EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1772-1793
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On Γ-ideals, Γ-submonoids and Isomorphism Theorems of Γ-monoids via Γ-submonoids

Hulsen T. Sarapuddin ${ }^{1, *}$, Jocelyn P. Vilela ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Mathematical and Theoretical Physical Sciences-PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

This study introduces the concept of Γ-ideals and Γ-submonoids of Γ-monoids and investigates their relationships with the existing Γ-order-ideals. Moreover, quotient of Γ-monoids and isomorphism theorems via Γ-submonoids are proved.

2020 Mathematics Subject Classifications: 20M32
Key Words and Phrases: Γ-monoids, Γ-monoid Homomorphism, Γ-order-ideals, Γ-ideals, Γ submonoids, Isomorphism Theorem

1. Introduction

The talented monoid of a row-finite directed graph $E=\left(E^{0}, E^{1}, r, s\right)$, denoted by T_{E}, is the commutative monoid generated by $\left\{v(i): v \in E^{0}, i \in \mathbb{Z}\right\}$ such that $v(i)=$ $\sum_{e \in s^{-1}(v)} r(e)(i+1)$ for every $i \in \mathbb{Z}$ and every $v \in E^{0}$ that is not a sink. The additive group \mathbb{Z} of integers acts on T_{E} by monoid automorphisms by shifting indices: for each $n, i \in \mathbb{Z}$ and $v \in E^{0}$, define ${ }^{n} v(i)=v(i+n)$, which extends to an action of \mathbb{Z} on T_{E} [3]. Monoids with a group Γ acting (by monoid automorphisms) on it, called Γ-monoids, was first introduced in the paper of Hazrat and Li [1] as a tool in the study of talented monoids. In the same paper, Γ-order-ideals of Γ-monoids are also introduced. Sebandal and Vilela [5] prove some properties, including the isomorphism theorems for Γ-monoids and Γ-order-ideals are established.

This paper extends the study of Γ-monoids by defining the concept of Γ-ideals and Γ-submonoids and establishing some of their properties. Moreover, this paper studies quotient of Γ-monoids via equivalence classes of Γ-submonoids and proves isomorphism theorems.

[^0]
2. Preliminaries

In this section, we present some basic concepts and known results that are useful in this study.

Definition 1. [2] A semigroup is a nonempty set M together with a binary operation * on M which is associative, that is, for all $a, b, c \in M, a *(b * c)=(a * b) * c$.

Definition 2. [2] A monoid is a semigroup M which contains an identity element $1_{M} \in M$ such that $1_{M} * m=m * 1_{M}=m$ for all $m \in M$.

For a monoid M with the binary operation $*$, we may also say that M is a monoid under $*$. A monoid M is said to be commutative if for all $x, y \in M, x * y=y * x$.

If no confusion arises, by a monoid M, we shall mean a triple ($M, 1_{M}, *$) unless otherwise specified.

Definition 3. [6] Let $(M, *)$ be a monoid. A submonoid is a subset S of M which is closed under the binary operation on M and contains the identity 1_{M} of M.

Definition 4. [6] Let $(M, *)$ and (N, \cdot) be monoids. A monoid homomorphism is a mapping $\varphi: M \rightarrow N$ such that $\varphi(a * b)=\varphi(a) \cdot \varphi(b)$ and $\varphi\left(1_{M}\right)=1_{N}$ for all $a, b \in M$ where 1_{M} and 1_{N} are the identities in M and N, respectively.

Example 1. Consider the monoids $M=(\mathbb{N},+)$ and $N=(\mathbb{N}, \cdot)$ and the mapping φ : $M \rightarrow N$ defined by $\varphi(x)=b^{x}$, where $b \in \mathbb{N} \backslash\{0\}$. For any $x, y \in M$, we have $\varphi(x+y)=$ $b^{x+y}=b^{x} \cdot b^{y}=\varphi(x) \cdot \varphi(y)$ and $\varphi(0)=b^{0}=1$. Therefore, φ is a monoid homomorphism.

Definition 5. [6] A congruence on a monoid M is an equivalence relation ρ on M which satisfies the condition: For all $u, v, x, y \in M$, if $x \rho y$, then $(u * x * v) \rho(u * y * v)$.
Proposition 1. [6] Let ρ be a congruence on a monoid M. Then M / ρ is a monoid with binary operation \circ given by $\rho(x) \circ \rho(y)=\rho(x * y)$ for all $x, y \in M$.

Definition 6. [4] Let M be a commutative monoid. For any submonoid H of M, we define a binary relation ρ_{H} in M by $x \rho_{H} y$ if and only if $(x * H) \cap(y * H) \neq \varnothing$.

Remark 1. [4] For any submonoid H of a commutative monoid M, ρ_{H} is an equivalence relation on M.

Definition 7. [2] An action of a group (G, \circ) in a set S is a function $\phi: G \times S \longrightarrow S$ such that for all $x \in S$, and $g_{1}, g_{2} \in G: \phi\left(\left(1_{G}, x\right)\right)=x$ and $\phi\left(\left(g_{1} \circ g_{2}, x\right)\right)=\phi\left(\left(g_{1}, \phi\left(\left(g_{2}, x\right)\right)\right)\right)$. When such an action is given, G is said to act on the set S.

Example 2. Consider the group $G=\mathbb{Z}$ under the usual addition and the set $S=$ \mathbb{R} of real numbers and the mapping $\phi: G \times S \rightarrow S$ given by $\phi((g, x))=2^{g} x$. Let $(g, x),(h, y) \in G \times S$ such that $(g, x)=(h, y)$. Then $g=h$ and $x=y$. Thus, we have $\phi((g, x))=2^{g} x=2^{h} y=\phi((h, y))$ and ϕ is well-defined. Now, for any $g_{1}, g_{2} \in G$ and $x \in S$, we have $\phi((0, x))=2^{0} x=x$ and $\phi\left(\left(g_{1}+g_{2}, x\right)\right)=2^{g_{1}+g_{2}} x=2^{g_{1}} 2^{g_{2}} x=\phi\left(\left(g_{1}, \phi\left(\left(g_{2}, x\right)\right)\right)\right)$. Therefore, ϕ is an action.

Definition 8. [3] Let M be a monoid and Γ a group. M is said to be a Γ-monoid if there is an action $\phi: \Gamma \times M \rightarrow M$ of Γ on M via monoid automorphism, that is, ϕ is an action which satisfies: for all $\alpha \in \Gamma$ and $x, y \in M, \phi((\alpha, x * y))=\phi((\alpha, x)) * \phi((\alpha, y))$. For $\alpha \in \Gamma$ and $a \in M$, the action of α on a shall be denoted by ${ }^{\alpha} a$.

Example 3. Consider $\Gamma=\mathbb{Z}$ a group of integers under the usual addition and the set $M=\mathbb{R}$ with the usual addition as its binary operation. Then, $(M,+)$ is a monoid with identity 0 . Consider the action $\phi: \Gamma \times M \rightarrow M$ given by $\phi((\alpha, x))=2^{\alpha} x$ in Example 2. Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then we have $\phi((\alpha, x+y))=2^{\alpha}(x+y)=2^{\alpha} x+2^{\alpha} y=$ $\phi((\alpha, x))+\phi((\alpha, y))$. Therefore, M is a Γ-monoid.

Example 4. Let Γ be a group of integers under addition and let $T=M_{2}(\mathbb{R})$ under matrix addition. Consider the mapping $\phi: \Gamma \times T \rightarrow T$ given by $\left(\alpha,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) \mapsto^{\alpha}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=$ $\left(\begin{array}{ll}2^{\alpha} a & 2^{\alpha} b \\ 2^{\alpha} c & 2^{\alpha} d\end{array}\right)$. Let $\left(\alpha,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right),\left(\beta,\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)\right) \in \Gamma \times T$ such that $\left(\alpha,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\beta,\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)\right)$. Then $\alpha=\beta$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$. Thus, $\left(\begin{array}{ll}2^{\alpha} a & 2^{\alpha} b \\ 2^{\alpha} c & 2^{\alpha} d\end{array}\right)=$ $\left(\begin{array}{cc}2^{\beta} e & 2^{\beta} f \\ 2^{\beta} g & 2^{\beta} h\end{array}\right)$ and ϕ is well-defined. Now, for any $\alpha, \beta \in \Gamma$ and $a, b, c, d \in \mathbb{R}$, we have $\phi\left(\left(0,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)\right)={ }^{0}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}2^{0} a & 2^{0} b \\ 2^{0} c & 2^{0} d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and

$$
\begin{aligned}
\phi\left(\left(\alpha+\beta,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\right) & =\alpha+\beta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{ll}
2^{\alpha+\beta} a & 2^{\alpha+\beta} b \\
2^{\alpha+\beta} c & 2^{\alpha+\beta} d
\end{array}\right) \\
& =\left(\begin{array}{ll}
2^{\alpha} 2^{\beta} a & 2^{\alpha} 3^{\beta} b \\
2^{\alpha} 4^{\beta} c & 2^{\alpha} 5^{\beta} d
\end{array}\right) \\
& =\phi\left(\left(\alpha,\left(\begin{array}{ll}
2^{\beta} a & 2^{\beta} b \\
2^{\beta} c & 2^{\beta} d
\end{array}\right)\right)\right) \\
& =\phi\left(\left(\alpha, \varphi\left(\left(\beta,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\right)\right)\right) .
\end{aligned}
$$

Thus, ϕ is an action.
Now, let $\alpha \in \Gamma$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in T$. Then we have

$$
\begin{aligned}
\phi\left(\left(\alpha,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right)\right) & =\phi\left(\left(\alpha,\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)\right)\right) \\
& =\left(\begin{array}{ll}
2^{\alpha}(a+e) & 2^{\alpha}(b+f) \\
2^{\alpha}(c+g) & 2^{\alpha}(d+h)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
2^{\alpha} a+2^{\alpha} e & 2^{\alpha} b+2^{\alpha} f \\
2^{\alpha} c+2^{\alpha} g & 2^{\alpha} d+2^{\alpha} h
\end{array}\right) \\
& =\left(\begin{array}{ll}
2^{\alpha} a & 2^{\alpha} b \\
2^{\alpha} c & 2^{\alpha} d
\end{array}\right)+\left(\begin{array}{ll}
2^{\alpha} e & 2^{\alpha} f \\
2^{\alpha} g & 2^{\alpha} h
\end{array}\right) \\
& =\phi\left(\left(\alpha,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\right)+\phi\left(\left(\alpha,\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right)\right) .
\end{aligned}
$$

Therefore, T is a Γ-monoid.
Example 5. Consider the set $M=\{1, a, b, c, d, e\}$ and an operation $*$ given by

$*$	1	a	b	c	d	e
1	1	a	b	c	d	e
a						
b						
c						
d						
e						

The operation $*$ is closed and associative since for all $x, y \in M, x * y=x$ holds for all $x \neq 1$. Clearly, 1 is an identity in M. Thus, M is a monoid. With a group Γ acting trivially on M, we obtain that M is a Γ-monoid.

Definition 9. [1] Let M, M_{1} and M_{2} be monoids and let Γ be a group acting on M, M_{1} and M_{2}.
(i) A Γ-monoid homomorphism is a monoid homomorphism $\phi: M_{1} \longrightarrow M_{2}$ that respects the action of Γ, this means $\phi\left({ }^{\alpha} a\right)={ }^{\alpha} \phi(a)$.
(ii) A Γ-order-ideal of a monoid M is a subset I of M such that for any $\alpha, \beta \in \Gamma$, ${ }^{\alpha} a *^{\beta} b \in I$ if and only if $a, b \in I$.

