(“zxS) =
Yx xS # @ since Yo = Yxx 1 € *x % S. Thus, xpsx and pg is reflexive.

Let xpsy. Then, for all a € T', (*z « S) N (“y x §) # @. Thus,
(y*S)N(“xx8) = (YxxS)N(*y=S) # 2. Hence, ypsr and pg is symmetric.

Now, let zpsy and ypsz. Then, for all o, € T, (*x x S) N (“y*S) # & and
(ByxS)YN (Pz* S) # @. Thus, we have %z x 51 = %y * s and Py * s3 = P2z x 54 for
some 1, So, 83,54 € S. Hence, for all a € I', “x % 51 % 53 = Yy * Sg % 83 = Y2 * S9 % 84
and sp * s3, 52 % s4 € S since S is a I'-submonoid. Hence, (“z%S5)N(*2%.S5) # @ and
xpsz. Therefore, pg is transitive. Consequently, pg is an equivalence relation on M.

(ii) Let M be a commutative I'-monoid. Suppose that zpsy and u,v € M. Then, we
have for all a, 8 € T, (*x * S) N (“y * S) # & and thus, “z x 57 = “y * sy for some
s1,82 € S. Hence, (*zxs1)**(u*xv) = (*y*s2)«“(uxv). Since M is commutative,
foralla € T, *(uxx*xv)xs1 = *(u*xy=*v) x5y and (ux*xzxv)pg(u*y*v). Thus,
ps is a congruence relation on M. O
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Definition 14. Let S be a commutative I'-submonoid of a I'-monoid M. Then for all
x € M, the equivalence class of x is denoted and defined by pg(x) = {y € M : xpsy}.

Let S be a commutative I'-submonoid of a I''monoid M and let m € M. Then for all
acl, (*m+xS)N(“mx*S) =m xS # & since for « =0, m = mx* 1y € m=*S. Thus,
m € ps(m). Hence, the following remark holds.

Remark 14. Let S be a commutative I'-submonoid of a I'-monoid M and let my, ms € M.
(i) For all m € M, m € pg(m).
(i) ps(mi) = ps(ma) if and only if (*mq *.S) N (*mg * S) # & for all a € T

The quotient M /S using equivalence relation in Definition 6, where M is a monoid and
S is a submonoid of M is different from M /S using the equivalence relation in Definition 13,
where M is a [-monoid and S is a I'-submonoid as shown in the following example.

Example 16. Let I' = Z the additive group of integers and M = Zg = {0,1,2,3,4,5,6,7}
under addition modulo 8. Then M is a monoid with identity 0. Consider a mapping
¢ : I'x M — M given by ¢((a,/m)) = 7*m. Let (o,Z),(8,7) € I' x M such that

(o, 7) = (8,7). Then a = 8 and T = 7. Thus, 7%z = 7Py and ¢ is well-defined. Now, let
a,B €I and m € M. Observe that

(i) ¢((0,m)) = 7m =m;

(ii) ¢((a+ B,m)) =70 Fm =T727Tm = ¢((o, #((8,m))))-
This implies that ¢ is an action. Now, let a € I and =,y € M. Then

o((a,T+57)) = ¢((, x F5y)) = T%(x +3y) = Tz +53 7% = ¢((a, T)) +5 (@, 7)).

Therefore, M is a I'-monoid.
Let S = {0,4}. Observe that the identity 0 € S and 0 +30=0,0+g4 =4 +g0 = 4,
44534 =0¢€ 8. This implies that S is a submonoid of M. Now, note that

0+s5S=0+5{0,4} = {0,4}, 4455 =4+5{0,4} ={0,4};
1+5S5=1+5{0,4} = {1,5}, 5455 =5+5{0,4} = {1,5};
§+8S:§+8{6,1}:{§,6}, 6455 =06+g {6,1}:{26};
443 S =4+45{0,4} = {0,4}, T+ S ="T7+5{0,4} = {3,7}.

Moreover, pg(0) = {0,4}, ps(1) = {1,5}, ps(2) = {2,6}, ps(3) = {3,7}, ps(4) =
{0,4}, ps(5) = {1,5}, ps(6) = {2,6}, and ps(7) = {3,7}. Thus, the quotient M/S =
{ps(0), ps(1), ps(2), ps(3)} using the equivalence relation in Definition 6.

