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Abstract. Interpolative Kannan contractions are a refinement of Kannan contraction, which is
considered as one of the significant notions in fixed point theory. Gp-metric spaces is considered
as a generalized concept of both concepts b-metric and G-metric spaces therefore, the significant
fixed and common fixed point results of the contraction based on this concept is generalized results
for both concepts. The purpose of this manuscript, is to take advantage to interpolative Kannan
contraction together with the notion of €2, which equipped with Gyp-metric spaces and ‘H simulation
functions to formulate two new interpolative contractions namely, (#, 2;)-interpolative contraction
for self mapping f and generalized (H,<p)-interpolative contraction for pair of self mappings
(f1, f2). We discuss new fixed and common fixed point theorems. Moreover, to demonstrate the
applicability and novelty of our theorems, we formulate numerical examples and applications to
illustrate the importance of fixed point theory in applied mathematics and other sciences.
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1. Introduction and Mathematical Preliminaries

The study of fixed point theory has gained increasing importance and interest in pure
and applied mathematics [8]-[17] ever since Banach came up with his result (Banach
contraction principle) [4] which is considered to be one of the most important results in
mathematics as well as other sciences. Since then, many mathematicians refined the result
of Banach in two directions; some by replacing the frame of distance space such as b, G-
metric spaces, modified w, -distance mappings (see [5]-[16]), and the others refined the
contraction condition (for example see [18]-[15]).

Kannan contraction principle [12] is the first outstanding result after Banach contraction
principle, and it is important to mention that this contraction characterizes the metric
completeness. Many mathematicians improved this contraction; an interesting example of
this improving is interpolative Kannan contractions [10, 13]. Since then, many significant
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contractions formulated based on interpolative contractions which utilized in the literature
to investigate significant fixed and common fixed point results such as Debnath et.al. [7, 9].
In this study, our purpose is to formulate two significant interpolative contractions in the
framework of €}, distance mappings which equipped with Gp-metric spaces where nontrivial
generalisations are possible and as such, application of the results in relevant fields becomes
feasible and easier.

Definition 1. [10, 13] Suppose (C,d) is a metric space and f,g are two self mappings on
Cand A€ [0,1), a, 8 € (0,1) where 8+« < 1. Then

1. We call f a (A, a, B)-interpolative Kannan contraction if

d(fer, fez) < Ad(en, fer)*d(ea, fea)”, (1)
Y c1,c0 € C with fc1 # c1 and feo # co.
2. We call the pair (f,g) a (A, a, B)-interpolative Kannan contraction pair if
d(fer,gez) < Md(er, fe2)d(e2, gea)”, (2)
Y c1,c9 € C with fc1 # ¢1 and geg # ca.

The concept of Gy space has been formulated by a pioneer mathematician, Aghajani et
al. [2], providing a generalization of the standard concepts of G-metric space which are
formulated by Mustafa and Sims [14] and b-metric space , which is formulated by Bakhtin
[3] as follows:

Definition 2. [2] Let C be a non-empty set and b € [1,400). Assume that the function
Gp:C xCxC—[0,400) fulfills the following conditions:

1. Gy(e,e ¢y =0if and only if c=¢c =¢’;
b(c,c,c) >0 for all ¢,c € C with ¢+ ¢;
Gy, ¢ ,c) < Gy(e, d.c ) for all ¢, ,¢" € C with ¢ #+¢";
Gy(c, ¢,c ) = Gp(p{e, ¢, cu}) where p is a permutation of ¢,c ¢ :
5. Gyle,c ") <b[Gy(c,a,a) + Gyla, ¢, )] for all ¢,¢ ¢ ,a € C.
Then Gy is called Gy-metric on C and the pair (C,Gy) is called Gy-metric spaces.

Example 1. [2] If (C,G) is G-metric space and p € (1,400). Define G, : C x C x C —
[0,400) via Gp(cr,ca,c3) = (G(er,ca,c3))P. Then Gy is Gy-metric space with the base
b=2r"1,

Henceforth, (C, Gp) refers to Gp-metric spaces on the set C.

In the sub-sequence, C refers to non empty set and Ay refers to the set of all fixed points
of fin C.