Remark 2. [1] A Γ-order-ideal is a submonoid I of M which is closed under the action of Γ.

Example 6. Let a group Γ acts trivially on both monoids $M=(\mathbb{N},+)$ and $N=(\mathbb{N}, \cdot)$, that is, for all $\alpha \in \Gamma$, we have $\phi((\alpha, m))={ }^{\alpha} m=m$ and $\phi((\alpha, n))={ }^{\alpha} n=n$ for all $m \in M$ and $n \in N$. Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then, $\phi((\alpha, x+y))={ }^{\alpha}(x+y)=x+y=$ ${ }^{\alpha} x+{ }^{\alpha} y=\phi((\alpha, x))+\phi((\alpha, y))$. Thus, M and N are Γ-monoids. Consider the monoid homomorphism $\varphi: M \rightarrow N$ defined by $\varphi(x)=b^{x}$, where $b \in \mathbb{N} \backslash\{0\}$ in Example 1. For all $\alpha \in \Gamma$ and $a \in M$, we have $\varphi\left({ }^{\alpha} a\right)=\varphi(a)={ }^{\alpha} \varphi(a)$. Thus, by Definition $9(\mathrm{ii}), \varphi$ is a Γ-monoid homomorphism.

Example 7. Consider the Γ-monoid $M=\mathbb{R}$ under the usual addition in Example 3 and the Γ-monoid $T=M_{2}(\mathbb{R})$ under matrix addition in Example 4. Define a mapping
$\phi: T \rightarrow M$ by $\phi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=2(a+b+c+d)$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in T$ such that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$. Then $a=e, b=f, c=g$ and $d=h$. Thus, $2(a+b+c+d)=$ $2(e+f+g+h)$ and ϕ is well-defined. Now, for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in T$, we have $\phi\left(\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right)=2(0+0+0+0)=2(0)=0$ and

$$
\begin{aligned}
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)\right) \\
& =2((a+e)+(b+f)+(c+g)+(d+h)) \\
& =2((a+b+c+d)+(e+f+g+h)) \\
& =2(a+b+c+d)+2(e+f+g+h) \\
& =\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)+\phi\left(\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right) .
\end{aligned}
$$

Thus, ϕ is a monoid homomorphism. Also, for all $\alpha \in \Gamma$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in T$, we have

$$
\begin{aligned}
\phi\left(\begin{array}{ll}
\left.\alpha\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{ll}
2^{\alpha} a & 2^{\alpha} b \\
2^{\alpha} c & 2^{\alpha} d
\end{array}\right)\right) \\
& =2\left(2^{\alpha} a+2^{\alpha} b+2^{\alpha} c+2^{\alpha} d\right) \\
& =2^{\alpha} 2(a+b+c+d) \\
& ={ }^{\alpha} \phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) .
\end{array} . . \begin{array}{l}
\end{array}\right) .
\end{aligned}
$$

Hence, ϕ is a Γ-monoid homomorphism.
Theorem 1. [4] Let M_{1} and M_{2} be commutative monoids and let $f: M_{1} \longrightarrow M_{2}$ be a homomorphism. There exists a unique homomorphism $\varphi: M_{1} / \operatorname{ker} f \longrightarrow M_{2}$ such that the following diagram is commutative

that is, $\varphi \circ r_{\operatorname{ker} f}=f$, where $r_{\operatorname{ker} f}(x):=\rho_{\operatorname{ker} f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\operatorname{ker} \varphi=\{\operatorname{ker} f\}$. However, φ is an isomorphism if and only if $\rho_{f}=\rho_{\operatorname{ker} f}$.

3. Γ-ideals

In this section, we discuss the properties of Γ-ideals of Γ-monoids.
Let M be a Γ-monoid and $x \in M$. By Definition 8 , for all $\alpha \in \Gamma,{ }^{\alpha} x *{ }^{\alpha} 1_{M}=$ ${ }^{\alpha}\left(x * 1_{M}\right)={ }^{\alpha} x$ and ${ }^{\alpha} 1_{M} *^{\alpha} x={ }^{\alpha}\left(1_{M} * x\right)={ }^{\alpha} x$. By uniqueness of the identity element in $M,{ }^{\alpha} 1_{M}=1_{M}$.

Remark 3. For a Γ-monoid M and $\alpha \in \Gamma,{ }^{\alpha} 1_{M}=1_{M}$.
Definition 10. Let M be a Γ-monoid. A left Γ-ideal (respectively, right Γ-ideal) of M is a subset I of M such that for any $\alpha, \beta \in \Gamma$, for all $a \in I$ and $m \in M,{ }^{\alpha} m *{ }^{\beta} a \in I$ (respectively, ${ }^{\alpha} a *{ }^{\beta} m \in I$). A Γ-ideal of M is a subset I of M such that I is both a left and right Γ-ideal of M.

Let $(M, *)$ be a Γ-monoid and A a Γ-ideal of M with $a \in A$. Then for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} a={ }^{\alpha} a *{ }^{\alpha} 1_{M} \in A$. Thus, we have the following remark.

Remark 4. Let $(M, *)$ be a Γ-monoid and A be a Γ-ideal of M.
(i) M is a Γ-ideal.
(ii) For all $\alpha \in \Gamma$ and for all $a \in A,{ }^{\alpha} a \in A$.

Lemma 1. Let A and B be Γ-ideals of $a \Gamma$-monoid M. Then $A * B$ is $a \Gamma$-ideal of M.
Proof. Let A and B be Γ-ideals of a Γ-monoid M. Clearly, $A * B \subseteq M$. Let $x \in A * B$ and $m \in M$. Then $x=a * b$ for some $a \in A$ and $b \in B$. Now, for all $\alpha, \beta \in \Gamma$, ${ }^{\alpha} x *^{\beta} m={ }^{\alpha}(a * b) *^{\beta} m={ }^{\alpha} a *^{\alpha} b *^{\beta} m={ }^{\alpha} a *\left({ }^{\alpha} b *^{\beta} m\right) \in A * B$ by Remark 4(ii) and Definition 10. Similarly, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} m *{ }^{\beta} x \in A * B$. Therefore, $A * B$ is a Γ-ideal of M.

The following example shows that a Γ-ideal is not necessarily a Γ-order-ideal.
Example 8. Consider the set $M=\{1, n, h, s\}$ and operation $*$ given by

$*$	1	n	h	s
1	1	n	h	s
n	n	n	h	s
h	h	h	h	s
s	s	s	s	s

Clearly, the operation is commutative. It can be verified that $*$ is associative. Since $1 * 1=1,1 * n=n, 1 * h=h$ and $1 * s=s$, it follows that 1 is the identity in M. Thus, M is a commutative monoid. Let Γ be a group and the mapping $\phi: \Gamma \times M \longrightarrow M$ given by $(\alpha, a) \mapsto{ }^{\alpha} a=a$. For any $\alpha, \beta \in \Gamma$ and $a \in M$, we have $\phi((0, a))={ }^{0} a=a$ and

$$
\phi((\alpha+\beta, a))={ }^{\alpha+\beta} a=a=\phi(\beta, a)={ }^{\beta} a=\phi\left(\left(\alpha,{ }^{\beta} a\right)\right)=\phi((\alpha, \phi((\beta, a)))) .
$$

Thus, ϕ is an action. Now, let $\alpha \in \Gamma$ and $a, b \in M$. Then
$\phi((\alpha, a * b))={ }^{\alpha}(a * b)=a * b={ }^{\alpha} a *{ }^{\alpha} b=\phi((\alpha, a)) * \phi((\alpha, b))$. Hence, M is a Γ-monoid.
Let $C=\{n, h, s\}$. Then for any $\alpha, \beta \in \Gamma$, we have for all $a \in C$ and $m \in M$,

$$
\begin{array}{ll}
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} n *{ }^{\beta} 1=n * 1=n \in C, & \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} n *{ }^{\beta} n=n * n=n \in C ; \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} n *{ }^{\beta} h=n * h=h \in C, & \\
{ }^{\alpha} a *{ }^{\alpha} m={ }^{\alpha} m={ }^{\alpha} n *{ }^{\beta} 1=h * 1=h \in C, & \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} h *{ }^{\beta} n=h * n=h \in C ; \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} h *{ }^{\beta} h=h * h=h \in C, & \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} h *{ }^{\beta} s=h * s=s \in C ; \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} s *{ }^{\beta} 1=s * 1=s \in C, & \\
{ }^{\alpha} a *{ }^{\beta} a *{ }^{\beta} m={ }^{\alpha} s *{ }^{\alpha} n=s * n=s \in C ; \\
{ }^{\alpha} m *^{\beta} h=s * h=s \in C, & \\
{ }^{\alpha} a *{ }^{\beta} m={ }^{\alpha} s *{ }^{\beta} s=s * s=s \in C .
\end{array}
$$

Since M is commutative, ${ }^{\beta} m{ }^{\alpha}{ }^{\alpha} a={ }^{\alpha} a *{ }^{\beta} m \in C$. Thus, by Definition $10, C$ is a Γ-ideal. However, the identity $1 \notin C$. Thus, C is not a Γ-order-ideal of M.

The following example shows that Γ-order-ideal is not necessarily a Γ-ideal.
Example 9. Consider the Γ-monoid $M=\{1, n, h, s\}$ in Example 8. Let $A=\{1, n, h\}$. Now, suppose that for all $a, b \in M$ and for all $\alpha, \beta \in \Gamma,{ }^{\alpha} a *{ }^{\beta} b \in A$. Then $a * b \in A$. We consider the following three cases.
Case 1. $a * b=1$. Then $a=1$ and $b=1$. Thus $a, b \in A$.
Case 2. $a * b=n$. Then $a * b=1 * n=n * 1=n * n$. Clearly, $a, b \in A$.
Case 3. $a * b=h$. Then $a * b=1 * h=n * h=h * 1=h * n$. Clearly, $a, b \in A$.
Thus, $a, b \in A$.
Now, suppose that $a, b \in A$. Then, we have

$$
\begin{aligned}
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} 1 *{ }^{\beta} 1=1 * 1=1 \in A \\
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} n *{ }^{\beta} n=n * n=n \in A ; \\
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} 1 *{ }^{\beta} n=1 * n=n \in A ; \\
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} n *{ }^{\beta} h=n * h=h \in A ; \\
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} 1 *{ }^{\beta} h=1 * h=h \in A ; \\
& { }^{\alpha} a *{ }^{\beta} b={ }^{\alpha} h *{ }^{\beta} h=h * h=h \in A .
\end{aligned}
$$

Thus, ${ }^{\alpha} a *{ }^{\beta} b \in A$. Hence, A is a Γ-order-ideal of M.
Observe that there exist $n \in A$ and $s \in M$ such that for any $\alpha, \beta \in \Gamma,{ }^{\alpha} n *{ }^{\beta} s=n * s=$ $s \notin A$. Thus, by Definition 10, A is not a Γ-ideal.

Remark 5. If I is a Γ-ideal, in general I is not necessarily a Γ-order-ideal. Similarly, if I is a Γ-order-ideal, in general I is not necessarily a Γ-ideal.

Lemma 2. Let I be a Γ-ideal of $a \Gamma$-monoid M. Then the identity $1_{M} \in I$ if and only if $I=M$.

