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Abstract. Let F be a real valued generalized biaxisymmetric potential (GBASP) in Lβ on SR,
the open sphere of radius R about the origin. In this paper we have obtained the necessary and
sufficient conditions on the rate of decrease of a sequence of best harmonic polynomial approximates
to F such that F is harmonically continues as an entire function GBASP and determine their (p, q)-
order and generalized (p, q)-type with respect to proximate order ρ(r).
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1. Introduction

Let F = F (x, y) be a real-valued regular solution of the generalized biaxisymmetric
potential (GBASP) equation
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+

2ν

x

∂F

∂x
= 0, µ, ν > 0, (1.1)

which are even in x and y. A polynomial of degree n which is even in x and y is said to be
a GBASP polynomial of degree n if it satisfies (1.1). A GBASP F, regular about origin,
have local expansions of the form

F (x, y) =
∞∑
n=0

anR
(µ− 1

2
,ν− 1

2
)

n (x, y), (1.2)
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n (t) are Jacobi polynomials [1, 17]. The series (1.2) can be represented
in (r, θ) by

F ≡ F (r, θ) =

∞∑
n=0

anr
2nP

(µ− 1
2
,ν− 1

2
)

n (cos 2θ).

Let SR = {(x, y) : x2 + y2 < R2}, 0 < R ≤ ∞, be the open sphere of radius R
about the origin and SR be the closure of SR. In this paper we consider those GBASP
F ∈ Lβ(SR), 1 ≤ β < ∞, that harmonically continue as an entire function GBASP. The
characteristic feature follows from the rate of convergence of a sequence of best GBASP
polynomial approximates to F in Lβ(SR). The concepts of index-pair (p, q), p ≥ q ≥ 1,
(p, q)-order and (p, q)-type were introduced by Juneja et al. [15, 16]. Following the Juneja
et al. [15, 16] the (p, q)-order of an entire GBASP function is defined as

lim sup
r→∞

log[p]M(r, F )

log[q] r
= ρ(p, q) ≡ ρ,

and, the function having (p, q)-order ρ(b < ρ(p, q) <∞) is said to be of (p, q)-type T if

lim sup
r→∞

log[p−1]M(r, F )

(log[q−1] r)ρ
= T (p, q) ≡ T,

where M(r, F ) = maxx2+y2<r2{|F (x, y)|}, b=1 if p = q and b=0 otherwise.
For entire function GBASP the growth of this sequence is used to calculate the (p, q)-

order and generalized (p, q)-type with respect to proximate order ρp,q(r). The function
in the class Lβ(S∞) are called entire GBASP. The growth parameters (p, q)-order ρ(p, q)
and (p, q)-type T (p, q) of entire function GBASP F for (p, q) = (2, 1) have been studied
in Lβ(SR) by McCoy [14], but these concepts are inadequate to compare the growth of
those entire function GBASP which are of the same order but of infinite type. Hence, for
a refinement of the above scale one may utilize the concept of proximate order cf. [4, 11].

A positive function ρ(r) defined on [r0,∞), r0 > exp[q−1] 1, is said to be a proximate
order of an entire function with index-pair (p, q) if
(i) ρ(r) → ρ(p, q) ≡ ρ as r → ∞, b < ρ <∞;
(ii)

∧
[q](r)ρ

′(r) → 0 r → ∞,

where ρ′(r) denotes the derivative of ρ(r), and
∧

[q](r) =
∏q

i=0 log
[i] r.

The (p, q)-type T ∗ of F with respect to a given proximate order ρ(r) is defined as

lim sup
r→∞

log[p−1]M(r, F )

(log[q−1] r)ρ(r)
= T ∗(p, q) ≡ T ∗.

If the quantity T ∗ is different from zero and infinity then ρ(r) is said to be the proximate
order of a given GBASP function F with index-pair (p, q).
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P.A. McCoy [14] obtained the results by using integral operator method [2, 4, 6–8], but our
method is different from McCoy [14] and the results are the extension of those of McCoy
[14].
For the purpose of motivation, it is significant to mention that the Euler-Poisson Darboux
equation, arising in gas dynamics, is viewed in terms of equation (1.1) after a transforma-
tion and has a variety of physical interpretations. The solution of equation (1.1) which
satisfies a suitable radiation condition, corresponding to scattered waves, and their singu-
larities are related to the quantum states of the scattered particles. The GBASP play an
important role in many aspects of mathematical physics, in particular, in an understanding
of compressible flow in the transonic region (see [14]).