The concepts of Gp-completeness and Gp-convergence are as below:
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Definition 3. [2] Assume (c,) be a sequence in (C,Gy). Then the sequence (cy,) is a:

1. Gp-Cauchy sequence if Ve > 0 there is N € N such that VYn,m,l > N,
G(Cna Cm, Cl) <€

2. Gy-convergent sequence to c if Ve > 0 there is N € N such that Yn,m > N,
G(e,en,em) < €

3. Gy-complete if ¥V Gy-Cauchy sequence, then Gy is convergent.

Remark 1. A sequence (c,) in (C,Gyp) is Gy-convergent sequence if one of the following
conditions is true:

(1) Gp(epe,c) = 0 as n — +oo;

(2) Gp(cn,cn,c) = 0 as n — +o0.

The concept 2 distance mappings (Generalized €2 distance mappings) was introduced
by Abodayeh et.al. [1] and they utilized this concept to unify some fixed point results in
the literature.

Definition 4. [1] An Qy-distance mappings on (C,Gy) is a function € : C X C x C —
[0, +-00) fulfill:
1. Qp(c, c/,c”) < b[U(c,a,a) + Q(a, c/,c")] for alle,c,¢',aeC, be [0, +00);

2. Ve, €C, Q(c, c, D, (e, -, c/) : C — C are lower semi-continuous;

3. Ye > 0 there is an o > 0, if Qy(c,a,a) < o and Q(a, ¢, ¢") < a,
then Gy(c, cl,c”) <e Vec,d eC.

Definition 5. If Q, distance mappings is equipped with (C,Gy), then we call C bounded
w.r.t. Qp if there exists L > 1 with Qy(c1,ca,c3) < L for all ¢y, co,c3 € C.

The concept of H-simulation functions which formulated by Bataihah et.al in 2020 is as
belows:

Definition 6. [6/ A set of functions {h : [1,4+00) x [1,+00) — R} is called H-simulation
functions if

!

) < % Ve, ¢ € [1,400). (3)

hc,c
Remark 2. [6] If h € H and (¢,), (c,) are sequences in [1,+0c) with

1< lim ¢, < lim ¢, then
n—-+oo n——+00

limsup h(cy,c,) < 1. (4)

n—-+4o0o

Definition 7. [6, 11] The class of functions: {6 : [0,+00) — [1,+00)}, 0 is continuous
and none decreasing functions fulfill the condition:
V(en) a sequence in [0, +00), (cn) =1 if and only if 11)1_11_1 cn = 0.

Is said to be © class
Remark 3. [11] If 0 € ©, then 6= ({1})=0.

lim 6
n—-+o00
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2. Main Results

We start our main results with the following concepts and definitions

Definition 8. Suppose (C,Gy) is equipped with Qy-distance mappings. A mapping f : C —
C is said to be (H,Qp)-interpolative contraction if there are b € [1,+00), A; € (0,1) with
i€{1,2,3} and \a+ A3 < 1,0 €O and h € H such thatV c1,ca,c3 € C we have:

1< h<9be(f61,f2617f02),9)\1f‘(61,62703)>- (5)
Where
I'(c1,c2,c3) = max {Qb(cla fei,e), (e, fer, fer)*2[Q(ca, feo, fcz)]kz"}-

Lemma 1. Suppose the self function f : C — C fulfills the conditions of (H,Qy)-interpolative
contraction. Then

A
1. D(e1,c,¢3) >0 = Q(fer, f2er, fez) < %F(CLC%C?));

2. D(cy,e2,03) =0 = W(fer, f2er, fea) = 0.
Proof. (1) If I'(c1, c2, c3) > 0, then
1 < H(0bQy(fer, f2er, fea), 0MT (cr, 2, ¢3))
9)\11—‘(01,62,03)
= 0b(fer, fre, feo)

This implies that, 0b2(fc1, f2c1, fea) < OMT(e1, ¢, c3). Due to the fact that the set ©
is a non-decreasing function, we conclude:
A
D(fer, f2er, feo) < ?11“(61,02,03). Hence the result.
(2) If I'(¢1, c2, c3) = 0, then by utilizing condition (1), we have:

1< 06 (fer, fPer, fea) < OAT(c1,ca,c3) = 1.
Thu57 Qb(fclv fzcb fc2) =0.
Lemma 2. Suppose the self function f : C — C fulfills the conditions of (H, p)-interpolative
contraction. Then Ay has at most one element.
Proof. To prove that Ay has at most one element, first we claim that, Q(a, o, ) =0