Proof. Let I is a Γ-ideal of M. Suppose that the identity $1_{M} \in I$ and $m \in M$. Then for any $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} 1_{M} *{ }^{\beta} m \in I$. For $\alpha=\beta=0$, we have ${ }^{0} 1_{M} *{ }^{0} m=1_{M} * m=m \in I$. Thus, $M \subseteq I$. Consequently, $I=M$. Conversely, suppose that $I=M$. Thus, the identity $1_{M} \in I$.

Theorems 2 and 3 imply that there exists no proper Γ-order-ideal which is also a Γ-ideal and vice versa.

Theorem 2. Let I be $a \Gamma$-ideal of $a \Gamma$-monoid M. Then I is $a \Gamma$-order-ideal of M if and only if $I=M$.

Proof. Let I be a Γ-ideal of M. Suppose that I is a Γ-order-ideal of M. Then the identity $1_{M} \in I$. By Lemma $2, I=M$. Conversely, suppose that $I=M$. Thus, I is a Γ-order-ideal.

Theorem 3. Let I be $a \Gamma$-order-ideal of $a \Gamma$-monoid M. Then I is $a \Gamma$-ideal of M if and only if $I=M$.

Proof. Let I be a Γ-order-ideal of a Γ-monoid M. Then $1_{M} \in I$ since I is also a submonoid. Suppose that I is a Γ-ideal of M. By Lemma $2, I=M$. Conversely, suppose that $I=M$. Thus, by Remark 4(i), I is a Γ-ideal.

Lemma 3. Let A and B be Γ-ideals of $a \Gamma$-monoid M. Then $A \cap B$ and $A \cup B$ are Γ-ideals of M.

Proof. Let A and B be Γ-ideals of M. Let $x \in A \cap B$ and $m \in M$. Then $x \in A$ and $x \in B$. Since A and B are Γ-ideals of M, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *{ }^{\beta} m,{ }^{\alpha} m *{ }^{\beta} x \in A$ and ${ }^{\alpha} x *^{\beta} m,{ }^{\alpha} m *{ }^{\beta} x \in B$. Hence, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} m,{ }^{\alpha} m *{ }^{\beta} x \in A \cap B$. Therefore, $A \cap B$ is a Γ-ideal of M. Now, let $x \in A \cup B$ and $m \in M$. Then $x \in A$ or $x \in B$. Since A and B are Γ-ideals of M, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *^{\beta} m,{ }^{\alpha} m *^{\beta} x \in A$ or ${ }^{\alpha} x *^{\beta} m,{ }^{\alpha} m *^{\beta} x \in B$. Hence, for all $\alpha, \beta \in \Gamma{ }^{\alpha} x *{ }^{\beta} m,{ }^{\alpha} m *{ }^{\beta} x \in A \cup B$. Therefore, $A \cup B$ is a Γ-ideal of M.

Theorem 4. Let I be a Γ-order-ideal of $a \Gamma$-monoid M and $J a \Gamma$-ideal of M.
(i) If $J \cap I \neq \varnothing$, then $J \cap I$ is a Γ-ideal of I.
(ii) If M is commutative, then $J \cup I$ is a Γ-order-ideal of M.

Proof. Let I be a Γ-order-ideal of M and J a Γ-ideal of M.
(i) Let $x \in J \cap I$ and $a \in I$. Then $x \in J$ and $x \in I$. Since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} a,{ }^{\alpha} a *{ }^{\beta} x \in J$. Also, since I is a Γ-order-ideal of M, for all $\alpha, \beta \in \Gamma$, ${ }^{\alpha} x *{ }^{\beta} a,{ }^{\alpha} a *^{\beta} x \in I$. Thus, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} a,{ }^{\alpha} a *^{\beta} x \in J \cap I$. Therefore, $J \cap I$ is a Γ-ideal of I.
(ii) Suppose that ${ }^{\alpha} x *{ }^{\beta} a \in J \cup I$ for all $\alpha, \beta \in \Gamma$. Then, ${ }^{\alpha} x *^{\beta} a \in J$ or ${ }^{\alpha} x *^{\beta} a \in I$. Since I is a Γ-order-ideal of M, it follows that $x, a \in I \subseteq J \cup I$. Now, suppose that $x, a \in J \cup I$. Consider the following cases.

Case 1. $x, a \in I$. Then, since I is a Γ-order-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} a \in I \subseteq$ $J \cup I$.

Case 2. $x \in I, a \in J$. Then, since J is a Γ-ideal of M and M is commutative, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *^{\beta} a={ }^{\beta} a *^{\alpha} x \in J \subseteq J \cup I$.

Case 3. $x \in J, a \in I$. Then, since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *{ }^{\beta} a \in J \subseteq J \cup I$.
Case 4. $x, a \in J$. Then, since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *{ }^{\beta} a \in$ $J \subseteq J \cup I$.

Thus, $J \cup I$ is a Γ-order-ideal of M.
Definition 11. Let $(M, *)$ and (N, \cdot) be Γ-monoids and $\varphi: M \rightarrow N$ a Γ-monoid homomorphism. The kernel of φ is denoted and defined by $\operatorname{ker} \varphi=\left\{m \in M: \varphi(m)=1_{N}\right\}$.

Proposition 2. Let $(M, *)$ and ($N, \cdot)$ be Γ-monoids and $\varphi: M \rightarrow N$ a Γ-monoid homomorphism.
(i) If φ is surjective and I is a Γ-ideal of M, then $\varphi(I)$ is a Γ-ideal of N.
(ii) If J is a Γ-ideal of N, then $\varphi^{-1}(J)$ is a Γ-ideal of M.

Proof. Let $\varphi: M \rightarrow N$ be a Γ-monoid homomorphism.
(i) Let $x \in \varphi(I)$ and $z \in N$. Since φ is surjective, $z=\varphi(n)$ for some $n \in M$ and $x=\varphi(y)$ for some $y \in I$. Then for all $\alpha, \beta \in \Gamma$,

$$
{ }^{\alpha} x *{ }^{\beta} z={ }^{\alpha} \varphi(y) \cdot{ }^{\beta} \varphi(n)=\varphi\left({ }^{\alpha} y\right) \cdot \varphi\left({ }^{\beta} n\right)=\varphi\left({ }^{\alpha} y *{ }^{\beta} n\right) .
$$

Since I is a Γ-ideal of $M,{ }^{\alpha} y *{ }^{\beta} n \in I$, so, ${ }^{\alpha} x *^{\beta} z \in \varphi(I)$. Similarly, for all $\alpha, \beta \in \Gamma$, ${ }^{\alpha} z *{ }^{\beta} x \in \varphi(I)$. Therefore, $\varphi(I)$ is a Γ-ideal of N.
(ii) Let $y \in \varphi^{-1}(J)$ and $m \in M$. Then $\varphi(y) \in J$ and $\varphi(m) \in N$. Thus, for all $\alpha, \beta \in \Gamma$, $\varphi\left({ }^{\alpha} y *{ }^{\beta} m\right)=\varphi\left({ }^{\alpha} y\right) \cdot \varphi\left({ }^{\beta} m\right)={ }^{\alpha} \varphi(y) \cdot{ }^{\beta} \varphi(m) \in J$, since J is a Γ-ideal of N. Hence, ${ }^{\alpha} y *{ }^{\beta} m \in \varphi^{-1}(J)$ for all $\alpha, \beta \in \Gamma$. Similarly, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} m *{ }^{\beta} y \in \varphi^{-1}(J)$. Therefore, $\varphi^{-1}(J)$ is a Γ-ideal of M.

Example 10. Consider the Γ-monoid homomorphism $\varphi: M \rightarrow N$ defined by $\varphi(x)=b^{x}$, where $b \neq 0$ in Example 6. Note that

$$
\operatorname{ker} \varphi=\{x \in M: \varphi(x)=1\}=\left\{x \in M: b^{x}=1\right\}=\{x \in M: b=1 \text { or } x=0\} .
$$

Take $x=0 \in \operatorname{ker} \varphi, m=2 \in M$, and $b=2$. Then for all $\alpha, \beta \in \Gamma, \varphi\left({ }^{\alpha} x+{ }^{\beta} m\right)=$ $\varphi\left({ }^{\alpha} 0+{ }^{\beta} 2\right)=\varphi(0+2)=\varphi(2)=2^{2} \neq 1$. This implies that ${ }^{\alpha} x+{ }^{\beta} m \notin \operatorname{ker} \varphi$. By Definition $10, \operatorname{ker} \varphi$ is not a Γ-ideal of M.

Remark 6. For any Γ-monoids M and N, the kernel of a Γ-monoid homomorphism $\varphi: M \rightarrow N$ is not necessarily a Γ-ideal of M.

Proposition 3. Let $(M, *)$ and ($N, \cdot)$ be Γ-monoids and $\varphi: M \rightarrow N$ a Γ-monoid homomorphism. Then $\operatorname{ker} \varphi$ is a Γ-ideal of M if and only if $\operatorname{ker} \varphi=M$.

Proof. Let $\varphi: M \rightarrow N$ be a Γ-monoid homomorphism. Then $1_{M} \in \operatorname{ker} \varphi$. Suppose that $\operatorname{ker} \varphi$ is a Γ-ideal of M. Then by Lemma $2, \operatorname{ker} \varphi=M$. Now, suppose that $\operatorname{ker} \varphi=M$. Then by Remark 4(i), ker φ is a Γ-ideal of M.

By Proposition 3 , $\operatorname{ker} \varphi$ is a Γ-ideal if and only if φ is a zero map. Thus, isomorphism theorems via Γ-ideals are irrelevant.

4. Γ-submonoids

This section presents the discussions on Γ-submonoids of Γ-monoids.
Definition 12. Let $(M, *)$ be a Γ-monoid. A Γ-submonoid is a subset S of M such that the identity $1_{M} \in S$ and, for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S,{ }^{\alpha} s *{ }^{\beta} t \in S$.

Let S be a Γ-submonoid of M. Then $1_{M} \in S$ and for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S$, we have ${ }^{\alpha} s *{ }^{\beta} t \in S$. Take $\alpha=\beta=0$. Thus, we have $s * t={ }^{0} s *{ }^{0} t \in S$. Hence, S is a submonoid of M.

Remark 7. Let S be a Γ-submonoid of a Γ-monoid M.
(i) S is a submonoid of M, hence a monoid itself.
(ii) For all $s \in S$ and for all $\alpha \in \Gamma,{ }^{\alpha} s \in S$.
(iii) M is a Γ-submonoid of M.

Let S be a Γ-submonoid of a Γ-monoid M and let $\phi: \Gamma \times M \rightarrow M$ be the action (by monoid automorphism) of a group Γ on M. By Remark $7, S$ is a monoid. Moreover, by restricting the action ϕ to S, ϕ acts on S by monoid automorphism and hence, S is a Γ-monoid.

