EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1647-1662
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

2-Locating Sets in a Graph

Gymaima Cañete ${ }^{1}$, Helen Rara ${ }^{2}$, Angelica Mae Mahistrado ${ }^{1, *}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra, and Analysis-Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let G be an undirected graph with vertex-set $V(G)$ and edge-set $E(G)$, respectively. A set $S \subseteq V(G)$ is a 2-locating set of G if $\left|\left[\left(N_{G}(x) \backslash N_{G}(y)\right) \cap S\right] \cup\left[\left(N_{G}(y) \backslash N_{G}(x)\right) \cap S\right]\right| \geq 2$, for all $x, y \in V(G) \backslash S$ with $x \neq y$, and for all $v \in S$ and $w \in V(G) \backslash S,\left(N_{G}(v) \backslash N_{G}(w)\right) \cap S \neq \varnothing$ or $\left(N_{G}(w) \backslash N_{G}[v]\right) \cap S \neq \varnothing$. In this paper, we investigate the concept and study 2-locating sets in graphs resulting from some binary operations. Specifically, we characterize the 2-locating sets in the join, corona, edge corona and lexicographic product of graphs, and determine bounds or exact values of the 2-locating number of each of these graphs.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: 2-locating set, 2-locating number, join, corona, edge corona, lexicographic product

1. Introduction

Resolving sets and metric basis are emphasized for their application in computer science, medical sciences and chemistry. The locating set in graphs can be viewed as the set of monitors that can determine the exact location of an intruder. The concept of 2-locating set is obtained from the concept of locating set. Requiring such a set to be 2-locating implies that every pair of vertices where there is no monitor must be connected to at least two monitoring devices that are connected to other monitors. Also, for every vertex and monitoring device there exists at least one monitor that is connected to it. Hence, 2-locating set can be viewed as the set of monitors that can determine the presence of an intruder.

[^0]In 1975, Slater [19] introduced the concept of locating sets and its minimum cardinality as locating number. Harary and Melter also utilized a similar idea, although they referred to the locating set and the locating number, respectively, using the terms resolving set and metric dimension. Resolving sets and locating sets, however, are defined differently in more recent studies. In 2013, Bailey et al. [1] defined a resolving set as a set of vertices S in a graph G such that for any two vertices u, v, there exists $x \in S$ such that the distance $d(u, x) \neq d(v, x)$. On the other hand, Canoy and Malacas [8] defined a locating set as a set $S \subseteq V(G)$ of G such that for every two distinct vertices u and v of $V(G) \backslash S$, $N_{G}(u) \cap S \neq N_{G}(v) \cap S$. Other variations of locating sets are studied in [16], [6], [11], [13], [14], [15] and [7].

In 2021, J. Cabaro and H. Rara [5] studied the idea of the 2-resolving sets in the join and corona of graphs wherein they introduced the idea of 2-locating sets. This work is therefore motivated by the recent studies on these variations of 2-resolving set and 2-metric dimension that utilize the concepts of 2-locating set and 2-locating number. Other studies that deal with the concept of 2-locating sets are located in [6], [9], [10], [12] and [18].

2. Terminology and Notation

In this study, we consider finite, simple, connected, undirected graphs. For basic graphtheoretic concepts, we then refer readers to [3] and [4]. The following concepts are found in [2], [3], [5] and [17] respectively.

The open neighborhood of a vertex v in a graph G is defined as the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$, while the closed neighborhood of a vertex v in G is defined as $N_{G}[v]=N_{G}(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V(G)$ is defined as $N_{G}(S)=\bigcup_{v \in X} N_{G}(v)$, while its closed neighborhood is $N_{G}[S]=N_{G}(S) \cup S$. A connected graph G of order $n \geq 3$ is point distinguishing if for any two distinct vertices u and v of $G, N_{G}[u] \neq N_{G}[v]$. It is totally point determining if for any two distinct vertices u and v of $G, N_{G}(u) \neq N_{G}(v)$ and $N_{G}[u] \neq N_{G}[v]$.