Now, observe that for all « € I', 7* = 1 or 7* = 7. Note that the identity 0 € S and

for all o, 8 € T,

O‘6+8’86:7a0+8770=6+8665;
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754
I

or 4

7
L4441 =700 44784 =0
This implies that S is a I'-submonoid of M. Now, note that for all « € T,

V4S5 =20 +s {6,1} =7%0 +g {6,1} = {6,1},
T+gS=1+5{0,4} =791 +5 {0,4} = {1,5} or {3,7};
42+ 5 =2 +g {6,1} =792 +g {6,1} = {5,6};
3455 ="3+5{0,4} =73 +5{0,4} = {1,5} or {3,7};
Y4 +5 S =24 +5{0,4} =794 +5{0,4} = {0,4};
548 S =5 +5{0,4} =795 +5 {0,4} = {1,5} or {3,7};
6 +55 =6 +5{0,4} =796 +5 {0,4} = {2,6};
o7 44§ = T 44 {0,4) = 797 45 {0,4} = {1, 5} or {3,7}.

Moreover, we have ps(0) = ps(8) = {03}, ps(D) = ps(®) = (2,6}, and ps(D) = ps(3) =
ps(5) = ps(7) = {1,3,5,7}. Thus, the quotient M/S = {ps(0), ps(1), ps(2)} using the
Definition 13. Observe that M /S yield is not equal to M /S above. Moreover, pg(0) is the
same with pg(0) above, however, pg(1)s are different. This implies that their equivalence
classes are not equal. Hence, M/S via I'-submonoid is different from M /S via submonoid,

where M is a monoid.

Theorem 11. If M is a commutative I'-monoid and S a T'-submonoid of M, then M/S
1s a I'-monoid.

Proof. Let M be a commutative ['-monoid and S a I'-submonoid of M. By Proposi-
tion 1, since pg is a congruence on M, we have M/ps = M/S is a monoid with binary
operation o given by pg(z) o ps(y) = ps(z * y) with identity pg(1ps). Consider a map-
ping ¢ : I' x M/S — M/S given by (o, ps(z)) — “ps(xz) = ps(®z) for all « € T
and x € M. Let (a,ps(x)), (8,ps(y)) € T'x M/S such that (o, ps(x)) = (5, ps(y))-
Then o = f and pg(x) = ps(y). Thus, by Remark 14(ii), (*z+« S) N (“yx S) # &
for all o/ € T', which implies that ks = ""y x 5o for some s1,s9 € S. Accord-
ingly, “(“z xs1) = “(¥x) % %sp = *(Yyx s9) = *(¥y) * *sy. Since S is a T-submonoid,
@s1,%9 € S and (1 z % ) N (“Fy x ) # @. This means that

d(a, ps(x)) = *ps(x) = ps(“x) = ps("y) ="ps(y) = 6(B, ps(y)).

Hence, ¢ is well-defined.
Now, for any o, 8 € T and = € M, ¢((0,ps(z))) = ps(z) = ps(®z) = ps(z) and

_0
o((a+ B, ps(x))) = “TFps(z) = *(Pps(x)) = d((a, 6((8, ps(x))))). Thus, ¢ is an action.
Now, let « € T' and z,y € M. Then

(e, ps(x) 0 ps(y))) = “(ps(z)ops(y))
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= ps(a(x*y))
= ps(“xxy)
= ps(“z)ops(“y)

= “ps(z)ops(y)
= ¢((a, ps())) o d((e, ps(y)))-

Therefore, M /S is a I'-monoid. O

Proposition 4. Let S be a normal I'-submonoid of a commutative I'-monoid M. Then
ps(h) = ps(1ar) if and only if h € S.