Remark 8. A Γ-submonoid of a Γ-monoid is itself a Γ-monoid.
Example 11. Consider the set $M=\{0,1, x, y, z, s, b\}$ and an operation + given by

+	0	1	x	y	z	s	b
0	0	1	x	y	z	s	b
1	1	1	1	s	s	s	b
x	x	1	1	s	s	s	b
y	y	s	s	y	y	s	b
z	z	s	s	y	y	s	b
s	b						
b	s						

It was shown in [5] that M is a commutative Γ-monoid with identity 0 , where the trivial group $\Gamma=\{0\}$ acts trivially on M. Let $S=\{0, y, s, b\}, U=\{0,1, y, s, b\}, V=\{0,1, x\}$ and $W=\{0, y\}$. Note that the identity 0 is in S, U, V and W. Now, we have

$$
\begin{array}{ll}
{ }^{0} 0+{ }^{0} 0=0+0=0 \in S, & { }^{0} 0+{ }^{0} y=0+y=y \in S ; \\
{ }^{0} 0+{ }^{0} s=0+s=s \in S, & { }^{0} 0+{ }^{0} b=0+b=b \in S ; \\
{ }^{0} y+{ }^{0} y=y+y=y \in S, & { }^{0} y+{ }^{0} s=y+s=s \in S ; \\
{ }^{0} y+{ }^{0} b=y+b=b \in S, & { }^{0} s+{ }^{0} s=s+s=s \in S ; \\
{ }^{0} s+{ }^{0} b=s+b=b \in S, & { }^{0} b+{ }^{0} b=b+b=b \in S,
\end{array}
$$

Thus, by Definition $12, S$ is Γ-submonoid of M. Similarly, U, V and W are Γ-submonoids of M. Consider the Γ-submonoid $S=\{0, y, s, b\}$. Now, take $0 \in S$ and $z \in M$. Then $0 * z=z \notin S$. Thus, S is not a Γ-ideal of M.

Remark 9. Let M be a Γ-monoid. A Γ-submonoid of M is not necessarily a Γ-ideal of M.

Theorems 5 and 6 imply that there is no proper Γ-submonoid which is also a Γ-ideal and vice versa.

Theorem 5. Let S be $a \Gamma$-submonoid of $a \Gamma$-monoid M. Then S is $a \Gamma$-ideal of M if and only if $S=M$.

Proof. Let S be a Γ-submonoid of M. Suppose that S is a Γ-ideal of M. Since S is a Γ-submonoid, $1_{M} \in S$ and thus, by Lemma $2, S=M$. Conversely, suppose that $S=M$. Then, by Remark 4(i), S is a Γ-ideal of M.

Theorem 6. Let I be $a \Gamma$-ideal of $a \Gamma$-monoid M. Then I is a Γ-submonoid of M if and only if $I=M$.

Proof. Let I be a Γ-ideal of a Γ-monoid M. Suppose that I is a Γ-submonoid of M. Then $1_{M} \in I$ and $I=M$. Conversely, suppose that $I=M$. By Remark 7 (iii), I is a Γ-submonoid of M.

Example 12. Consider the Γ-submonoid $S=\{0, y, s, b\}$ in Example 11. Note that $x * z=s \in S$. However, $x, z \notin S$. Thus, S is not a Γ-order-ideal of M.

Note that if S is a Γ-order-ideal of a Γ-monoid M, then by Remark $2, S$ is a submonoid and $1_{M} \in S$. Also, since S is a Γ-order-ideal, for all $\alpha, \beta \in \Gamma$ and for all $s, t \in S$, we have ${ }^{\alpha} s *{ }^{\beta} t \in S$. Thus, S is a Γ-submonoid of M and the following remark holds.

Remark 10. Every Γ-order-ideal of a Γ-monoid M is a Γ-submonoid of M. However, a Γ-submonoid of M is not necessarily a Γ-order-ideal of M.

The following example shows that a Γ-submonoid is not necessarily a normal submonoid.

Example 13. Consider the Γ-submonoid $U=\{0,1, y, s, b\}$ in Example 11 which is also commutative. Observe that $y, z \in M$ such that $y, y * z=y \in U$. However, $z \notin U$. Thus, U is not a normal submonoid of M.

Remark 11. In general, a Γ-submonoid of a Γ-monoid M is not necessarily a normal submonoid of M.

Theorem 7. Let S be a subset of a Γ-monoid M. Then S is a Γ-order-ideal if and only if S is a Γ-submonoid such that $x * y \in S$ implies $x, y \in S$.

Proof. Let S be a subset of a Γ-monoid M. Suppose S is a Γ-order-ideal of M. Then by Remark $10, S$ is a Γ-submonoid and for $\alpha=\beta=0$, we have $x * y={ }^{0} x *{ }^{0} y \in S$ implies $x, y \in S$ since S is a Γ-order-ideal. Now, suppose S is a Γ-submonoid such that $x * y \in S$ implies $x, y \in S$. Then for all $\alpha, \beta \in \Gamma$ and for all $x, y \in S,{ }^{\alpha} x *^{\beta} y \in S$. Suppose for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} y \in S$. Take $\alpha=\beta=0$. Then $x * y={ }^{0} x *{ }^{0} y \in S$ which implies that $x, y \in S$. Therefore, S is a Γ-order-ideal.

Lemma 4. Let A and B be Γ-submonoids of $a \Gamma$-monoid M. Then
(i) $A \cap B$ is $a \Gamma$-submonoid of M.
(ii) If M is commutative and A, B are normal, then $A \cap B$ is a normal Γ-submonoid of M.

Proof. Let A and B be Γ-submonoids of a Γ-monoid M.
(i) Since A and B are Γ-submonoids of M, the identity $1_{M} \in A$ and $1_{M} \in B$. Thus, $1_{M} \in A \cap B$. Now, let $a, b \in A \cap B$. Then, $a, b \in A$ and $a, b \in B$. Since A and B are Γ-submonoids, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} a *^{\beta} b \in A$ and ${ }^{\alpha} a *^{\beta} b \in B$. Hence, ${ }^{\alpha} a *^{\beta} b \in A \cap B$. Therefore, $A \cap B$ is a Γ-submonoid of M.
(ii) By (i), $A \cap B$ is a Γ-submonoid of M. It remains to show that $A \cap B$ is normal. Let $x, x * y \in A \cap B$. Then $x, x * y \in A$ and $x, x * y \in B$. Since A and B are normal, $y \in A$ and $y \in B$. Therefore, $y \in A \cap B$ and $A \cap B$ is a normal Γ-submonoid of M.

Example 14. Consider the Γ-submonoids $V=\{0,1, x\}$ and $W=\{0, y\}$ in Example 11. Then, $V \cup W=\{0,1, x, y\}$. Now, for $x, y \in V \cup W$, we have $x * y=s \notin V \cup W$. Thus, $V \cup W$ is not a Γ-submonoid of M.

Remark 12. The union of two Γ-submonoids of a Γ-monoid M is not necessarily a Γ submonoid of M.

Theorem 8. Let $(M, *)$ and (N, \cdot) be Γ-monoids and $\varphi: M \rightarrow N$ a Γ-monoid homomorphism.
(i) If S is a Γ-submonoid of M, then $\varphi(S)$ is a Γ-submonoid of N. In particular, $\varphi(M)$ is a Γ-submonoid of N.
(ii) If T is a Γ-submonoid of N, then $\varphi^{-1}(T)$ is a Γ-submonoid of M.
(iii) $\operatorname{ker} \varphi$ is a Γ-submonoid of M.
(iv) If M is commutative, then $\operatorname{ker} \varphi$ is normal.

Proof. Let $\varphi: M \rightarrow N$ be a Γ-monoid homomorphism.
(i) Let S be a Γ-submonoid of M. Then $1_{M} \in S$ and $1_{N}=\varphi\left(1_{M}\right) \in \varphi(S)$. Let $x, y \in \varphi(S)$. Then $x=\varphi(a)$ and $y=\varphi(b)$ for some $a, b \in S$. Since S is a Γ submonoid, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} a *{ }^{\beta} b \in S$. Now, for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x \cdot{ }^{\beta} y=$ ${ }^{\alpha} \varphi(a) \cdot{ }^{\beta} \varphi(b)=\varphi\left({ }^{\alpha} a\right) \cdot \varphi\left({ }^{\beta} b\right)=\varphi\left({ }^{\alpha} a *^{\beta} b\right)$. Since ${ }^{\alpha} a *^{\beta} b \in S$, it follows that ${ }^{\alpha} x \cdot{ }^{\beta} y=\varphi\left({ }^{\alpha} a *^{\beta} b\right) \in \varphi(S)$. Thus, $\varphi(S)$ is a Γ-submonoid of N.
(ii) Let T be a Γ-submonoid of N. Then, $\varphi\left(1_{M}\right)=1_{N} \in T$ and $1_{M} \in \varphi^{-1}(T)$. Let $x, y \in \varphi^{-1}(T)$. Then $\varphi(x), \varphi(y) \in T$. Now, for all $\alpha, \beta \in \Gamma$, we have $\varphi\left({ }^{\alpha} x *^{\beta} y\right)=$ $\varphi\left({ }^{\alpha} x\right) \cdot \varphi\left({ }^{\beta} y\right)={ }^{\alpha} \varphi(x) \cdot{ }^{\beta} \varphi(y) \in T$ since T is a Γ-submonoid of N. This implies that for all $\alpha, \beta \in \Gamma$, we have ${ }^{\alpha} x *^{\beta} y \in \varphi^{-1}(T)$. Therefore, $\varphi^{-1}(T)$ is a Γ-submonoid of M.
(iii) Since φ is a Γ-monoid homomorphism, $\varphi\left(1_{M}\right)=1_{N}$. Thus, $1_{M} \in \operatorname{ker} \varphi$. Now, let $x, y \in \operatorname{ker} \varphi$. Then $\varphi(x)=1_{N}$ and $\varphi(y)=1_{N}$. Thus, by Remark 3, for all $\alpha, \beta \in \Gamma$,

$$
\varphi\left({ }^{\alpha} x *{ }^{\beta} y\right)=\varphi\left({ }^{\alpha} x\right) \cdot \varphi\left({ }^{\beta} y\right)={ }^{\alpha} \varphi(x) \cdot{ }^{\beta} \varphi(y)={ }^{\alpha} 1_{N} \cdot{ }^{\beta} 1_{N}=1_{N} \cdot 1_{N}=1_{N} .
$$

Hence, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} y \in \operatorname{ker} \varphi$. Therefore, $\operatorname{ker} \varphi$ is a Γ-submonoid of M.
(iv) Let $x, x * y \in \operatorname{ker} \varphi$. Then $\varphi(x)=1_{N}$ and $\varphi(x * y)=1_{N}$. Thus, $\varphi(y)=1_{N} \cdot \varphi(y)=\varphi(x) \cdot \varphi(y)=\varphi(x * y)=1_{N}$. This implies that $y \in \operatorname{ker} \varphi$ and thus, $\operatorname{ker} \varphi$ is normal.

Theorem 9. Let J be a Γ-ideal and S a Γ-submonoid of $a \Gamma$-monoid M such that $J \cap S \neq \varnothing$. Then (i) $J \cap S$ is a Γ-ideal of S; (ii) $J \cup S$ is a Γ-submonoid of M.

Proof. Let J be a Γ-ideal and S a Γ-submonoid of M such that $J \cap S \neq \varnothing$.
(i) Let $x \in J \cap S$ and $s \in S$. Then $x \in J$ and $x, s \in S$. Since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} S,{ }^{\alpha} S *{ }^{\beta} x \in J$. Also, since S is a Γ-submonoid of M, for all $\alpha, \beta \in \Gamma$, ${ }^{\alpha} x *{ }^{\beta} s,{ }^{\alpha} s *{ }^{\beta} x \in S$. Thus, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *^{\beta} s,{ }^{\alpha} s *{ }^{\beta} x \in J \cap S$ and so, $J \cap S$ is a Γ-ideal of S.
(ii) Let $x, y \in J \cup S$. We consider the following cases.