For an ordered set of vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v in G, we refer to the k-vector (ordered k-tuple)

$$
r_{G}(v / W)=\left(d_{G}\left(v, w_{1}\right), d_{G}\left(v, w_{2}\right), \ldots, d_{G}\left(v, w_{k}\right)\right)
$$

as the (metric) representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have distinct representations with respect to W. Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set $\left\{r_{G}(v / W): v \in V(G)\right\}$ consists of n distinct k-vectors. A resolving set of minimum cardinality is called a minimum resolving set or a basis, and the cardinality of a basis for G is the dimension $\operatorname{dim}(G)$ of G. An ordered set of vertices $W=\left\{w_{1}, \ldots, w_{k}\right\}$ is a k-resolving set for G if, for any distinct vertices $u, v \in V(G)$, the (metric) representations $r_{G}(u / W)$ and $r_{G}(v / W)$ of u and v, respectively, differ in at least k positions. If $k=1$, then the k-resolving set is called a resolving set for G. If $k=2$, then the k-resolving set is called a 2 -resolving set for G. If G has a k-resolving set, the minimum cardinality $\operatorname{dim}_{k}(G)$ of a k-resolving set is called
the k-metric dimension of G. If G has a 2-resolving set, we denote the least size of a 2-resolving set by $\operatorname{dim}_{2}(G)$ is called a 2 -metric dimension of G. A resolving set of size $\operatorname{dim}_{2}(G)$ is called a 2 -metric basis for G.

Let G be any nontrivial connected graph and $S \subseteq V(G)$. A set $S \subseteq V(G)$ is a 2-locating set of G if it satisfies the following conditions:
(i) $\left|\left[\left(N_{G}(x) \backslash N_{G}(y)\right) \cap S\right] \cup\left[\left(N_{G}(y) \backslash N_{G}(x)\right) \cap S\right]\right| \geq 2$, for all $x, y \in V(G) \backslash S$ with $x \neq y$.
(ii) $\left(N_{G}(v) \backslash N_{G}(w)\right) \cap S \neq \varnothing$ or $\left(N_{G}(w) \backslash N_{G}[v]\right) \cap S \neq \varnothing$, for all $v \in S$ and for all $w \in V(G) \backslash S$.

The 2-locating number of G, denoted by $\ln _{2}(G)$, is the smallest cardinality of a 2-locating set of G. A 2-locating set of G of cardinality $\ln _{2}(G)$ is referred to as an $l n_{2}$-set of G.

A set $S \subseteq V(G)$ is a (2,2)-locating ($(2,1)$-locating, respectively) set in G if S is 2 locating and $\left|N_{G}(y) \cap S\right| \leq|S|-2\left(\left|N_{G}(y) \cap S\right| \leq|S|-1\right.$, respectively), for all $y \in V(G)$. The $(2,2)$-locating $\left((2,1)\right.$-locating, respectively) number of G, denoted by $\ln _{(2,2)}(G)\left(\ln _{(2,1)}(G)\right.$, respectively), is the smallest cardinality of a (2,2)-locating ($(2,1)$-locating, respectively) set in G. A $(2,2)$-locating $\left((2,1)\right.$-locating, respectively) set in G of cardinality $\ln _{(2,2)}(G)$ $\left(\ln _{(2,1)}(G)\right.$, respectively) is referred to as an $l n_{(2,2)}$-set $\left(\ln _{(2,1)}\right.$-set, respectively) in G.

3. Known Results

The following known results are taken from [5].
Remark 1. For any connected nontrivial graph G of order $n \geq 2,2 \leq \ln _{2}(G) \leq n$. Moreover, $\ln _{2}\left(K_{n}\right)=n$, for $n \geq 2$.

Theorem 1. Let G be a connected nontrivial graph. Then $\ln _{2}(G)=2$ if and only if $G \cong P_{2}$ or $G \cong P_{3}$.

Remark 2. Let $S \subseteq V(G)$ For any pair of vertices $x, y \in S, r(x / S)$ and $r(y / S)$ differ in at least 2 positions. Hence, to prove that S is a 2 -resolving set in G, we only need to show that for every pair of vertices $x, y \in V(G)$ where $x \in S$ and $y \in V(G) \backslash S$ or both $x, y \in V(G) \backslash S, r(x / S)$ and $r(y / S)$ differ in at least 2 positions.