Proof. Suppose h € S. Let x € pg(h). Then, forall a € T, (*zxS)N(*h=*S) # @. This
implies that there exist hi, hy € S such that “x x hy = “h x hy € S. Since S is a normal
I’-submonoid and hy,%z x h1 € S, it follows that *x € S for all a € I'. Accordingly, for all
a €T, Yxx*1y = “1 % implies (YzxS)N(*1p,S) # &. Hence, zpglay and x € pg(1ar).
It follows that ps(h) € ps(1ar). Let x € pg(1ar). Then, (Yz +S) N (*1p xS) # @ for all
«a € I'. Thus, there exist hi, hy € S such that for all a € T', *x x h1 = %17 x hg € S. Since
S'is a normal I'-submonoid and hi,“zxhy € S, it follows that *x € S. Observe that for all
ael, “h=%hx1y € §since S is a ['-submonoid. Accordingly, *x**h = “h*x“z implies
(*z % 5) N (*h xS) # &. Hence, xzpsh and = € pg(h). Consequently, ps(1ar) C ps(h).
Therefore, ps(1ar) = ps(h).

Now, suppose ps(1y) = ps(h). Then, by Remark 14(ii), (*1p *S) N (*h * S) # @ for
all @ € I'. Thus, there exist hi, hg € S such that “h x ho = “1y; xhy € S for all « € T.
Since S is a normal I'-submonoid and hy,“h * ho € S, it follows that *h € S for all o € T".
Therefore, h € S. O

Proposition 5. Let S be a normal I'-submonoid of a commutative I'-monoid M. Then
M =S if and only if M/S = {ps(1m)}.

Proof. Suppose M = S. Let x € M/S = M/M. Then = = py(y) for some y € M.
By Proposition 4, we have par(1a) = pam(y) = x. Hence, M/M = M/S = {pap(1r1)}.
Conversely, suppose M /S = {ps(1r)}. Let z € M. Then pg(x) € M/S. Thus, ps(z) =
ps(1ar). By Proposition 4, z € S. Hence, M C S. Accordingly, M = S. O

Proposition 6. Let S be a normal I'-submonoid of a commutative I'-monoid M. Every
I'-submonoid of M /S is of the form R/S, where R is a I'-submonoid of M containing S.

Proof. Let H be a I'-submonoid of M/S. Then H C M/S. Let R = {m € M :
ps(m) € H}. We show that R is a I'-submonoid of M. Note that the identity in M/S is
ps(1pyr) € H and thus, 13y € R. Now, let z,y € R and o, 8 € T'. Then pg(z),ps(y) € H
and “pg(z) * Pps(y) € H since H is a I'-submonoid. Accordingly, we have pgs(“z * #y) =
ps(®x) o ps(Py) = %ps(x) o Ppg(y) € H. It follows that “z * Py € R. Accordingly, R is a
I'-submonoid of M. Now, we show that S C R. Let z € S. Then by Proposition 4, we
have pg(z) = ps(1ar). Since ps(1ps) is the identity in M/S and H is a I-submonoid of
M/S, we must have pg(x) = ps(1ar) € H. Thus, x € R. Therefore, S C R. O
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Theorem 12. Let M be a commutative I'-monoid and S a normal I'-submonoid of M.
Then the mapping mg : M — M/S given by wg(x) = ps(x) is a '-monoid epimorphism
with kernel S.

Proof. Let x,y € M such that z = y. Then, mg(x) = ps(z) = ps(y) = w(y). Thus, wg
is well-defined. Now, let x,y € M. Then, we have
Ts(z xy) = ps(z *xy) = ps(x) 0 ps(y) = ws(x) o mg(y) and ws(1ar) = ps(lar). Thus, by
Definition 4, mg is a monoid homomorphism. Since *mg(x) = *pg(z) = ps(“x) = mg(“x),
by Definition, mg is a I~monoid homomorphism. Now, let b € M/S. Then, b = pg(a)
for some a € M. Thus, b = pg(a) = wg(a) and so, 7 is surjective. Therefore, g is an
epimorphism. Now, since S is normal, by Proposition 4 we have

kermg={m e M : ps(m) =ps(lpy)} ={meM :meS}=SNM=S5

as desired. O

The map 7g in Theorem 12 is called the canonical epimorphism.

Proposition 7. Let M be a I'-monoid. Then for any A C M and S a commutative
T-submonoid of M, wg'(ms(A)) = Uzea ps(z).