Case 1. $x, y \in J$. Since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} y \in J \subseteq J \cup S$.
Case 2. $x \in J, y \in S$. Since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *^{\beta} y \in J \subseteq J \cup S$.
Case 3. $x, y \in S$. Since S is a Γ-submonoid of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} y \in S \subseteq J \cup S$.
Case 4. $y \in J, x \in S$. Since J is a Γ-ideal of M, for all $\alpha, \beta \in \Gamma,{ }^{\alpha} x *{ }^{\beta} y \in J \subseteq J \cup S$.

Also, since S is a Γ-submonoid of $M, 1_{M} \in S \subseteq J \cup S$. Therefore, $J \cup S$ is a Γ-submonoid of M.

Remark 13. Theorem 4(i) is also a consequence of Theorem9(i).
Lemma 5. Let A and B be Γ-submonoids of a commutative Γ-monoid M. Then $A * B$ is a Γ-submonoid of M.

Proof. Let $x, y \in A * B$ and $\alpha, \beta \in \Gamma$. Then $x=a_{1} * b_{1}$ and $y=a_{2} * b_{2}$ for some $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Since A and B are Γ-submonoids, ${ }^{\alpha} a_{1} *^{\beta} a_{2} \in A$ and ${ }^{\alpha} b_{1} *^{\beta} b_{2} \in B$. Note that $1_{M}=1_{M} * 1_{M} \in A * B$. Since M is commutative,

$$
{ }^{\alpha} x *{ }^{\beta} y={ }^{\alpha}\left(a_{1} * b_{1}\right) *{ }^{\beta}\left(a_{2} * b_{2}\right)=\left({ }^{\alpha} a_{1} *{ }^{\alpha} b_{1}\right) *\left({ }^{\beta} a_{2} *{ }^{\beta} b_{2}\right)=\left({ }^{\alpha} a_{1} *{ }^{\beta} a_{2}\right) *\left({ }^{\alpha} b_{1} *{ }^{\beta} b_{2}\right) .
$$

This implies that ${ }^{\alpha} x *{ }^{\beta} y \in A * B$. Therefore, $A * B$ is a Γ-submonoid of M.
Lemma 6. Let A and B be Γ-submonoids of a commutative Γ-monoid M. Then the map $f: A \rightarrow A * B$ defined by $f(a)=a * 1_{M}$ is $a \Gamma$-monoid homomorphism.

Proof. Let $x, y \in A$ such that $x=y$. Then $f(x)=x * 1_{M}=x=y=y * 1_{M}=f(y)$ and f is well-defined. Let $x, y \in A$. Then
(i) $f(x * y)=x * y * 1_{M}=x * y=\left(x * 1_{M}\right) *\left(y * 1_{M}\right)=f(x) * f(y)$,
(ii) $f\left(1_{M}\right)=1_{M} * 1_{M}$, the identity in $A * B$.

Thus, f is a monoid homomorphism. Now, for all $\alpha \in \Gamma$ and $x \in A$,

$$
f\left({ }^{\alpha} x\right)={ }^{\alpha} x * 1_{M}={ }^{\alpha} x *{ }^{\alpha} 1_{M}={ }^{\alpha}\left(x * 1_{M}\right)={ }^{\alpha} f(x) .
$$

Thus, f is a Γ-monoid homomorphism.

5. Quotient Γ-monoids

In [5], the quotient Γ-monoid M / S was established using the equivalence relation in Definition 6 such that the commutative Γ-monoid M and Γ-order-ideal S of M were treated as commutative monoid and submonoid, respectively. Further, the third isomorphism theorem for Γ-monoids via Γ-order-ideals was proved.

Here, we define an equivalence relation and construct quotient Γ-monoids via Γ submonoids. Moreover, we prove the isomorphism theorems.

Definition 13. Let M be a Γ-monoid. For any Γ-submonoid S of M and for all $x, y \in M$, we define a binary relation ρ_{S} in M by $x \rho_{S} y$ if and only if for all $\alpha \in \Gamma,\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq$ \varnothing.

The next example shows that if a Γ-submonoid S of a Γ-monoid M is not commutative, then ρ_{S} is not an equivalence relation.

Example 15. Consider the Γ-monoid $M=\{1, a, b, c, d, e\}$ in Example 5 with operation * given by

$*$	1	a	b	c	d	e
1	1	a	b	c	d	e
a						
b						
c						
d						
e						

Let $S=\{1, a, b\}$. Then, by routine calculation, S is a Γ-submonoid of M. Also, S is not commutative since $a * b=a \neq b=b * a$. Now, for all $\alpha \in \Gamma$, we have ${ }^{\alpha} 1 * S=1 * S=\{1, a, b\}$, ${ }^{\alpha} a * S=a * S=\{a\}$ and ${ }^{\alpha} b * S=b * S=\{b\}$. Thus, $\left({ }^{\alpha} a * S\right) \cap\left({ }^{\alpha} 1 * S\right)=\{a\} \neq \varnothing$ which implies that $a \rho_{S} 1$. Also, $\left({ }^{\alpha} 1 * S\right) \cap\left({ }^{\alpha} b * S\right)=\{b\} \neq \varnothing$ which implies that $1 \rho_{S} b$. However, $\left({ }^{\alpha} a * S\right) \cap\left({ }^{\beta} b * S\right)=\varnothing$ which implies that a is not related to b under ρ_{S}, that is, ρ_{S} is not transitive, hence not an equivalence relation.

The following result tells us that ρ_{S} is an equivalence relation for any commutative Γ-submonoid S of a Γ-monoid M. Further, if M is commutative, then ρ_{S} is a congruence relation on M.

Theorem 10. Let S be a commutative Γ-submonoid of a Γ-monoid M. Then
(i) ρ_{S} is an equivalence relation on M.
(ii) If M is commutative, then ρ_{S} is a congruence relation on M.

Proof. Let S be a commutative Γ-submonoid of a Γ-monoid M.
(i) Let $x \in M$ and S a Γ-submonoid of M. Then, for $\alpha \in \Gamma$, we have $\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} x * S\right)=$ ${ }^{\alpha} x * S \neq \varnothing$ since ${ }^{\alpha} x={ }^{\alpha} x * 1_{M} \in{ }^{\alpha} x * S$. Thus, $x \rho_{S} x$ and ρ_{S} is reflexive.
Let $x \rho_{S} y$. Then, for all $\alpha \in \Gamma,\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq \varnothing$. Thus, $\left({ }^{\alpha} y * S\right) \cap\left({ }^{\alpha} x * S\right)=\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq \varnothing$. Hence, $y \rho_{S} x$ and ρ_{S} is symmetric.
Now, let $x \rho_{S} y$ and $y \rho_{S} z$. Then, for all $\alpha, \beta \in \Gamma,\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq \varnothing$ and $\left({ }^{\beta} y * S\right) \cap\left({ }^{\beta} z * S\right) \neq \varnothing$. Thus, we have ${ }^{\alpha} x * s_{1}={ }^{\alpha} y * s_{2}$ and ${ }^{\beta} y * s_{3}={ }^{\beta} z * s_{4}$ for some $s_{1}, s_{2}, s_{3}, s_{4} \in S$. Hence, for all $\alpha \in \Gamma,{ }^{\alpha} x * s_{1} * s_{3}={ }^{\alpha} y * s_{2} * s_{3}={ }^{\alpha} z * s_{2} * s_{4}$ and $s_{1} * s_{3}, s_{2} * s_{4} \in S$ since S is a Γ-submonoid. Hence, $\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} z * S\right) \neq \varnothing$ and $x \rho_{S} z$. Therefore, ρ_{S} is transitive. Consequently, ρ_{S} is an equivalence relation on M.
(ii) Let M be a commutative Γ-monoid. Suppose that $x \rho_{S} y$ and $u, v \in M$. Then, we have for all $\alpha, \beta \in \Gamma,\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq \varnothing$ and thus, ${ }^{\alpha} x * s_{1}={ }^{\alpha} y * s_{2}$ for some $s_{1}, s_{2} \in S$. Hence, $\left({ }^{\alpha} x * s_{1}\right) *^{\alpha}(u * v)=\left({ }^{\alpha} y * s_{2}\right) *^{\alpha}(u * v)$. Since M is commutative, for all $\alpha \in \Gamma,{ }^{\alpha}(u * x * v) * s_{1}={ }^{\alpha}(u * y * v) * s_{2}$ and $(u * x * v) \rho_{S}(u * y * v)$. Thus, ρ_{S} is a congruence relation on M.

Definition 14. Let S be a commutative Γ-submonoid of a Γ-monoid M. Then for all $x \in M$, the equivalence class of x is denoted and defined by $\rho_{S}(x)=\left\{y \in M: x \rho_{S} y\right\}$.

Let S be a commutative Γ-submonoid of a Γ-monoid M and let $m \in M$. Then for all $\alpha \in \Gamma,\left({ }^{\alpha} m * S\right) \cap\left({ }^{\alpha} m * S\right)={ }^{\alpha} m * S \neq \varnothing$ since for $\alpha=0, m=m * 1_{M} \in m * S$. Thus, $m \in \rho_{S}(m)$. Hence, the following remark holds.

Remark 14. Let S be a commutative Γ-submonoid of a Γ-monoid M and let $m_{1}, m_{2} \in M$.
(i) For all $m \in M, m \in \rho_{S}(m)$.
(ii) $\rho_{S}\left(m_{1}\right)=\rho_{S}\left(m_{2}\right)$ if and only if $\left({ }^{\alpha} m_{1} * S\right) \cap\left({ }^{\alpha} m_{2} * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$.

The quotient M / S using equivalence relation in Definition 6, where M is a monoid and S is a submonoid of M is different from M / S using the equivalence relation in Definition 13, where M is a Γ-monoid and S is a Γ-submonoid as shown in the following example.

Example 16. Let $\Gamma=\mathbb{Z}$ the additive group of integers and $M=\mathbb{Z}_{8}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ under addition modulo 8 . Then M is a monoid with identity $\overline{0}$. Consider a mapping $\phi: \Gamma \times M \rightarrow M$ given by $\phi((\alpha, \bar{m}))=\overline{7^{\alpha} m}$. Let $(\alpha, \bar{x}),(\beta, \bar{y}) \in \Gamma \times M$ such that $(\alpha, \bar{x})=(\beta, \bar{y})$. Then $\alpha=\beta$ and $\bar{x}=\bar{y}$. Thus, $\overline{7^{\alpha} x}=\overline{7^{\beta} y}$ and ϕ is well-defined. Now, let $\alpha, \beta \in \Gamma$ and $m \in M$. Observe that
(i) $\phi((0, \bar{m}))=\overline{7^{0} m}=\bar{m}$;
(ii) $\phi((\alpha+\beta, \bar{m}))=\overline{7^{\alpha+\beta} m}=\overline{7^{\alpha} 7^{\beta} m}=\phi((\alpha, \phi((\beta, \bar{m}))))$.