Remark 3. Every 2-locating set in G is a 2-resolving set in G. However, a 2-resolving set in G need not be a 2-locating set in G. Thus,

$$
\operatorname{dim}_{2}(G) \leq \ln _{2}(G)
$$

4. Preliminary Results

Every nontrivial connected graph G admits a 2-locating set. Indeed, the vertex-set of G is a 2-locating set.

Proposition 1. For any connected graph G of order $n \geq 2,2 \leq \ln _{2}(G) \leq n$. Moreover,
(i) $l n_{2}(G)=2$ if and only if $G=K_{2}$ or $G=P_{3}$;
(ii) if $G=K_{n}$, then $\ln _{2}(G)=n$;
(iii) if $n=3$, then $\ln _{2}(G)=3$ if and only if $G=K_{3}$; and
(iv) if $n=4$, then $\ln _{2}(G)=4$ if and only if $G \in\left\{C_{4}, K_{4}, T\right\}$. Otherwise, $\ln _{2}(G)=3$ if and only if $G \in\left\{P_{4}, K_{1,3}, T^{\prime}\right\}$ where T and T^{\prime} are graphs shown in Figure 1.

Figure 1: Graphs T and T^{\prime}

Proof. From Theorem 1 and Remark 1, (i) and (ii) hold.
From (ii), (iii) holds.
(iv) Suppose $n=4$, then the possible connected isomorphic graphs are $K_{4}, P_{4}, C_{4}, K_{1,3}$, T and T^{\prime}. Thus, it can be verified that $\ln _{2}(G)=4$ if and only if $G \in\left\{K_{4}, C_{4}, T\right\}$ and $l n_{2}(G)=3$ if and only if $G \in\left\{P_{4}, K_{3}, T^{\prime}\right\}$.

Remark 4. [5] Every 2-locating set of a connected graph G is 2- resolving. Thus, $\operatorname{dim}_{2}(G) \leq \ln _{2}(G)$.

Theorem 2. Let a and b be any positive integers such that $2 \leq a \leq b$. Then there exists a connected graph G such that $\operatorname{dim}_{2}(G)=a$ and $\ln _{2}(G)=b$.

Proof. Suppose that $a=b$. Consider the graph $G=K_{a}$. Then $\operatorname{dim}_{2}(G)=\ln _{2}(G)=a$. Next, suppose that $a<b$. Consider the following cases:

Case 1: $a=2$

Let $m=b-a$ and consider the graph G in Figure 2. Let $S_{1}=\left\{x_{1}, x_{2}\right\}$ and $S_{2}=$ $S_{1} \cup\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Then S_{1} and S_{2} are $\operatorname{dim}_{2}-$ set and $l n_{2}-$ set of G, respectively. Hence, $\operatorname{dim}_{2}(G)=a$ and $\ln _{2}(G)=a+m=b$.

Figure 2: A graph G
Case 2: $a \geq 3$.
Let $m=b-a$ and consider the graph G^{\prime} in Figure 3. Let $S_{1}=\left\{y_{1}, y_{2}, \ldots, y_{a}\right\}$ and $S_{2}=S_{1} \cup\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Then S_{1} and S_{2} are $d i m_{2}$-set and $\ln _{2}$-set of G^{\prime}, respectively. Hence, $\operatorname{dim}_{2}\left(G^{\prime}\right)=a$ and $\ln _{2}\left(G^{\prime}\right)=a+m=b$.

Figure 3: A graph G^{\prime}.
Corollary 1. For each positive integer n, there exists a connected graph G such that $l n_{2}(G)-\operatorname{dim}_{2}(G)=n$, that is, $l n_{2}-d i m_{2}$ can be made arbitrarily large.

We now characterize the 2-locating sets in some graphs under some binary operations.

5. Join of Graphs

This section presents the characterizations on the 2-locating sets in the join of graphs.
Theorem 3. [6] Let G and H be nontrivial connected graphs. A proper subset S of $V(G+H)$ is a 2-resolving set in $G+H$ if and only if $S_{G}=V(G) \cap S$ and $S_{H}=V(H) \cap S$ are 2-locating sets in G and H, respectively, where S_{G} or S_{H} is (2,2)-locating set or S_{G} and S_{H} are (2,1)-locating sets.

