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Abstract. In this note we find atomic solution for certain degenerate and non-degenerate inverse

problems. The main idea of the proofs are based on theory of tensor product of Banach spaces.
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1. Introduction

Let X be a Banach space, and I = [0,1]. The Banach space of continuous functions from I

into X , is denoted by C(I , X ). It is well known [4], that C(I , X ) is isometrically isomorphic to

the injective tensor product of C(I) with X , where C(I) is the space of all real (or complex)

valued continuous functions on I .

One of the classical differential equations in Banach spaces is the so called Abstract Cauchy

Problem. The general form of such a problem, which we will denote by (P1) is

Bu′(t) = Au(t) + f (t)z, u(0) = y, (1)

where A, B are densely defined linear operators on the codomain of the function u , where u

is continuously differentiable on I = [0,1] or [0,∞) with values in the Banach space X . If

B−1exists, then the equation is called degenerate, otherwise, it is called non-degenerate. If

f = 0 or z = 0, then the equation is homogeneous, otherwise it is called nonhomogeneous.

In such equation, only u is the unknown.

However, if u and f are both unknowns, but additional conditions are added to be able to

determine u and f then problem P1 is called an inverse problem.

The theory of inverse problems for differential equations is being extensively developed

with the frame work of mathematical physics. To determine the solution of an inverse prob-

lem additional conditions are needed. Almost all researchers ,[1], [2], and [3] studied such

type of problems using a semigroup approach. For more references and results on inverse
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problems we refer to [3]. In this note, we use a new method that involves tensor product

techniques to solve inverse problems for what we call atomic functions.

We refer to [4] for the basic theory of tensor products of Banach spaces.

2. Degenerate Inverse Problem

Consider the problem which we will denote by P1:

u′(t)x + u(t)Ax = f (t)z (2)

with the conditions

(i) There is x∗ ∈ X ∗ and g ∈ C(I ,R) such that < u(t)x , x∗ >= g(t)

(ii) ℓn(g(1)/g(0)) ∈ ρ(A), the resolvent set of A.

Theorem 1. Problem P1 has a unique solution.

Proof. Using tensor product notation, equation (2) can be written in the form

u′ ⊗ x + u⊗ Ax = f ⊗ z (3)

Since an atom x ⊗ y has infinite number of representations: ax ⊗ 1

a
y, then without loss of

generality we can assume that u(0) = f (0) = 1.

Further, [5], since in equation (3) the sum of two atoms is an atom, then we have two

cases.

(1) u′ = λu, and (2) Ax = αx .

Now, assume u′ = λu. Then u(t) = eλt , noting that u(0) = 1. Using condition (i) in P1,

we get < x , x∗ >= g(0). So eλt g(0) = g(t). This implies that λ = ℓn(
g(1)

g(0)
), and u is

determined.

Substitute such values in equation (2) and apply x∗ to both sides of (4) we get λeλt <

x , x∗ > +eλt < Ax , x∗ >= f (t)< z, x∗ > . Hence

g′(t) + eλt < Ax , x∗ >= f (t) < z, x∗ > . (4)

Consequently, for t = 0 we get < Ax , x∗ >=< z, x∗ > −g′(0). But this together with (4)

determines f uniquely. Finally we have to determine x .

In (2) put t = 0 to get λx + Ax = z, and so (λ+ A)x = z. However, the value of λ and

condition (ii) in problem P1 determines x uniquely. This ends the proof for case (1)
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(2) Ax = ηx . Then from (2) we have

u′ ⊗ x +ηu⊗ x = f ⊗ z. (5)

Apply x∗ to both sides of (5) to get

g′(t) +ηg(t) = f (t) < z, x∗ > . (6)

Use condition (i) in P1 and put t = 0 to get η =
<z,x∗>−g ′(0)

g(0)
and so η is determined.

In (6), since η and g(t) are known, then f (t) is determined uniquely. So u and x are

what is left to be determined.

From (5), we have (u′ + ηu)⊗ x = f ⊗ z. So we have equality of two atoms. Hence

from theory of tensor product we have

u′ +ηu = γ f , and (7)

x =
1

γ
z (8)

The first equation is a linear differential equation of order one. So

u(t) =
−ηt
e [
∫

γ f (t)
ηt
e d t] + c

−ηt
e .