This implies that ϕ is an action. Now, let $\alpha \in \Gamma$ and $\bar{x}, \bar{y} \in M$. Then

$$
\phi((\alpha, \bar{x}+8 \bar{y}))=\phi((\alpha, \overline{x+8 y}))=\overline{7^{\alpha}(x+8 y)}=\overline{7^{\alpha} x}+{ }_{8} \overline{7^{\alpha} y}=\phi((\alpha, \bar{x}))+_{8} \phi((\alpha, \bar{y})) .
$$

Therefore, M is a Γ-monoid.
Let $S=\{\overline{0}, \overline{4}\}$. Observe that the identity $\overline{0} \in S$ and $\overline{0}+{ }_{8} \overline{0}=\overline{0}, \overline{0}+8 \overline{4}=\overline{4}+8 \overline{0}=\overline{4}$, $\overline{4}+{ }_{8} \overline{4}=\overline{0} \in S$. This implies that S is a submonoid of M. Now, note that

$$
\begin{aligned}
& \overline{0}+{ }_{8} S=\overline{0}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{0}, \overline{4}\}, \quad \overline{4}+8 S=\overline{4}+8\{\overline{0}, \overline{4}\}=\{\overline{0}, \overline{4}\} ; \\
& \overline{1}+{ }_{8} S=\overline{1}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\}, \quad \overline{5}+8 S=\overline{5}+8\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\} ; \\
& \overline{2}+{ }_{8} S=\overline{2}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{2}, \overline{6}\}, \quad \overline{6}+8 S=\overline{6}+8\{\overline{0}, \overline{4}\}=\{\overline{2}, \overline{6}\} ; \\
& \overline{4}+{ }_{8} S=\overline{4}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{0}, \overline{4}\}, \quad \overline{7}+8 S=\overline{7}+8\{\overline{0}, \overline{4}\}=\{\overline{3}, \overline{7}\} .
\end{aligned}
$$

Moreover, $\rho_{S}(\overline{0})=\{\overline{0}, \overline{4}\}, \rho_{S}(\overline{1})=\{\overline{1}, \overline{5}\}, \rho_{S}(\overline{2})=\{\overline{2}, \overline{6}\}, \rho_{S}(\overline{3})=\{\overline{3}, \overline{7}\}, \rho_{S}(\overline{4})=$ $\{\overline{0}, \overline{4}\}, \rho_{S}(\overline{5})=\{\overline{1}, \overline{5}\}, \rho_{S}(\overline{6})=\{\overline{2}, \overline{6}\}$, and $\rho_{S}(\overline{7})=\{\overline{3}, \overline{7}\}$. Thus, the quotient $M / S=$ $\left\{\rho_{S}(\overline{0}), \rho_{S}(\overline{1}), \rho_{S}(\overline{2}), \rho_{S}(\overline{3})\right\}$ using the equivalence relation in Definition 6.

Now, observe that for all $\alpha \in \Gamma, \overline{7^{\alpha}}=\overline{1}$ or $\overline{7^{\alpha}}=\overline{7}$. Note that the identity $\overline{0} \in S$ and for all $\alpha, \beta \in \Gamma$,

$$
{ }^{\alpha} \overline{0}+8{ }^{\beta} \overline{0}=\overline{7^{\alpha} 0}+8 \overline{7^{\beta} 0}=\overline{0}+8 \overline{0} \in S ;
$$

$$
\begin{aligned}
& { }^{\alpha} \overline{0}+{ }_{8}{ }^{\beta} \overline{4}=\overline{7^{\alpha} 0}+8 \overline{7^{\beta} 4}=\overline{7^{\beta} 4}=\overline{4} \in S ; \\
& { }^{\alpha} \overline{4}+{ }_{8}{ }^{\beta} \overline{4}=\overline{7^{\alpha} 4}+{ }_{8} \overline{7^{\beta} 4}=\overline{0} \text { or } \overline{4} \in S .
\end{aligned}
$$

This implies that S is a Γ-submonoid of M. Now, note that for all $\alpha \in \Gamma$,

$$
\begin{aligned}
& { }^{\alpha} \overline{0}+{ }_{8} S={ }^{\alpha} \overline{0}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 0}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{0}, \overline{4}\} ; \\
& { }^{\alpha} \overline{1}+{ }_{8} S={ }^{\alpha} \overline{1}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 1}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\} \text { or }\{\overline{3}, \overline{7}\} \text {; } \\
& { }^{\alpha} \overline{2}+{ }_{8} S={ }^{\alpha} \overline{2}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 2}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{2}, \overline{6}\} ; \\
& { }^{\alpha} \overline{3}+{ }_{8} S={ }^{\alpha} \overline{3}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 3}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\} \text { or }\{\overline{3}, \overline{7}\} \text {; } \\
& { }^{\alpha} \overline{4}+{ }_{8} S={ }^{\alpha} \overline{4}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 4}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{0}, \overline{4}\} ; \\
& { }^{\alpha} \overline{5}+{ }_{8} S={ }^{\alpha} \overline{5}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 5}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\} \text { or }\{\overline{3}, \overline{7}\} \text {; } \\
& { }^{\alpha} \overline{6}+{ }_{8} S={ }^{\alpha} \overline{6}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha}} 6+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{2}, \overline{6}\} ; \\
& { }^{\alpha} \overline{7}+{ }_{8} S={ }^{\alpha} \overline{7}+{ }_{8}\{\overline{0}, \overline{4}\}=\overline{7^{\alpha} 7}+{ }_{8}\{\overline{0}, \overline{4}\}=\{\overline{1}, \overline{5}\} \text { or }\{\overline{3}, \overline{7}\} \text {. }
\end{aligned}
$$

Moreover, we have $\rho_{S}(\overline{0})=\rho_{S}(\overline{4})=\{\overline{0}, \overline{4}\}, \rho_{S}(\overline{2})=\rho_{S}(\overline{6})=\{\overline{2}, \overline{6}\}$, and $\rho_{S}(\overline{1})=\rho_{S}(\overline{3})=$ $\rho_{S}(\overline{5})=\rho_{S}(\overline{7})=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Thus, the quotient $M / S=\left\{\rho_{S}(\overline{0}), \rho_{S}(\overline{1}), \rho_{S}(\overline{2})\right\}$ using the Definition 13. Observe that M / S yield is not equal to M / S above. Moreover, $\rho_{S}(\overline{0})$ is the same with $\rho_{S}(\overline{0})$ above, however, $\rho_{S}(\overline{1})$ s are different. This implies that their equivalence classes are not equal. Hence, M / S via Γ-submonoid is different from M / S via submonoid, where M is a monoid.

Theorem 11. If M is a commutative Γ-monoid and S a Γ-submonoid of M, then M / S is a Γ-monoid.

Proof. Let M be a commutative Γ-monoid and S a Γ-submonoid of M. By Proposition 1, since ρ_{S} is a congruence on M, we have $M / \rho_{S}=M / S$ is a monoid with binary operation \circ given by $\rho_{S}(x) \circ \rho_{S}(y)=\rho_{S}(x * y)$ with identity $\rho_{S}\left(1_{M}\right)$. Consider a mapping $\phi: \Gamma \times M / S \longrightarrow M / S$ given by $\left(\alpha, \rho_{S}(x)\right) \mapsto{ }^{\alpha} \rho_{S}(x)=\rho_{S}\left({ }^{\alpha} x\right)$ for all $\alpha \in \Gamma$ and $x \in M$. Let $\left(\alpha, \rho_{S}(x)\right),\left(\beta, \rho_{S}(y)\right) \in \Gamma \times M / S$ such that $\left(\alpha, \rho_{S}(x)\right)=\left(\beta, \rho_{S}(y)\right)$. Then $\alpha=\beta$ and $\rho_{S}(x)=\rho_{S}(y)$. Thus, by Remark $14($ ii $),\left({ }^{\alpha^{\prime}} x * S\right) \cap\left({ }^{\alpha^{\prime}} y * S\right) \neq \varnothing$ for all $\alpha^{\prime} \in \Gamma$, which implies that ${ }^{\alpha^{\prime}} x * s_{1}={ }^{\alpha^{\prime}} y * s_{2}$ for some $s_{1}, s_{2} \in S$. Accordingly, ${ }^{\alpha}\left(\alpha^{\alpha^{\prime}} x * s_{1}\right)={ }^{\alpha}\left(\alpha^{\prime} x\right) *{ }^{\alpha} s_{1}={ }^{\alpha}\left(\alpha^{\prime} y * s_{2}\right)={ }^{\alpha}\left(\alpha^{\prime} y\right) *{ }^{\alpha} s_{2}$. Since S is a Γ-submonoid, ${ }^{\alpha} s_{1},{ }^{\alpha} s_{2} \in S$ and $\left({ }^{\alpha+\alpha^{\prime}} x * S\right) \cap\left({ }^{\alpha+\alpha^{\prime}} y * S\right) \neq \varnothing$. This means that

$$
\phi\left(\alpha, \rho_{S}(x)\right)={ }^{\alpha} \rho_{S}(x)=\rho_{S}\left({ }^{\alpha} x\right)=\rho_{S}\left({ }^{\beta} y\right)={ }^{\beta} \rho_{S}(y)=\phi\left(\beta, \rho_{S}(y)\right)
$$

Hence, ϕ is well-defined.
Now, for any $\alpha, \beta \in \Gamma$ and $x \in M, \phi\left(\left(0, \rho_{S}(x)\right)\right)={ }^{0} \rho_{S}(x)=\rho_{S}\left({ }^{0} x\right)=\rho_{S}(x)$ and $\phi\left(\left(\alpha+\beta, \rho_{S}(x)\right)\right)={ }^{\alpha+\beta} \rho_{S}(x)={ }^{\alpha}\left({ }^{\beta} \rho_{S}(x)\right)=\phi\left(\left(\alpha, \phi\left(\left(\beta, \rho_{S}(x)\right)\right)\right)\right)$. Thus, ϕ is an action.

Now, let $\alpha \in \Gamma$ and $x, y \in M$. Then

$$
\begin{aligned}
\phi\left(\left(\alpha, \rho_{S}(x) \circ \rho_{S}(y)\right)\right) & ={ }^{\alpha}\left(\rho_{S}(x) \circ \rho_{S}(y)\right) \\
& ={ }^{\alpha}\left(\rho_{S}(x * y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\rho_{S}\left({ }^{\alpha}(x * y)\right) \\
& =\rho_{S}\left({ }^{\alpha} x *{ }^{\alpha} y\right) \\
& =\rho_{S}\left({ }^{\alpha} x\right) \circ \rho_{S}\left({ }^{\alpha} y\right) \\
& ={ }^{\alpha} \rho_{S}(x) \circ{ }^{\alpha} \rho_{S}(y) \\
& =\phi\left(\left(\alpha, \rho_{S}(x)\right)\right) \circ \phi\left(\left(\alpha, \rho_{S}(y)\right)\right)
\end{aligned}
$$

Therefore, M / S is a Γ-monoid.
Proposition 4. Let S be a normal Γ-submonoid of a commutative Γ-monoid M. Then $\rho_{S}(h)=\rho_{S}\left(1_{M}\right)$ if and only if $h \in S$.