Theorem 4. [6] Let G be a connected graph of order greater than 3 and let $K_{1}=\langle v\rangle$. Then $S \subseteq V\left(K_{1}+G\right)$ is a 2-resolving set of $K_{1}+G$ if and only if either $v \notin S$ and S is a (2,2)-locating set in G or $S=\{v\} \cup T$ is (2,1)-locating set in G.

Theorem 5. Let G and H be connected graphs. Then $S \subseteq V(G+H)$ is a 2-locating set in $G+H$ if and only if S is a 2-resolving set in $G+H$ where $S=S_{G} \cup S_{H}, S_{G} \subseteq V(G)$ and $S_{H} \subseteq V(H)$.

Proof. Suppose S is a 2-locating set in $G+H$. Let $p, q \in V(G+H)$. Consider $p, q \in V(G+H) \backslash S$ or $[p \in V(G+H) \backslash S$ or $q \in S]$. Since S is a 2-locating set, then $r_{G+H}(p / S)$ and $r_{G+H}(q / S)$ differ in at least 2 positions. By Definition of 2-resolving set and Remark $2, S$ is a 2 -resolving set.

For the converse, suppose S is a 2-resolving set in $G+H$. Let $S=S_{G} \cup S_{H}$ where $S_{G} \subseteq V(G)$ and $S_{H} \subseteq V(H)$. Let $p, q \in V(G+H) \backslash S$. Consider the following cases.
Case $1 p, q \in V(G) \backslash S_{G}$.
Since S is a 2-resolving set, $r_{G+H}(p / S)$ and $r_{G+H}(q / S)$ differ in at least 2 positions. By definition of $G+H, r_{G}\left(p / S_{G}\right)$ and $r_{G}\left(q / S_{G}\right)$ differ in at least 2 positions. Since $d_{G+H}(p, u)$ and $d_{G+H}(q, u)$ is either 0,1 or 2 for each $u \in V(G+H)$, there exist at least two vertices $x, y \in S_{G}$ such that $x, y \in N_{G}(p) \backslash N_{G}(q)$ or $x, y \in N_{G}(q) \backslash N_{G}(p)$ or $x \in N_{G}(p) \backslash N_{G}(q)$ and $y \in N_{G}(q) \backslash N_{G}(p)$. Hence,

$$
\begin{equation*}
\left|\left[\left(N_{G+H}(p) \backslash N_{G+H}(q)\right) \cap S\right] \cup\left[\left(N_{G+H}(q) \backslash N_{G+H}(p)\right) \cap S\right]\right| \geq 2 \tag{1}
\end{equation*}
$$

Case 2. $p, q \in V(H) \backslash S_{H}$
Proof is similar to Case 1.

Case 3. $p \in V(G) \backslash S_{G}$ and $q \in V(H) \backslash S_{H}$
Note that $r_{G+H}(p / S)=(2,2,2, \ldots, 1,1, \ldots, 1)$ and $r_{G+H}(q / S)=(1,1,1, \ldots, 2,2, \ldots, 2)$.
Then there exist $x \in S_{G} \backslash N_{G}(p)$ and $y \in S_{H} \backslash N_{H}(q)$ or $\exists w, r \in S_{G} \backslash N_{G}(p)$ or $w, r \in$ $S_{H} \backslash N_{H}(q)$. Hence, inequality (1) holds.

Suppose $p \in S$ and $q \in V(G+H) \backslash S$. Consider the following cases.
Case $1 p \in S_{G}$ and $q \in V(G) \backslash S_{G}$.
Since $r_{G+H}(p / S)$ and $r_{G+H}(q / S)$ differ in at least 2 positions, by definition of $G+H$, $r_{G}\left(p / S_{G}\right)$ and $r_{G}\left(q / S_{G}\right)$ differ in at least 2 positions, This implies that $\left(N_{G}(p) \backslash N_{G}(q)\right) \cap$ $S_{G} \neq \varnothing$ or $\left(N_{G}(q) \backslash N_{G}(p)\right) \cap S_{G} \neq \varnothing$.
Hence, $\left(N_{G+H}(p) \backslash N_{G+H}(q)\right) \cap S \neq \varnothing$ or $\left(N_{G+H}(q) \backslash N_{G+H}(p)\right) \cap S \neq \varnothing$.
Case 2. $p \in S_{G}$ and $q \in V(H) \backslash S_{H}$
Note that $r_{G+H}(p / S)=(\ldots, 0, \ldots, 1,1, \ldots, 1)$ and $r_{G+H}(q / S)=(1,1, \ldots, 0, \ldots)$. Hence, there exist at least one vertex $x \in S_{G} \backslash N_{G}(p)$ or there exist at least one vertex $y \in$ $S_{H} \backslash N_{G}(q)$.
Thus,
$\left(N_{G+H}(p) \backslash N_{G+H}(q)\right) \cap S \neq \varnothing$ or $\left(N_{G+H}(q) \backslash N_{G+H}(p)\right) \cap S \neq \varnothing$.
The proof that $p \in V(G+H) \backslash S$ and $q \in S$ is similar.
Therefore, S is a 2-locating set of $G+H$.
The following corollaries follow immediately from Theorem 5, Theorem 4, and Theorem 3.