Va € Ay. Assume Qp(a, o, ) > 0 for some a € Ay, then by employing Lemma 1 we get:

2 A1

Qb(fa>f Oé,fOé) < ?F(O@O"O‘)

= % max{Q(a, fa, ), (e, fa, fa)2[(a, fa, fa)*}

< (o, o, ).
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A contradiction. Hence the result.
Now assume that there is ¢*,a € Ay with ¢* # «, assume that Q(c*,c*,a) > 0, so by
Lemma 1 we have:

W(c*, e, a) = W(fcr, f2c, fa) < %F(c*,c*,a)
A
= ?1 max{Qy(c*, fc*, ), [Q(c*, &, )2 [ (a, a, )3}
< Qp(c*, ", ).

A contradiction. Therefore, Q(c*,c*,a) = 0 and by utilizing the definition of of €2
(condition (3)) and since Qp(c*, c¢*, ¢*) = 0, we conclude that Gy(c*, c*, o) = 0 therefore,
¢’ = a.

For an arbitrary point ¢y € C the Picard sequence is defined by iterating f : C — C

where ¢,+1 = f(en) = f™(co). Henceforth, we mean by the sequence ¢, the Picard sequence
unless otherwise stated.

Lemma 3. Suppose the self function f : C — C fulfills the conditions of (H, y)-interpolative
contraction and suppose that for some k € N we have Qp(ck—1,ck,cx) = 0. Then,

Ay ={ck}
Proof. Note that

A
D(ck—1,ck, cx) = ?1 max {Qb(ckhclm ck), [ (-1, iy )2 [ ek, Ck+170k+1)]/\3} =0.

So, by Lemma 1, we get that Qp(cg, ckt1, k1) = Q(ck—1,ck, cx) = 0. In a similar manner,
we can verify that Qp(cgy1, Ckr2, ckr2) = 0. By utilizing the definition of €, we conclude
that Gp(cp_1,cpa1,ckr1) = 0 and so cx_1 = ckr1. In a typical way, we can prove that
C = Ck42-

Now, by employing the triangle inequality of €2, we get

[ (ks g1, Chr1) + Q(Crrrs iy cr)]
b[Q(ck, Chr1, Chr1) + Q(Cht1, Cht2, Chr2)] (6)
0

ek, cpycr) <

From inequality (6) and Q(ck, k41, k1) = 0, we conclude that ¢ € Ay and Lemma 2
ensures that ¢ is the unique element in Ay.

Theorem 1. Suppose (C,Gy) is Gy-complete equipped with S, distance mappings with the
base b € [1,4+00) and C is bounded w.r.t. . Suppose there are \; € (0,1),i € {1,2,3}
with Ao+ A3 < 1, 0 € ©, h € H such that the mapping f : C — C is a (H,Q)-interpolative
contraction if one of the following conditions is fulfilled:

1. The self mapping f is a continuous;

2. For all ¢* € C if fc* # c*, then 0 < inf{Q(c, fe,c*):c€C},

then Ay has only one element.
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Proof. Let ¢y € C and start by the Picard sequence (¢,). Without lose of generality,
we may assume that Vn € N, we have Qp(cp, ¢pt1, cnt1) > 0. So, by Lemma 1, we have

A
(e, ensts ensr) < L max {wan_l,cn,cn), ((Cn 1, 0ms en)]2 [Qb<cmcn+1,cn+1>]k3}.

b
(7)
If max {Qb(cn—la Cn, C’I’L)a [Qb(cn—lv Cn, Cn)})\2 [Qb(cna Cn+1, Cn—&—l)])\g} = Qb(cn—la Cn, Cn)‘
Therefore, we get
A
(cn, ens1, Cnt1) < 5 Dlen1,nsn); (8)
else, we have
- - A1 A A 1-As
[Qb(crw Cn+1, Cn—i—l)] < ? [Qb(cn—h Cn, Cn)] < ? [Qb(cn—la Cn, Cn)] . (9)
From the inequalities (8) and (9), we conclude
A1
Qb(CTL?CTL-i-l;CTL—i-l) < ?Qb(cn—lacmcn)
(10)
Mg,
< (?) Q(co, c1,c1)-
Then there is L > 1 such that
Al
Qb(cn7cn+lvcn+1) < (?) L. (11)