Proof. Suppose $h \in S$. Let $x \in \rho_{S}(h)$. Then, for all $\alpha \in \Gamma,\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} h * S\right) \neq \varnothing$. This implies that there exist $h_{1}, h_{2} \in S$ such that ${ }^{\alpha} x * h_{1}={ }^{\alpha} h * h_{2} \in S$. Since S is a normal Γ-submonoid and $h_{1},{ }^{\alpha} x * h_{1} \in S$, it follows that ${ }^{\alpha} x \in S$ for all $\alpha \in \Gamma$. Accordingly, for all $\alpha \in \Gamma,{ }^{\alpha} x *{ }^{\alpha} 1_{M}={ }^{\alpha} 1_{M} *^{\alpha} x$ implies $\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} 1_{M} * S\right) \neq \varnothing$. Hence, $x \rho_{S} 1_{M}$ and $x \in \rho_{S}\left(1_{M}\right)$. It follows that $\rho_{S}(h) \subseteq \rho_{S}\left(1_{M}\right)$. Let $x \in \rho_{S}\left(1_{M}\right)$. Then, $\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} 1_{M} * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$. Thus, there exist $h_{1}, h_{2} \in S$ such that for all $\alpha \in \Gamma,{ }^{\alpha} x * h_{1}={ }^{\alpha} 1_{M} * h_{2} \in S$. Since S is a normal Γ-submonoid and $h_{1},{ }^{\alpha} x * h_{1} \in S$, it follows that ${ }^{\alpha} x \in S$. Observe that for all $\alpha \in \Gamma,{ }^{\alpha} h={ }^{\alpha} h * 1_{M} \in S$ since S is a Γ-submonoid. Accordingly, ${ }^{\alpha} x *{ }^{\alpha} h={ }^{\alpha} h *{ }^{\alpha} x$ implies $\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} h * S\right) \neq \varnothing$. Hence, $x \rho_{S} h$ and $x \in \rho_{S}(h)$. Consequently, $\rho_{S}\left(1_{M}\right) \subseteq \rho_{S}(h)$. Therefore, $\rho_{S}\left(1_{M}\right)=\rho_{S}(h)$.

Now, suppose $\rho_{S}\left(1_{M}\right)=\rho_{S}(h)$. Then, by Remark $14(\mathrm{ii}),\left({ }^{\alpha} 1_{M} * S\right) \cap\left({ }^{\alpha} h * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$. Thus, there exist $h_{1}, h_{2} \in S$ such that ${ }^{\alpha} h * h_{2}={ }^{\alpha} 1_{M} * h_{1} \in S$ for all $\alpha \in \Gamma$. Since S is a normal Γ-submonoid and $h_{2},{ }^{\alpha} h * h_{2} \in S$, it follows that ${ }^{\alpha} h \in S$ for all $\alpha \in \Gamma$. Therefore, $h \in S$.

Proposition 5. Let S be a normal Γ-submonoid of a commutative Γ-monoid M. Then $M=S$ if and only if $M / S=\left\{\rho_{S}\left(1_{M}\right)\right\}$.

Proof. Suppose $M=S$. Let $x \in M / S=M / M$. Then $x=\rho_{M}(y)$ for some $y \in M$. By Proposition 4, we have $\rho_{M}\left(1_{M}\right)=\rho_{M}(y)=x$. Hence, $M / M=M / S=\left\{\rho_{M}\left(1_{M}\right)\right\}$. Conversely, suppose $M / S=\left\{\rho_{S}\left(1_{M}\right)\right\}$. Let $x \in M$. Then $\rho_{S}(x) \in M / S$. Thus, $\rho_{S}(x)=$ $\rho_{S}\left(1_{M}\right)$. By Proposition $4, x \in S$. Hence, $M \subseteq S$. Accordingly, $M=S$.

Proposition 6. Let S be a normal Γ-submonoid of a commutative Γ-monoid M. Every Γ-submonoid of M / S is of the form R / S, where R is a Γ-submonoid of M containing S.

Proof. Let H be a Γ-submonoid of M / S. Then $H \subseteq M / S$. Let $R=\{m \in M$: $\left.\rho_{S}(m) \in H\right\}$. We show that R is a Γ-submonoid of M. Note that the identity in M / S is $\rho_{S}\left(1_{M}\right) \in H$ and thus, $1_{M} \in R$. Now, let $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then $\rho_{S}(x), \rho_{S}(y) \in H$ and ${ }^{\alpha} \rho_{S}(x) *{ }^{\beta} \rho_{S}(y) \in H$ since H is a Γ-submonoid. Accordingly, we have $\rho_{S}\left({ }^{\alpha} x *{ }^{\beta} y\right)=$ $\rho_{S}\left({ }^{\alpha} x\right) \circ \rho_{S}\left({ }^{\beta} y\right)={ }^{\alpha} \rho_{S}(x) \circ{ }^{\beta} \rho_{S}(y) \in H$. It follows that ${ }^{\alpha} x *{ }^{\beta} y \in R$. Accordingly, R is a Γ-submonoid of M. Now, we show that $S \subseteq R$. Let $x \in S$. Then by Proposition 4 , we have $\rho_{S}(x)=\rho_{S}\left(1_{M}\right)$. Since $\rho_{S}\left(1_{M}\right)$ is the identity in M / S and H is a Γ-submonoid of M / S, we must have $\rho_{S}(x)=\rho_{S}\left(1_{M}\right) \in H$. Thus, $x \in R$. Therefore, $S \subseteq R$.

Theorem 12. Let M be a commutative Γ-monoid and S a normal Γ-submonoid of M. Then the mapping $\pi_{S}: M \longrightarrow M / S$ given by $\pi_{S}(x)=\rho_{S}(x)$ is a Γ-monoid epimorphism with kernel S.

Proof. Let $x, y \in M$ such that $x=y$. Then, $\pi_{S}(x)=\rho_{S}(x)=\rho_{S}(y)=\pi(y)$. Thus, π_{S} is well-defined. Now, let $x, y \in M$. Then, we have $\pi_{S}(x * y)=\rho_{S}(x * y)=\rho_{S}(x) \circ \rho_{S}(y)=\pi_{S}(x) \circ \pi_{S}(y)$ and $\pi_{S}\left(1_{M}\right)=\rho_{S}\left(1_{M}\right)$. Thus, by Definition $4, \pi_{S}$ is a monoid homomorphism. Since ${ }^{\alpha} \pi_{S}(x)={ }^{\alpha} \rho_{S}(x)=\rho_{S}\left({ }^{\alpha} x\right)=\pi_{S}\left({ }^{\alpha} x\right)$, by Definition, π_{S} is a Γ-monoid homomorphism. Now, let $b \in M / S$. Then, $b=\rho_{S}(a)$ for some $a \in M$. Thus, $b=\rho_{S}(a)=\pi_{S}(a)$ and so, π is surjective. Therefore, π_{S} is an epimorphism. Now, since S is normal, by Proposition 4 we have

$$
\operatorname{ker} \pi_{S}=\left\{m \in M: \rho_{S}(m)=\rho_{S}\left(1_{M}\right)\right\}=\{m \in M: m \in S\}=S \cap M=S
$$

as desired.
The map π_{S} in Theorem 12 is called the canonical epimorphism.
Proposition 7. Let M be a Γ-monoid. Then for any $A \subseteq M$ and S a commutative Γ-submonoid of $M, \pi_{S}^{-1}\left(\pi_{S}(A)\right)=\bigcup_{x \in A} \rho_{S}(x)$.

Proof. Suppose $y \in \pi_{S}^{-1}\left(\pi_{S}(A)\right)$. Then $\rho_{S}(y)=\pi_{S}(y) \in \pi_{S}(A)$. Since π_{S} is an epimorphism, there exists an $x \in A$ such that $\pi_{S}(x)=\rho_{S}(y)$. Hence, $\rho_{S}(x)=\rho_{S}(y)$. By Remark $14(\mathrm{ii}),\left({ }^{\alpha} x * S\right) \cap\left({ }^{\alpha} y * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$, that is, $x \rho_{S} y$. This implies that $y \in \rho_{S}(x)$ for some $x \in A$. It follows that $y \in \bigcup_{x \in A} \rho_{S}(x)$ so that $\pi_{S}^{-1}\left(\pi_{S}(A)\right) \subseteq$ $\bigcup_{x \in A} \rho_{S}(x)$. Conversely, suppose $y \in \bigcup_{x \in A} \rho_{S}(x)$. Then $y \in \rho_{S}(x)$ for some $x \in A$. This implies that $y \rho_{S} x$, that is, $\left({ }^{\alpha} y * S\right) \cap\left({ }^{\alpha} x * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$. By Remark 14(ii), $\rho_{S}(y)=\rho_{S}(x)$. Thus, $\pi_{S}(y)=\pi_{S}(x)$. Since $\pi_{S}(x) \in \pi_{S}(A)$, it follows that $\pi_{S}(y) \in$ $\pi_{S}(A)$ implying that $y \in \pi_{S}^{-1}\left(\pi_{S}(A)\right)$. Hence, $\bigcup_{x \in A} \rho_{S}(x) \subseteq \pi_{S}^{-1}\left(\pi_{S}(A)\right)$. Therefore, $\pi_{S}^{-1}\left(\pi_{S}(A)\right)=\bigcup_{x \in A} \rho_{S}(x)$.

6. Isomorphism Theorems

In [5], the isomorphism theorems for Γ-monoids via Γ-order-ideals are established. Here, we prove isomorphism theorems for Γ-monoids via Γ-submonoids.

As shown already in Example 16, the quotient M / S in our discussion is not the same with the quotient discussed in [5].

Theorem 13. Let $(M, *)$ and (N, \cdot) be commutative Γ-monoids and let $f: M \rightarrow N$ be a Γ monoid homomorphism. There exists a unique Γ-monoid homomorphism $\varphi: M / \operatorname{ker} f \rightarrow$ N such that the following diagram is commutative

that is, $\varphi \circ \pi_{\operatorname{ker} f}=f$, where $\pi_{\operatorname{ker} f}(x):=\rho_{\operatorname{ker} f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\operatorname{ker} \varphi=\{\operatorname{ker} f\}$. However, φ is a Γ-monoid isomorphism if and only if $\rho_{f}=\rho_{\mathrm{ker} f}$.

Proof. Let $(M, *)$ and (N, \cdot) be commutative Γ-monoids and let $f: M \rightarrow N$ be a Γ-monoid homomorphism. Since Γ-monoids are monoids and Γ-monoid homomorphism is a monoid homomorphism, by Theorem 1 , there exists a unique monoid homomorphism $\varphi: M / \operatorname{ker} f \rightarrow N$ such that the following diagram is commutative

that is, $\varphi \circ \pi_{\operatorname{ker} f}=f$, where $\pi_{\operatorname{ker} f}(x):=\rho_{\operatorname{ker} f}(x)$. Moreover, φ is onto and it has a trivial kernel, namely, $\operatorname{ker} \varphi=\{\operatorname{ker} f\}$. However, φ is an isomorphism if and only if $\rho_{f}=\rho_{\text {ker } f}$. Thus, it remains to show that φ is a Γ-monoid homomorphism. Now, let $\rho_{\text {ker } f}(x) \in M / \operatorname{ker} f$ and $\alpha \in \Gamma$. Since f is a Γ-monoid homomorphism, we have

$$
\varphi\left({ }^{\alpha} \rho_{\text {ker } f}(x)\right)=\varphi\left(\rho_{\text {ker } f}\left({ }^{\alpha} x\right)\right)=f\left({ }^{\alpha} x\right)={ }^{\alpha} f(x)={ }^{\alpha} \varphi\left(\rho_{\operatorname{ker} f}(x)\right) .
$$

Hence, φ is a Γ-monoid homomorphism.
Corollary 1. Let M and N be commutative Γ-monoids and $f: M \rightarrow N$ be a Γ-monoid homomorphism. Then f induces a Γ-monoid isomorphism $M / \operatorname{ker} f \cong \operatorname{Imf}$.