Proof. Suppose y € 7T§1(7TS(A)). Then ps(y) = ms(y) € ms(A). Since 7g is an
epimorphism, there exists an z € A such that mg(x) = ps(y). Hence, ps(x) = ps(y).
By Remark 14(ii), (“x «S) N (*y x S) # & for all « € T, that is, xpgy. This implies
that y € ps(z) for some € A. It follows that y € (J,c4 ps(z) so that m5'(rs(A4)) C
Uzea ps(z). Conversely, suppose y € J,c 4 ps(x). Then y € ps(x) for some x € A. This
implies that ypgz, that is, (“y*S) N (“zx S) # & for all a € I'. By Remark 14(ii),
ps(y) = ps(z). Thus, ws(y) = wg(z). Since mg(x) € wg(A), it follows that wg(y) €
ms(A) implying that y € 7g'(ms(A)). Hence, ,c4ps(z) C 75 (7s(A)). Therefore,
75 (15(A)) = Upea ps(@). O

6. Isomorphism Theorems

In [5], the isomorphism theorems for I'monoids via I'-order-ideals are established.
Here, we prove isomorphism theorems for I'-monoids via I'-submonoids.

As shown already in Example 16, the quotient M /S in our discussion is not the same
with the quotient discussed in [5].

Theorem 13. Let (M, ) and (N, -) be commutative I'-monoids and let f : M — N be a T'-
monoid homomorphism. There exists a unique I'-monoid homomorphism ¢ : M/ ker f —
N such that the following diagram is commutative

M—r N

lﬂ-ker %

M/ ker f
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that is, @ 0 Ter f = f, where Tyer () := prer (). Moreover, ¢ is onto and it has a trivial
kernel, namely, ker p = {ker f}. However, ¢ is a I'-monoid isomorphism if and only if

Pf = Pker f-

Proof. Let (M,x) and (V,-) be commutative I'-monoids and let f : M — N be a
I'-monoid homomorphism. Since I'-monoids are monoids and I'-monoid homomorphism
is a monoid homomorphism, by Theorem 1, there exists a unique monoid homomorphism
@ : M/ker f — N such that the following diagram is commutative

M— N

J/ﬂ'ker %

M/ ker f

that is, ¢ o Merf = f, where Tier f(%) = prer f(x). Moreover, ¢ is onto and it has a
trivial kernel, namely, kerp = {ker f}. However, ¢ is an isomorphism if and only if
pPf = pxerf- Thus, it remains to show that ¢ is a I-monoid homomorphism. Now, let
Prer f(x) € M/ker f and o € T'. Since f is a I-monoid homomorphism, we have

P(“prer 1 () = P(prer p(“)) = f(“2) = “f(2) = “@(Prer (7))
Hence, ¢ is a I'-monoid homomorphism. O

Corollary 1. Let M and N be commutative I'-monoids and f : M — N be a I'-monoid
homomorphism. Then f induces a T'-monoid isomorphism M/ker f = Imf.

Proof. Suppose f : M — N is a I'-monoid homomorphism. Then, by Theorem 13,
there exists a Imonoid homomorphism ¢ : M/ker f — N. If we set N = Imf, then
¢ : M/ker f — Imf is a I'monoid epimorphism. Thus, ker¢ = {pierf(x) : f(z) =
In} = {ker f} implies that pie f(x) = ker f and x € ker f. Hence, by Proposition 4,
Pier £(2) = prer (1) which implies that ker ¢ = {per (1ar)} and ¢ is injective. Accord-
ingly, M/ ker f =2 Imf. O
Corollary 2. Let K and L be normal I'-submonoids of a commutative I'-monoid M. Then
K/(KNL)=(KxL)/L.

Proof. Consider the map f : K — K % L defined by f(k) =k« 1y and 7y, : K x L —
(KxL)/L defined by 7, (kxl) = pr(k«l). Then ¢ : K — (K*L)/L defined by ¢(k) = pr(k)
is a I'-monoid homomorphism. Let z € (K * L)/L. Then z = pp(k = 1) for some k € K
and [ € L. Observe that z = pr(kxl) = pr(k)opr(l) = pr(k)opr(1ar) = pr(k). So, there
is a k € K such that ¢(k) = pr(k) = x and ¢ is onto. Moreover,

kerp={ke K:pr(k)=pr(p)}={ke K:ke L} =KnNL.