The limit µ ↓ ν produces the generalized axisymmetric potential equation. Reduction
of the GBASP equation to the harmonic function follows from the limit µ ↓ 0 that also
reduces the zonal harmonics to the circular harmonics. These functions form complete
sets for even harmonic, respectively analytic functions, regular at the origin. The GBASP
functions, then, are natural extensions of harmonic or analytic functions.

Let Aβ(SR) denote the space of GBASP that is regular and analytic in SR with finite
norm

∥ F ∥β,R= [

∫ ∫
SR

|F |pdxdy]
1
β , 1 ≤ β <∞,

where ∥ . ∥β,R denotes the Lβ-norm.
The best polynomial approximation error for the GBASP is defined by

Eβ
n(F,R) = inf

gR,n∈PR,n

{||F − gR,n||β,R}, n = 0, 1, . . . , (1.3)

with PR,n = PR,n(z) = Pn(
z
R); where Pn denotes the set of all GBASP polynomials of

degree no higher than n. For β = ∞, the above norm is sup norm. For each n there is an
extremal GBASP polynomial g∗R,n ∈ PR,n for which ∥ F − g∗R,n ∥β,R= Eβ

n(F,R).

For GBASP functions there is a large literature concerning the growth and approxi-
mation of this topic. Kasana and Kumar [10] studied the growth and approximation of
solutions (not necessarily entire) of certain elliptic partial differential equations. They
obtained the characterization of q-type and lower q-type (q ≥ 2) of a GBASP having fast
rates of growth in terms of ratio of approximation errors in Lβ- norm. In [12], Kumar
obtained some results for GBASP and the polynomial approximation of pseudo analytic
functions, while in [13] Kumar obtained the characterization of growth parameters in
terms of axially symmetric harmonic polynomial and Lagrange polynomials approxima-
tion errors in n-dimensions. In the present paper, using a different technique, we derive
formulae for the (p, q)-order and generalized (p, q)-type with respect to a proximate order,
of entire GBASP functions in terms of GBASP polynomials approximation errors in Lβ-
norm. Our results extend and improve the results obtained by McCoy [14].
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2. Lemmas and Results

To prove our main results the following lemmas are required.
Lemma 2.1. Let F ∈ Aβ(SR), then for all n ∈ N the following inequality holds:

|an|R2n+2
0 ≤ (πR2

0)
1
η (2n+ 2)((2n+ µ+ ν)C(n, µ, ν))Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
Eβ

n−1(F,R0)

where

C(n, µ, ν) =
Γ(n+ 1)Γ(n+ µ+ ν)

Γ(n+ µ+ 1
2)Γ(n+ ν + 1

2)
,

α = max(µ− 1
2 , ν −

1
2) and

1
η + 1

β = 1.
Proof. From the orthogonality property of Jacobi polynomials and uniform conver-

gence of the series (1.2) on SR, we have

anτ
2n =2(2n+ µ+ ν)C(n, µ, ν)

∫ π
2

0
(F (τ, θ)− g∗τ,n−1(τ, θ))×

× P
(µ− 1

2
,ν− 1

2
)

n (cos 2θ) sin2µ θ cos2ν θdθ,

(2.1)

where g∗τ,n−1 ∈ Pτ,n−1, 0 < τ < R0. Using [3, p.168]

max
−1≤t≤1

|P (µ− 1
2
,ν− 1

2
)(t)| = Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
(2.2)

in (2.1), we obtain

|an|τ2n =
(2n+ µ+ ν)C(n, µ, ν)Γ(n+ α+ 1)

2Γ(α+ 1)Γ(n+ 1)

∫ 2π

0
|(F (τ, θ)− g∗τ,n−1(τ, θ))|dθ,

since F and g∗τ,n−1 are even in x and y. Multiplying both sides of the above inequality by
τdτ and integrating from 0 to R0, we get

|an|R0
2n+2 =

2(n+ 1)(2n+ µ+ ν)C(n, µ, ν)Γ(n+ α+ 1)

2Γ(α+ 1)Γ(n+ 1)
×

×
∫ ∫
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(2.3)

For F ∈ Aβ(SR0), there exists g∗R0,n−1 ∈ PR0,n−1 such that

2Eβ
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(2.4)
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Now combining (2.3) and (2.4) we get the required result.