Corollary 2. Let G be a nontrivial connected graph and $K_{1}=\langle v\rangle$. Then $S \subseteq V\left(K_{1}+G\right)$ is a 2-locating set in $K_{1}+G$ if and only if it satisfies the following conditions:
(i) $v \notin S$ and S is $(2,2)$-locating set of G.
(ii) $S=\{v\} \cup T$ and T is (2,1)-locating set in G.

Corollary 3. Let G be any nontrivial connected graph. Then

$$
\ln _{2}\left(K_{1}+G\right)=\min \left\{\ln _{(2,2)}(G), \ln _{(2,1)}(G)+1\right\}
$$

Corollary 4. Let G and H be nontrivial connected graphs. A set $S \subseteq V(G+H)$ is a 2locating set in $G+H$ if and only if $S=S_{G} \cup S_{H}$ where $S_{G}=V(G) \cap S$ and $S_{H}=V(H) \cap S$ are 2-locating sets of G and H, respectively, where S_{G} or S_{H} is a (2,2)-locating set or S_{G} and S_{H} are $(2,1)$-locating sets.

Corollary 5. Let G and H be nontrivial connected graphs. Then

$$
\begin{aligned}
\ln _{2}(G+H)=\min \{ & \ln _{(2,2)}(G)+\ln _{2}(H), \ln _{2}(G)+\ln _{(2,2)}(H), \ln _{(2,1)}(G) \\
& \left.+\ln _{(2,1)}(H)\right\}
\end{aligned}
$$

6. Corona of Graphs

This section presents the characterizations on the 2-locating sets in the corona of graphs.

Theorem 6. Let G and H be nontrivial connected graphs with $\Delta(H) \leq|V(H)|-3$. A set $S \subseteq V(G \circ H)$ is a 2-locating set of $G \circ H$ if and only if $S=A \cup\left(\bigcup_{v \in V(G)} S_{v}\right)$ where $A \subseteq V(G)$ and $V\left(H^{v}\right) \cap S \neq \varnothing$ for each $v \in V(G)$ and the following are satisfied
(i) S_{v} is a 2-locating set of H^{v} for each $v \in V(G)$ and S_{u} or S_{v} is total 2-dominating for $u, v \in V(G) \backslash A$ or otherwise, S_{u} and S_{v} are total dominating;
(ii) for each $v \in V(G) \backslash A, S_{v}$ is a (2,2)-locating set of H^{v} with $N_{G}(v) \cap A=\varnothing$ and S_{v} is (2,1)-locating set, otherwise; and
(iii) for each $v \in A, S_{v}$ is a (2,1)-locating set of H^{v} if $N_{G}(v) \cap A=\varnothing$.

Proof. Suppose $S \subseteq V(G \circ H)$ is a 2-locating set in $G \circ H$. Let $A=V(G) \cap S$, $S_{v}=S \cap V\left(H^{v}\right)$ for all $v \in V(G)$. Then $S=A \cup\left(\underset{v \in V(G)}{\bigcup} S_{v}\right)$ where $A \subseteq V(G)$ and $S_{v} \subseteq V\left(H^{v}\right)$. Now, suppose $S_{v}=\varnothing$ for some $v \in V(G)$. Let $x, y \in V\left(H^{v}\right) \backslash S_{v}$. Then $\left|\left[\left(N_{H^{v}}(x) \backslash N_{H^{v}}(y)\right) \cap S_{v}\right] \cup\left[\left(N_{H^{v}}(y) \backslash N_{H^{v}}(x)\right) \cap S_{v}\right]\right|=0$, for all $x, y \in V\left(H^{v}\right) \backslash S_{v}$ with $x \neq y$, a contradiction to the assumption of S. Thus, $S_{v} \neq \varnothing$ for all $v \in V(G \circ H)$.