By Corollary 1, K/ ker p = Imp = (K « L)/L. O

The following theorem is the counterpart to the third isomorphism theorem of groups
for I'-monoids via I'-submonoids.
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Theorem 14. Let S and T be normal I'-submonoids of a commutative I'-monoid M with
SCT. Then (M/S)/(T/S)= M/T.

Proof. Define f : M/S — M/T by f(ps(h)) = pr(h) for all ps(h) € M/S. Let
ps(h1), ps(ha) € M/S and suppose that pg(hi) = ps(h2). Then, (*hy *S)N(*hexS) # &
for all & € T'. Thus, *hy *w; = “hg *ws for some wy,ws € S CT. Thus, (“*hy*T) N (“hg *
T) # @ for all @ € I'. By Remark 14(ii), pr(h1) = pr(h2). Thus, f(ps(h1)) = f(ps(h2)).
Hence, f is well-defined.

Let ps(h1), ps(h2) € M/S. Then

f(ps(h1) o ps(hz)) = f(ps(h1 * h2)) = pr(h1) o pr(h2) = f(ps(h1)) o f(ps(h2)).

Hence, f is a homomorphism.

Let ps(h) € ker f. Then f(ps(h)) = pr(1a), the identity in M/T. Thus, pr(h) =
pr(1ar). By Proposition 4, h € T. Hence, ps(h) € T/S. Thus, ker f C T/S. Let
ps(h) € T/S. Then h € T. By Proposition 4, pr(h) = pr(1ar). Thus, f(ps(h)) =
pr(h) = pr(1ar). Accordingly, ps(h) € ker f. Hence, T'/S C ker f. So, T//S = ker f.

For ps(x), ps(y) € M/S and « € T, recall that ps(x)prps(y) if and only if f(“pg(x)) =
f(“ps(y)). We claim that py = pier f-

Let ps(z) € M/S. We show that pf(ps( )) = Prer £(Ps(2))-

Let ps(w) € prerf(ps(2)). Then (“ps(z) o ker f) N (*ps(w) o ker f) # @. Thus,
there exist y1,y2 € ker f such that O‘ps( o1 “ps(w) o yo. Hence, f(“ps(z)) =
F(ps(2)) 0 pr(Lar) = f(*ps(2)) o F(31) = F(*ps(2) o 1) and
f(@ps(w)) = f(*ps(w)) o pr(la) = f(%p w)) o f(y2) = f(*ps(w) o y2). So, by well-
defnedness of £, we have F(*ps(2) = F(eps(z) o ) = [(®ps) o 99 = £(@ps(uc)).
Accordingly, ps(w) € pr(ps(z)). Thus, pyer f(ps( )) € prps(z)).

Now, let ps(w) € ps(ps(z)) and o € I'. Then f(“ps(z)) = f(“ps(w)), that is, “pr(z) =
Ypr(w). Thus, pr(“z) = pr(“w) implies (“w xT) N (2 * T) # &. Thus, there exist
hi,hy € T such that “wxh; = “zxhe. Hence, ps(hi), ps(ha) € T/S = ker f. Consequently,
ps(®w)ops(hy) = ps(“wxhy) = ps(“z*ha) = ps(“z) o ps(hsy) for all a« € T'. This implies
that (“pg(w) o ker f) N (“pg(z) o ker f) # &. Hence, ps(w) € prer f(ps(2)). Accordingly,
pf(PS(Z)) - pkerf(ps(z))‘

Therefore, pt(ps(2)) = prer f(ps(z)) for all ps(z) € M/S, that is, pf = prerf- By
Theorem 13, these all imply that (M/S)/(T/S) = (M/S)/ker f = M/T. O

[0}
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7. Conclusion

: In this paper, we have shown that I'-ideals and I'-submonoids of a I'-monoid M
are not equivalent to the existing I'-order-ideals of M. For any I'-monoids M and N, we
proved that the kernel of a I'-monoid homomorphism ¢ : M — N is a I'-submonoid of
M. Also, for any I'-submonoid S of a I'-monoid M, pg is a congruence relation if M is
commutative and thus, M/S = M/pg is defined for commutative I'-monoid M. Moreover,
isomorphism theorems for I'-monoids via I'-submonoids were proved.
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