To show that the iterative sequence (¢,) is Gy-Cauchy, first we prove that V m,l € N with
m <[] we have:

A

; )" LL. (12)

Qb(cm—h Cm, Cl) < (

Now,

A
Q(em—1,cm, ) < ?1 max {Qb(cm—27 Cm—1,C1-1) [W(Cm—2, m—1, cm—1)]2 [Q(ci_1, 1, Cl)])\g}'

(13)
Assume that | = m + ¢ for some t € N. Then
A
M(c-1,c,0a) < ?1 max {Qb(Cl—Q, ci-1,¢-1), [Qlcr—2, c-1, c-1)12 [Q(ci-1, a1, Cl)]’\3}
A
= be(szQ,szl,Clq)
< (%)tﬂb(cmfla Cmyy Cm)-

(14)
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Now,
5 X2+
(em-1,emsr) < - max 3 Qylem—2, em-1, 1), [Q(em—2, Em-1, 1)
< % max % max{Qp(Cm—3, m—2, c1—2), [ (Cm—3, Cm—2, cm—2)]*2 723},
[Qb(cm—Q, Cm—1, Cm—l)]A2+)‘3 }
A
< (bl)Q{Qb(CmZSa Cm—2, CZ_Q), [Qb(cmfg, Cm—2, Cm72)])\2+/\3 }
TLyn-t Ao
S (?) Qb(CO’Cl,Ct)’ [96(00701,61)] 2 3
A
< (5"
(15)

Now, by employing inequalities (11), (12) and condition (1) of the the definition of €
Vn <m <1, we get:

Qb(cna Cmy,s Cl) < be(Cna Cn+1, Cn+1) + be(CnJrla Cm, Cl)
< bW (Cny Cntts Cnt1) + 2 (Cnt, Cntas cnt2) + B2 (cnt2, Cms )

< be(C’na Cn+1, Cn+1) + bQQb(CnJrh Cn+2, Cn+2) + -
+0™ A (Cm—2, Cm—1, Cm—1) + 6™ I (Cm—1, ¢, 1)

A A A
< b(f)nL + b2(?1)n+1L NS bm—n—l(?l)m—lL

A
= bL(?l)" L+ A+ At

B L=AT""" 0 A1y,
=TT

(16)
By taking the limit as n — 400 in above inequality, we find out that (¢,) is a Gp-Cauchy
sequence, and since (C, Gyp) is G- complete, then there is ¢* € C s.t. the sequence (cy,) is
Gp-convergent to c*. If f is any continuous mapping, then fc* = ¢*. Else, by utilizing the
lower semi continuity of €2, we obtain:

Qp(enyem, ) < lim Q(cp, cm, ) <€ for all nym > N ¥V e > 0. (17)
t——+o0

Suppose that m =n + 1. Then Qp(cp, cpy1,¢*) < lm Qp(en, cpy1, ) < € Vn > N.

t—+o00
If fc* # ¢*, we obtain:

0 < inf{Q(c, fc,c*) : c € C} < inf{Q(cn,cni1,¢*):n €N} <eVe>0, (18)
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a contradiction. Hence, c¢* € Ay, the uniqueness follows from Lemma 2. This is complete

the proof.

In the next two examples we consider the following:

Define h : [1,400) X [1,400) — [0,+00), € : [0,+00) — [1,400) via h(cy,c2) = 0—2,
C1

O(w) = ¥, Yw € C respectively, then h € H and 6 € ©.

Also, define: Gy : C x C x C — [0, 4+00) by Gp(c, ca,e3) = (Jer — 2| + |ea — e3| + |e1 — e3])?,

then , GG is a complete with the base b = 2.

Moreover, define €, : C x C x C — [0, 4+00) by Qy(c1, ca,c3) = (|er — ca| + |e1 — e3])?, Qp is

a generalized §2-distance mapping equipped with Gj.

Example 2. Suppose C = {0,1,...,10}, define mapping f : C — C via :
0, ce{0,1,2};

, ce€{3,4,5};
2, ce6,7,..,10}.

[

fe=

Then Ay has only one element.
To prove this, we need to show thatV c1,co € C, we have

1 < h(ObQ(fer, frer, fez), 00T (e1, c2,c3)).