To prove (i), let $x, y \in V\left(H^{v}\right)$ where $v \in V(G)$. Then $x, y \in V(G \circ H)$. Since $N_{H^{v}}(x)=$ $N_{G \circ H}(x) \backslash\{v\}$ and $N_{H^{v}}(y)=N_{G \circ H}(y) \backslash\{v\}$, and S is a 2-locating set, this implies that S_{v} is also 2-locating set in H^{v}. Next, suppose S_{u} or S_{v} is not a total dominating, say S_{v} is not a total dominating set for some $v \in V(G) \backslash A$. Let $x \in V\left(H^{u}\right) \backslash S_{u}$ and $y \in V\left(H^{v}\right) \backslash S_{v}$. Since S is a 2-locating set, there exist $w, z \in\left(N_{H^{v}}(x) \backslash N_{H^{v}}(y)\right) \cap S_{u}$ implying that S_{u} is a total 2 -dominating set.

To prove (ii), let $v \in V(G) \backslash A$. Suppose $N_{G}(v) \cap A=\varnothing$. Since $S_{v} \subseteq N_{G \circ H}(v)$ and S is 2-locating, there exist at least two vertices $x, y \in S_{v} \backslash N_{H^{v}}(p)$ for each $p \in V\left(H^{v}\right)$. Thus, S_{v} is (2,2)- locating set. On the other hand, if $N_{G}(v) \cap A \neq \varnothing$, there exists at least one vertex $z \in S_{v} \backslash N_{H^{v}}(p)$. This implies that S_{v} is (2,1) -locating.

To prove (iii), let $v \in A$ and $N_{G}(v) \cap A=\varnothing$. Since S_{v} is a 2-locating set, there exists $r \in S_{v} \backslash N_{H^{v}}(p)$ for every $p \in V\left(H^{v}\right)$. Thus, S_{v} is a (2,1)-locating set in H^{v}.

For the converse, suppose S is a set as described and satisfies the given conditions. Let $p, q \in V(G \circ H)$ with $p \neq q$ and let $u, v \in V(G)$ such that $p \in V\left(u+H^{u}\right)$ and $q \in V\left(v+H^{v}\right)$. Suppose $p, q \in V(G \circ H) \backslash S$. Consider the following cases:

Case 1. $u=v$
Subcase $1.1 p, q \in V\left(H^{u}\right) \backslash S_{u}$
Since S_{u} is a 2-locating set of $H^{u}, N_{H^{u}}(p)=N_{G \circ H}(p)$ and $N_{H^{u}}(q)=N_{G \circ H}(q)$. Then

$$
\left|\left[\left(N_{G \circ H}(q) \backslash N_{G \circ H}(p)\right) \cap S\right] \cup\left[\left(N_{G \circ H}(p) \backslash N_{G \circ H}(q)\right) \cap S\right]\right| \geq 2
$$