Proof. Suppose $f: M \rightarrow N$ is a Γ-monoid homomorphism. Then, by Theorem 13, there exists a Γ-monoid homomorphism $\varphi: M / \operatorname{ker} f \rightarrow N$. If we set $N=\operatorname{Im} f$, then $\varphi: M / \operatorname{ker} f \rightarrow \operatorname{Im} f$ is a Γ-monoid epimorphism. Thus, $\operatorname{ker} \varphi=\left\{\rho_{\text {ker } f}(x): f(x)=\right.$ $\left.1_{N}\right\}=\{\operatorname{ker} f\}$ implies that $\rho_{\operatorname{ker} f}(x)=\operatorname{ker} f$ and $x \in \operatorname{ker} f$. Hence, by Proposition 4, $\rho_{\text {ker } f}(x)=\rho_{\text {ker } f}\left(1_{M}\right)$ which implies that $\operatorname{ker} \varphi=\left\{\rho_{\operatorname{ker} f}\left(1_{M}\right)\right\}$ and φ is injective. Accordingly, $M / \operatorname{ker} f \cong \operatorname{Im} f$.
Corollary 2. Let K and L be normal Γ-submonoids of a commutative Γ-monoid M. Then $K /(K \cap L) \cong(K * L) / L$.

Proof. Consider the map $f: K \rightarrow K * L$ defined by $f(k)=k * 1_{M}$ and $\pi_{L}: K * L \rightarrow$ $(K * L) / L$ defined by $\pi_{L}(k * l)=\rho_{L}(k * l)$. Then $\varphi: K \rightarrow(K * L) / L$ defined by $\varphi(k)=\rho_{L}(k)$ is a Γ-monoid homomorphism. Let $x \in(K * L) / L$. Then $x=\rho_{L}(k * l)$ for some $k \in K$ and $l \in L$. Observe that $x=\rho_{L}(k * l)=\rho_{L}(k) \circ \rho_{L}(l)=\rho_{L}(k) \circ \rho_{L}\left(1_{M}\right)=\rho_{L}(k)$. So, there is a $k \in K$ such that $\varphi(k)=\rho_{L}(k)=x$ and φ is onto. Moreover,

$$
\operatorname{ker} \varphi=\left\{k \in K: \rho_{L}(k)=\rho_{L}\left(1_{M}\right)\right\}=\{k \in K: k \in L\}=K \cap L .
$$

By Corollary $1, K / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi=(K * L) / L$.
The following theorem is the counterpart to the third isomorphism theorem of groups for Γ-monoids via Γ-submonoids.

Theorem 14. Let S and T be normal Γ-submonoids of a commutative Γ-monoid M with $S \subseteq T$. Then $(M / S) /(T / S) \cong M / T$.

Proof. Define $f: M / S \rightarrow M / T$ by $f\left(\rho_{S}(h)\right)=\rho_{T}(h)$ for all $\rho_{S}(h) \in M / S$. Let $\rho_{S}\left(h_{1}\right), \rho_{S}\left(h_{2}\right) \in M / S$ and suppose that $\rho_{S}\left(h_{1}\right)=\rho_{S}\left(h_{2}\right)$. Then, $\left({ }^{\alpha} h_{1} * S\right) \cap\left({ }^{\alpha} h_{2} * S\right) \neq \varnothing$ for all $\alpha \in \Gamma$. Thus, ${ }^{\alpha} h_{1} * w_{1}={ }^{\alpha} h_{2} * w_{2}$ for some $w_{1}, w_{2} \in S \subseteq T$. Thus, $\left({ }^{\alpha} h_{1} * T\right) \cap\left({ }^{\alpha} h_{2} *\right.$ $T) \neq \varnothing$ for all $\alpha \in \Gamma$. By Remark 14(ii), $\rho_{T}\left(h_{1}\right)=\rho_{T}\left(h_{2}\right)$. Thus, $f\left(\rho_{S}\left(h_{1}\right)\right)=f\left(\rho_{S}\left(h_{2}\right)\right)$. Hence, f is well-defined.

Let $\rho_{S}\left(h_{1}\right), \rho_{S}\left(h_{2}\right) \in M / S$. Then

$$
f\left(\rho_{S}\left(h_{1}\right) \circ \rho_{S}\left(h_{2}\right)\right)=f\left(\rho_{S}\left(h_{1} * h_{2}\right)\right)=\rho_{T}\left(h_{1}\right) \circ \rho_{T}\left(h_{2}\right)=f\left(\rho_{S}\left(h_{1}\right)\right) \circ f\left(\rho_{S}\left(h_{2}\right)\right)
$$

Hence, f is a homomorphism.
Let $\rho_{S}(h) \in \operatorname{ker} f$. Then $f\left(\rho_{S}(h)\right)=\rho_{T}\left(1_{M}\right)$, the identity in M / T. Thus, $\rho_{T}(h)=$ $\rho_{T}\left(1_{M}\right)$. By Proposition $4, h \in T$. Hence, $\rho_{S}(h) \in T / S$. Thus, ker $f \subseteq T / S$. Let $\rho_{S}(h) \in T / S$. Then $h \in T$. By Proposition 4, $\rho_{T}(h)=\rho_{T}\left(1_{M}\right)$. Thus, $f\left(\rho_{S}(h)\right)=$ $\rho_{T}(h)=\rho_{T}\left(1_{M}\right)$. Accordingly, $\rho_{S}(h) \in \operatorname{ker} f$. Hence, $T / S \subseteq \operatorname{ker} f$. So, $T / S=\operatorname{ker} f$.

For $\rho_{S}(x), \rho_{S}(y) \in M / S$ and $\alpha \in \Gamma$, recall that $\rho_{S}(x) \rho_{f} \rho_{S}(y)$ if and only if $f\left({ }^{\alpha} \rho_{S}(x)\right)=$ $f\left({ }^{\alpha} \rho_{S}(y)\right)$. We claim that $\rho_{f}=\rho_{\operatorname{ker} f}$.

Let $\rho_{S}(z) \in M / S$. We show that $\rho_{f}\left(\rho_{S}(z)\right)=\rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right)$.
Let $\rho_{S}(w) \in \rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right)$. Then $\left({ }^{\alpha} \rho_{S}(z) \circ \operatorname{ker} f\right) \cap\left({ }^{\alpha} \rho_{S}(w) \circ \operatorname{ker} f\right) \neq \varnothing$. Thus, there exist $y_{1}, y_{2} \in \operatorname{ker} f$ such that ${ }^{\alpha} \rho_{S}(z) \circ y_{1}={ }^{\alpha} \rho_{S}(w) \circ y_{2}$. Hence, $f\left({ }^{\alpha} \rho_{S}(z)\right)=$ $f\left({ }^{\alpha} \rho_{S}(z)\right) \circ \rho_{T}\left(1_{M}\right)=f\left({ }^{\alpha} \rho_{S}(z)\right) \circ f\left(y_{1}\right)=f\left({ }^{\alpha} \rho_{S}(z) \circ y_{1}\right)$ and $f\left({ }^{\alpha} \rho_{S}(w)\right)=f\left({ }^{\alpha} \rho_{S}(w)\right) \circ \rho_{T}\left(1_{M}\right)=f\left({ }^{\alpha} \rho_{S}(w)\right) \circ f\left(y_{2}\right)=f\left({ }^{\alpha} \rho_{S}(w) \circ y_{2}\right)$. So, by welldefinedness of f, we have $f\left({ }^{\alpha} \rho_{S}(z)\right)=f\left({ }^{\alpha} \rho_{S}(z) \circ y_{1}\right)=f\left({ }^{\alpha} \rho_{S}(w) \circ y_{2}\right)=f\left({ }^{\alpha} \rho_{S}(w)\right)$. Accordingly, $\rho_{S}(w) \in \rho_{f}\left(\rho_{S}(z)\right)$. Thus, $\rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right) \subseteq \rho_{f}\left(\rho_{S}(z)\right)$.

Now, let $\rho_{S}(w) \in \rho_{f}\left(\rho_{S}(z)\right)$ and $\alpha \in \Gamma$. Then $f\left({ }^{\alpha} \rho_{S}(z)\right)=f\left({ }^{\alpha} \rho_{S}(w)\right)$, that is, ${ }^{\alpha} \rho_{T}(z)=$ ${ }^{\alpha} \rho_{T}(w)$. Thus, $\rho_{T}\left({ }^{\alpha} z\right)=\rho_{T}\left({ }^{\alpha} w\right)$ implies $\left({ }^{\alpha} w * T\right) \cap\left({ }^{\alpha} z * T\right) \neq \varnothing$. Thus, there exist $h_{1}, h_{2} \in T$ such that ${ }^{\alpha} w * h_{1}={ }^{\alpha} z * h_{2}$. Hence, $\rho_{S}\left(h_{1}\right), \rho_{S}\left(h_{2}\right) \in T / S=\operatorname{ker} f$. Consequently, $\rho_{S}\left({ }^{\alpha} w\right) \circ \rho_{S}\left(h_{1}\right)=\rho_{S}\left({ }^{\alpha} w * h_{1}\right)=\rho_{S}\left({ }^{\alpha} z * h_{2}\right)=\rho_{S}\left({ }^{\alpha} z\right) \circ \rho_{S}\left(h_{2}\right)$ for all $\alpha \in \Gamma$. This implies that $\left({ }^{\alpha} \rho_{S}(w) \circ \operatorname{ker} f\right) \cap\left({ }^{\alpha} \rho_{S}(z) \circ \operatorname{ker} f\right) \neq \varnothing$. Hence, $\rho_{S}(w) \in \rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right)$. Accordingly, $\rho_{f}\left(\rho_{S}(z)\right) \subseteq \rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right)$.

Therefore, $\rho_{f}\left(\rho_{S}(z)\right)=\rho_{\operatorname{ker} f}\left(\rho_{S}(z)\right)$ for all $\rho_{S}(z) \in M / S$, that is, $\rho_{f}=\rho_{\operatorname{ker} f}$. By Theorem 13 , these all imply that $(M / S) /(T / S)=(M / S) / \operatorname{ker} f \cong M / T$.

7. Conclusion

: In this paper, we have shown that Γ-ideals and Γ-submonoids of a Γ-monoid M are not equivalent to the existing Γ-order-ideals of M. For any Γ-monoids M and N, we proved that the kernel of a Γ-monoid homomorphism $\varphi: M \rightarrow N$ is a Γ-submonoid of M. Also, for any Γ-submonoid S of a Γ-monoid M, ρ_{S} is a congruence relation if M is commutative and thus, $M / S=M / \rho_{S}$ is defined for commutative Γ-monoid M. Moreover, isomorphism theorems for Γ-monoids via Γ-submonoids were proved.

Acknowledgements

The authors would like to thank the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)Philippines, and MSU-Iligan Institute of Technology for funding this research.

References

[1] R. Hazrat and H. Li. The talented monoid of a Leavitt path algebra. Journal of Algebra 547, pages 430-455, 2020.
[2] T. W. Hungerford. Algebra. 1980.
[3] D. Gonçalvez L. G. Cordeiro and R. Hazrat. The talented monoid of a directed graph with applications to graph algebras. Rev. Mat. Iberoam, 38:223-256, 2022.
[4] Y. Give' on. Normal monoids and factor monoids of commutative monoids. 1963.
[5] A. Sebandal and J. Vilela. The Jordan-Hölder theorem for monoids with group action. Journal of Algebra and Its Application, 22(4):1-18, 2023.
[6] B. Steinberg. Representation Theory of Finite Monoids. 2016.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4793
 Email addresses: hulsen.sarapuddin@g.msuiit.edu.ph (H. T. Sarapuddin), jocelyn.vilela@g.msuiit.edu.ph (J. P. Vilela)
 https://www.ejpam.com (C) 2023 EJPAM All rights reserved.