First it is not hard to prove

Q(fer, f2e1, fea) < 0.45max {Qb(cl,fcl,@)’ [Q(c1, fer, fe1)] 2 [(ca, fcz,fCQ)]0'45}.

Now,
Q(fer, f2e1, feo) < % max {Qb(Cb fer,ea), [Q(cr, fer, fer)2[Qp(ca, feo, fCQ)]A‘"’}

= Ob(fer, fre1, fea) < OMT(c1, 2, c3))
= 1< H(Ob(fer, fPer, fea), 00T (c1, e, c3)).

Consequently, f satisfy all conditions of (H,S)-interpolative contraction. Theorem 1
confirms that Ay has only one element.

Example 3. Consider the following mapping

1"

B o where m € N — {1} and B > v/2m.

f(c)
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Then A¢ has only one element on [0,1].
To prove this, let C = [0,1] for all ¢1,ca,c3 € C, assume fc=s. Then

]2

’(1 — ) (B+sm) —(1-s")(B+ c{”)‘

l—c 1-8m 1—c? 1—cp
B+c* B+s™ B+c' B+cy

Qb(fcl7f2617f62) = H

- [(B + ) (B + s™)

1 2
+(B+c’f1)(B+cgn)‘(1—CT)(BJFCT)—U—C?)(BHT)]
B-1%[, .. m o 2

S pr |l s
(B_1)2m2 2
=g |la-sltla-cl
B-1 2
< (232)[|Cl ~fel+ e _CQ@
A
= %Qb(clafchcﬂ-

B-1
Notice that Ay = (T)2 and the base b = 2.

Now,
b (fer, e, fe2) < Ml fer,e2) < MD(er, e, ¢3)

s MW(ferfierfea) « Ml (er,ea,e3)

eMl(er,e2,03)

: 1< b (fer,f2e1,fe2)

— 1< HOWY(fer, foen, fea), 0T (c1, 2, c3).
Consequently, f satisfy all conditions of (H,S)-interpolative contraction. Theorem 1

confirms that Ay has only one element.

Definition 9. Suppose that (C,Gp) is equipped with Qp-distance mappings and fi, fo are
two self mapping on C. We called the pair (f1, f2) is a generalized (H,Qp)-interpolative
contraction if there exist b € [1,+00), A; € (0,1) with i € {1,2,3} and A2 + A3 < 1,
0O and h € H s.t. ¥ ¢1,co,c3 € C we have:

1< h<959b(f161, fa(ficr), faca), 0MT 1 (e, c2, Cs)) ; (19)
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and

1< h<9be(f261, J1(f2c1), fic2),0MTa(c1, co, Cs)) : (20)

Where
I'i(e1, 2, c3) = max {Qb(Ch fact, c2), [Q(en, fren, fren) [ (co, faca, f202)]A3};
and
Ly(c1, 2, c3) = max {Qb(Ch fren, e2), [Q(en, faca, fact) 2 [ (co, frca, flcz)]k‘“’}-

Theorem 2. Suppose (C,Gy) is Gy-complete equipped with U, distance mappings with the
base b € [1,400) and C is bounded w.r.t. . Suppose there are A\; € (0,1),i € {1,2,3}
with o+ X3 < 1,0 € ©, h € H s.t. the pair of self mappings f1, fo : C — C is a generalized
(H, Qp)-interpolative contraction if one of the following fulfilled:

1. If the mappings f1, fo are continuous;

2. If one of the self mappings is continuous and for all ¢* € C if f*c* # c*,

then 0 < inf{Q(c, f*c,c*) : c € C}, where f* refers to non-continuous function fi or f.
then Ay has only one element.