Now, u will be determined completely if γ and c are determined. To do that we take

the tensor product of x with both sides of u′ + ηu = γ f to get (u′ + ηu)⊗ x = γ f ⊗ x .

Again, we use condition (i) in P1 to conclude g′(t) + ηg(t) = γ f (t) < x , x∗ > . But

< x , x∗ >= g(0). Hence γ=
g ′(0)+ηg(0)

f (0)
and γ is determined uniquely. Hence in equation

(7) u can be determined uniquely, noting that u(0) = 1 which determines c.

As for x , from (5) we have u′(t)x + ηu(t)x = f (t)z. Since this is true for all t, we get

x = z

u′(0)+η
. This ends the proof of the theorem.

3. Non-Degenerate Inverse Problem

Let A and B be two closed linear operators on the Banach space X . An element w ∈ X is

called uniquely imaged by an operator J on X if there is a unique y ∈ X such that J y = w.

Note that for injective operators, every element in the range is uniquely imaged.

Consider the problem

u′(t)Bx + u(t)Ax = f (t)z (9)

with the conditions

(i) There is x∗ ∈ X ∗ and g ∈ C(I ,R) such that < u(t)x , x∗ >= g(t).

(ii) z is uniquely imaged for the operators A and ℓn(
g(1)

g(0)
)B+ A

We call such problem P2.
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Theorem 2. Problem P2 has a unique solution.

Proof. We solve the problem if we can determine u, x , and f uniquely. As in Theorem 1,

we can assume that u(0) = f (0) = 1. So condition (i) implies that < x , x∗ >= g(0), and so

from condition (i) we get u(t) =
g(t)

g(0)
and u is determined uniquely.

Now we write equation (9) in tensor product form to get u′ ⊗ Bx + u⊗ Ax = f ⊗ z. Since

we have the sum of two atoms is an atom, then we have two cases

(1) u′ = λu and (2) Bx = γAx .

Let us consider case (1). Since u(0) = 1, we get u(t) = eλt , where λ to be determined.

Further, condition (i) gives u(t) =
g(t)

g(0)
. Hence λ= ln

g(t)

g(0)
. So λ is determined.

Equation (9) now reads λeλt Bx + eλtAx = f (t)z. That is eλt ⊗ (λBx + Ax) = f ⊗ z. So

two atoms are equal. Consequently,

(a) eλt = a f (t), and

(b) (λBx + Ax) = 1

a
z.

From (a) we get 1 = a f (0), and a is determined, so f is determined. Remains to

determine x . From (b), we have (λB + A)x = z. Since we assumed x to be uniquely

imaged for λB+ A, then x is uniquely determined.

(2) Now we consider case (2). Equation (9) now reads

u′(t)γAx + u(t)Ax = f (t)z. (10)

Since condition (i) together with u(0) = 1 gives u(t) =
g(t)

g(0)
, then in equation (10) only

x , f , and γ are to be determined. Equation (10) can be written in the form (γu′ + u)⊗
Ax = f ⊗ z . Since we have two equal atoms, then

(c) γu′ + u = η f and

(d) Ax = 1

η
z.

From (c) we get

γu′(0)+ 1= η. (11)

From (d) and the condition z is uniquely imaged under A we get x = 1

η
A−1z. Substi-

tute this in (10) and apply x∗ to both sides of the resulting equation, together with

< x , x∗ >= g(0) implies

(γu′(0) + 1)g(0) =
1

η
< A−1z, x∗ > . (12)

Equations (11) and (12) determine γ and η uniquely. Hence from x = 1

η
A−1z, x is

determined uniquely, and finally (5) determines f uniquely.
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This ends the proof.

As an application one can consider the following example:

Let

B =

�

1 1

1 1

�

, A=

�

1 1

0 1

�

, u=

�

x(t)

y(t)

�

, z =

�

1

1

�

, u(0) =

�

1

1

�

, x∗ =

�

1

1

�

,

and g(t) = 2+ t2. Then the system

�

1 1

1 1

��

x ′(t)

y ′(t)

�

+

�

1 1

0 1

��

x(t)

y(t)

�

= f (t)

�

1

1

�

,

with the conditions: < x∗,u(t) >= x+ y = 2+ t2, and x(0) = y(0) = 1 has a unique solution,

noting that uniquely imaged condition is satisfied.
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