Let w = ψ(z) be the univalent function mapping the complement of SR on |w| > 1
such that ψ(∞) = ∞ and ψ′(∞) > 0. Set SR = {z : ψ(z) = r, r > 1}. Then

Lemma 2.2. Let F ∈ Aβ(SR) be an entire GBASP function of (p, q)-order ρ and
generalized (p, q)-type T ∗ with respect to ρ(r). Then

lim sup
r→∞

log[p]M(r, F )

log[q] r
= ρ,

lim sup
r→∞

log[p−1]M(r, F )

(log[q−1] r)ρ(r)
=
T ∗

γ
,

where M(r, F ) = maxz∈SR
|F |, γ = R−ρ for q = 1 and γ = 1, otherwise.

This lemma is an immediate consequence of [18, Lemma 3.1].
Lemma 2.3. Let F ∈ Aβ(SR), r

′ > 1, be an entire GBASP function. Then, for all
sufficiently large values of n, we have

Eβ
n(F,R) ≤ KM(r, F )(n+ 1)α+

1
2 (
r′R

r
)2(n+1), (2.5)

where K is a constant independent of n and r and r > 2r′R.
Proof. Let us consider the GBASP polynomial

gn,r =
∞∑
k=0

akr
2kP

(µ− 1
2
,ν− 1

2
)

k (cos 2θ).

Then gn,r ∈ Pn,r. Using the definition of approximation error Eβ
n(F,R) for all r, 0 < r < R,

we get

Eβ
n(F,R) ≤|F − gn,r|β,R

≤
∞∑

k=n+1

|ak|R2k|P (µ− 1
2
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2
)
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≤ 1

Γ(α+ 1)

∞∑
k=n+1

|ak|R2kΓ(k + α+ 1)

Γ(k + 1)
.

(2.6)

For F ∈ Aβ(SR), we have [5]

|ak| ≤
M(r, F )

r2k
[(2k + µ+ ν)C(k, µ, ν)C(µ, ν)]

1
2 (2.7)
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for every r < R.
Combining (2.6) and (2.7) we get

Eβ
n(F,R) ≤

M(r, F )

Γ(α+ 1)
(C(µ, ν))

1
2

∞∑
k=n+1
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Γ(k + 1)
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1
2 (
R

r
)2k. (2.8)

Since Γ(x+a)
Γ(x) ∼ xa as x→ ∞, we have

Γ(k + α+ 1)
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[(2k + µ+ ν)C(k, µ, ν)]

1
2 ∼

√
2kα+

1
2 as k → ∞.

Hence
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1
2 < 2

√
2kα+

1
2 for all k > k0.

Thus, for n > k0 and r > 2r′R, using (2.8) with above inequality, we obtain

Eβ
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2(2C(µ, ν))

1
2

∞∑
k=n+1

kα+
1
2 (
r′R

r
)2k

≤ M(r, F )
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1
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1
2 (
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r
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k
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1
2 (
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r
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Hence the proof is completed from the above inequality.
Lemma 2.4. Let F ∈ Aβ(SR), R > R∗, be an entire GBASP function. Then

h(z) =
∞∑
n=1

[
2(n+ 1)(2n+ µ+ ν)C(n, µ, ν)(n+ 1)α

Γ(n+ 1)
]2Eβ

n−1(F,R)(
z

R∗
)2n (2.9)

is entire. Further, ρ(F ) = ρ(h) and for b < ρ(F ) = ρ(h) <∞, T ∗(F ) = γT ∗(h).
Proof. Since

[
2(n+ 1)(2n+ µ+ ν)C(n, µ, ν)(n+ 1)α

Γ(n+ 1)
]

1
2n ∼ (

√
2(n+ 1)

√
2nα+

1
2 )

1
n → 1

as n→ ∞,

it follows from Lemma 2.2 that h(z) is entire and

Eβ
n(F,R) ≤ KM(r + 1, F )(

r′R

r + 1
)2n,

we have

h(z) =
∞∑
n=1

[
2(n+ 1)(2n+ µ+ ν)C(n, µ, ν)(n+ 1)α

Γ(n+ 1)
]2Eβ

n−1(F,R)(
z

R∗
)2n,
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so we get

M(
r

Rr′
, h) ≤Q(r) +KM(r + 1, F )

∞∑
n=0

[
r

R∗(r + 1)
]2n

= Q(r) +K
R∗

2(r + 1)2M(r + 1, F )

(r + 1)2R∗
2 − r2

, r′ > 1,

(2.10)

where Q(r) is a polynomial for all sufficiently large value of r.
On the other hand, using (1.2), (2.2) and Lemma 2.1, we get

|
∞∑
n=0

anr
2nP

(µ− 1
2
,ν− 1

2
)

n (cos 2θ)|

≤ |a0|+
1

Γ(α+ 1)

∞∑
n=1

|ak|R2nΓ(n+ α+ 1)

Γ(n+ 1)
≤ |a0|+

+KK0

∞∑
n=1

[
2(n+ 1)(2n+ µ+ ν)C(n, µ, ν)(n+ 1)α

Γ(n+ 1)
]2×

× Eβ
n−1(F,R)(

r

R0
)2n+2, z ∈ SR, R0 < R.

or
M(r, F ) ≤M(

r

R0
, |a0|+KK0h(z)). (2.11)

Now the proof follows from (2.10) and (2.11).