Proof. We start our proof our by setting a constructive sequence (¢,,) € C by iterating
Con+1 = ficon and conyo = facon+1 for n € N for some arbitrary element ¢y € C. So we
have
M (cant1, Cant2, Cany2) = Y ficon, fo(fican), faconi1), and so

1 < H<959b(02n+1, Con+2, Cant2), AT (can, con, 62n+1)>

O 1 max {Qb(c2m Cont1,C2n+1)s [ (Con, Cant1, C2n41)] 2 [ (Cont1, Cant2, Cont2)]? }
<

062 (Cc2n+1, Cant2, Cont2)

(21)
Therefore,

A1
Qp(c2n+1, C2n+2, Cont2) S?max D (c2n, Cant1; C2nt1),

[ (con, cant1, con 1)1 [ (Con i1, Canta, Cont2)]™ }
By employing the inequalities (8) and (9), we conclude that

A1
D (can+1, C2ant2, Cont2) < ?Qb(CQna Cont15 Cont1)- (22)
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By utilizing typical way, we can easily show that

A1
Qp(con+2, C2nt3, Cong3) < ?Qb(c2n+l, Cont25 Cont2)- (23)
Hence, we get
A1
Qb(cn—Ha Cn+2, Cn+2) < ?Qb(crw Cn+1, cn—}—l)- (24)

The completion of the proof of this Theorem is identical to the Theorem 1, and this is
complete the proof.

3. Application

Throughout this application, we will emphasize the significant idea that the solution
of a fixed point equation (uniqueness and existence) under certain conditions is often
comparable to that of other equations.

Consider the following equation:

M4 ™ 4+ Be— 1, where B > V2 m, m e N — {1}, (25)

has a unique solution in the unit interval [0, 1].
To prove this, it is typical to prove that the following self mapping f has a unique fixed
point in [0, 1].

11—
= B>v2 — {1}

Example 3 confirms that the self mapping f has a unique fixed point and hence, the
Equation (25) has a unique solution.

Next, we discuss an application on Theorem 1. We employ Theorem 1 to prove the
uniqueness and existence of a solution for Volterra type integral equation:

n(t)=mno+ [ H(r,n(r))dr. (26)

to

Suppose that ||.||eo is the superior norm on C0, 1] which is defined by ||v]jcc = sup v(t).
t€]0,1]
In this application, we consider that C = C[0, 1] and Gy, €, as follows:

Gy, v,w) = ([ =000 + [[v = wlloo + [u=w][o0)?, U (u,v,w) = ([Ju— oo+ [lu—wl|oc)*.
(27)
Next, we have the following theorem:

Theorem 3. Suppose that H : [0,1] X R — R is a continuous function on [0,1] x R and
to is the interior point in [0,1] and suppose that ag > 0 such that the function H fulfills
the following:

|H(t,u) — H(t,v)| < aplu —v| for all u,v € R and for all t € [0, 1]. (28)

Then the integral equation fn(t) = no + fti) H(r,n(r))dr has a unique solution.
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ap

Proof. Let € > 0 with e < /b/\—g. Define the self mapping f : C[0,1] — C]0, 1] via

t
fn@) =mo+ [ H(r,n(r))dr, (29)
to
Then we show that f satisfies the condition (8) on the interval Cy = [to, to + €.
It suffices to show that:

A
(fu, fu, fv) < 5, fu,0). (30)
Now, for all u,v € C[0, 1], we obtain:

[fu—=fulle = sup[fu(t) — fu(t)|

teCo

= Sup‘ftO(H T,U(T)) ( 'U(r)))drl

teCo

< sup [l [(H(r.u(r)) ~ H(r.v(r))dr

< supaplu(t) — v(t) \ft dr
teCo 0

= agl|lu — v|[os(t = to)

= eapl|u — V]| co-

Therefore,

(Ifu = fPullse + 1 fu = follo)® = (sup|fu(t) — fu(t)] + sup|fu(t) — fo(t)])*

teCo teCyp

= <sup] ft (ryu(r)) — H(r, fu(r))dr|

teC

2
sup! [ () — H( ()

teCy
< (eao)?(lu — fulloo + [u — vll0)*.

A
Now, set ?1 = (eap)?, we get the desire result.

4. Conclusion

In this manuscript, we formulated two significant interpolative contractions namely,
(H, 2 )-interpolative contraction for self mapping f and generalized (H, €2;)-interpolative
contraction for pair of self mappings ( f1, f2). By employing these contractions we unify new
fixed and common fixed results. We formulated some numerical examples and applications
to show the novelty of our results; one of these applications based on the significant idea
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that the solution of a equation in a certain conditions is typical to solution of fixed point
equation. we utilized this idea to prove that this equation not only has solution as the
Intermediate value Theorem says but also, this solution is unique. This research can be
improved by utilizing the concept of extended Gj-metric spaces.
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