3. Main Results

In this section we will prove our main results.
Theorem 3.1. Let the GBASP F ∈ Aβ(S1), β ≥ 1. Then F harmonically continues

as an entire function GBASP if and only if

lim
n→∞

[Eβ
n(F,R)]

1
n = 0. (3.1)

Proof. Let F ∈ Aβ(S1), then for 0 < R < 1, F ∈ Aβ(SR). First suppose that F is
entire. Then it follows from Lemma 2.3 that

lim sup
n→∞

[Eβ
n(F,R)]

1
n ≤ (

r′R

r
), r > 2r′R.

Thus, for all sufficiently large r, we have

lim sup
n→∞

[Eβ
n(F,R)]

1
n = 0.

To prove only if part, suppose that (3.1) holds, then it follows from (2.11) that series
on the right hand side of (1.2) converges uniformly on every compact subset of S∞ and
GBASP F is entire.
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Theorem 3.2. Let the GBASP F ∈ Aβ(SR), r > 2r′R. Then F harmonically contin-
ues as an entire function GBASP of finite (p, q)-order ρ if and only if

ρ(p, q) = P (L∗(p, q)),

where

L∗(p, q) = lim sup
n→∞

log[p−1] n

log[q][Eβ
n(F,R)]

− 1
n

,

and P (L∗(p, q)) = {L∗(p, q) if q < p < ∞, 1 + L∗(p, q) if p = q = 2, max(1 +
L∗(p, q)) if 3 ≤ p = q, ∞ if p = q = ∞}.

Proof. Using Theorem 3.1, we have F ∈ Aβ(SR) is harmonically continues as an
entire function GBASP if and only if h(z) is an entire function. Using Lemma 2.4, F and
h(z) have same (p, q)-order. The remaining part of the proof can be obtain easily.

Theorem 3.3. Let the GBASP F ∈ Aβ(SR), r > 2r′R. Then F harmonically con-
tinues as an entire function GBASP of finite (p, q)-order ρ(b < ρ < ∞) and generalized
(p, q)-type T ∗ of F with respect to a proximate order ρ(r) if and only if

T ∗(p, q)

Mγ
= lim sup

n→∞
[

ϕ(log[p−2] n)

log[q−1][Eβ
n(F,R)]

− 1
n

]ρ−A,

where A = 1 if q = 2, A = 0 if q ̸= 2 and M ≡ M(p, q) = { (ρ−1)(ρ−1)

ρρ if (p, q) = (2, 2),
1
eρ if (p, q) = (2, 1), 1 otherwise}.

The function ϕ(x) be the unique solution of the equation

x = (log[q−1] r)ρ(r)−A ⇔ ϕ(x) = log[q−1] r.

Proof. Applying Theorem 3 of Nandan et al. [9] to the function h(z) and resulting
characterization of T ∗ = γT ∗(h), with Lemma 2.4, taking together completes the proof.

Remark 3.1. For (p, q) = (2, 1), Theorem 3.2 gives the Theorem 2 of P.A. McCoy [14] .

Remark 3.2. For (p, q) = (2, 1) and x = ϕ(n) is the function inverse to n = xρ(r),
Theorem 3.3 gives the Theorem 3 of P.A. McCoy [14] .

4. Conclusions

We estimate formulae for the (p, q)-order and generalized (p, q)-type with respect to a
proximate order of entire GBASP functions in terms of GBASP polynomial approximation
errors in Lβ-norm, which made it possible to obtain the necessary and sufficient conditions
under which a GBASP function harmonically continues to entire GBASP. Our results
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improve and extends the results of McCoy [14]. The relevance of our study is due to the
fact that GBASP play and important role not only in theoretical mathematical research,
but are used in gas dynamics in order to describe different stationary processes. Thus,
the special interest are global properties characterising solutions to the partial differential
equation that are determined from local properties.
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