and for all $r \in S_{u},\left(N_{G \circ H}(r) \backslash N_{G \circ H}(q)\right) \cap S \neq \varnothing$. Thus, S is a 2-locating set.
Subcase $1.2 p=v$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
If $N_{G}(v) \cap A=\varnothing$, by (ii) S_{v} is a (2,2)-locating set. Hence, there exist at least two distinct vertices $x, y \in V\left(H^{v}\right) \backslash N_{H^{v}}(q)$. Thus, $x, y \in N_{G \circ H(p)} \backslash N_{G \circ H}(q)$. If $N_{G}(v) \cap A \neq \varnothing$, then there exists $z \in\left(N_{G \circ H}(v) \cap A\right) \backslash N_{G \circ H}(q)$. Since $\gamma(H) \neq 1$, there exists $w \in S_{v} \backslash N_{H^{v}}(q)$. Hence, $w, z \in N_{G \circ H}(p) \backslash N_{G \circ H}(q) \cap S$. Thus, $\left|\left(N_{G \circ H}(p) \backslash N_{G \circ H}(q) \cap S\right)\right| \geq 2$.
Subcase $1.3 q=v$ and $p \in V\left(H^{u}\right) \backslash S_{u}$
The proof is similar to the proof of Subcase 1.2.
Case 2. $u \neq v$
Subcase $2.1 p \in V\left(H^{u}\right) \backslash S_{u}$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
If $u, v \in A$, then we are done. Suppose $u, v \notin A$. Since S_{u} and S_{v} are total dominating, there exist $x \quad \in \quad\left(N_{H^{u}}(p) \quad \cap \quad S_{u}\right) \quad \backslash \quad N_{H^{v}}(q) \quad$ and $y \in\left(N_{H^{v}}(q) \cap S_{v}\right) \backslash N_{H^{u}}(p)$.
Subcase $2.2 p=u$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
Since $p \notin A, S_{u}$ is a total dominating set of H^{u}. Hence, $\left|S_{u}\right| \geq 2$. Thus, $\mid\left(N_{G \circ H}(p) \backslash\right.$ $\left.N_{G \circ H}(q)\right) \cap S \mid \geq 2$.

Suppose $p \in S$ and $q \in V(G \circ H) \backslash S$. Consider the following cases
Case $1 u=v$
Subcase $1.1 p \in S_{v}$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
Since S_{v} is a 2-locating, then $\left(N_{G \circ H}(p) \backslash N_{G \circ H}(q)\right) \cap S \neq \varnothing$.
Subcase $1.2 u=p$ and $q \in V\left(H^{v}\right) \backslash S_{v}$. Then $u \in A$.
If $N_{G}(p) \cap A \neq \varnothing$, then we are done. Suppose $N_{G}(p) \cap A=\varnothing$. Then by (iii), S_{v} is a (2,1)-locating. Thus, $\left(N_{G \circ H}(p) \backslash N_{G \circ H}(q)\right) \cap S \neq \varnothing$.

Case $2 u \neq v$
Subcase $2.1 p \in S_{u}$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
If $u \in A$ or $v \in A$, then we are done. If $u, v \notin A$, then by (i) S_{u} and S_{v} are total dominating. Hence, there exist $x \in\left(N_{G \circ H}(p) \cap S\right) \backslash N_{G \circ H}(q)$ and $y \in\left(N_{G \circ H}(q) \cap S\right) \backslash N_{G \circ H}(p)$.
Subcase $2.2 p=u$ and $q \in V\left(H^{v}\right) \backslash S_{v}$
Since $S_{u} \neq \varnothing,\left(N_{G \circ H}(p) \cap S\right) \backslash N_{G \circ H}(q) \neq \varnothing$.
Subcase $2.3 p \in S_{u}$ and $q=v$
Similar to the proof of Subcase 2.2.
Accordingly, S is a 2-locating set of $G \circ H$.
Corollary 6. Let G of order n and H be nontrivial connected graphs with $\gamma(H) \neq 1$. Then
(i) $\ln _{2}(G \circ H) \leq \gamma_{t}(G)+n \cdot \ln _{2}(H)$; and
(ii) If $\ln _{2}(H)=\ln _{(2,1)}(H)=\ln _{(2,2)}(H)$. Then $\ln _{2}(G \circ H)=n \cdot \ln _{2}(H)$.

Proof. (i.) Let $S=V(G \circ H)$ be a 2-locating set in $G \circ H$. Let A be a γ_{t}-set of G and S_{v} be an $\ln _{2}$-set of H^{v}. Then $S=A \cup\left(\underset{v \in V(G)}{\bigcup} S_{v}\right)$ is a 2-locating set of $G \circ H$. Thus,

$$
\begin{aligned}
\ln _{2}(G \circ H) & \leq|S| \\
& =|A|+\sum_{v \in V(G)}\left|S_{v}\right| \\
& =\gamma_{t}(G)+|V(G)|\left(\ln _{2}(H)\right)=\gamma_{t}(G)+n \cdot \ln (H) .
\end{aligned}
$$

(ii.) Let $A=\varnothing$ and S_{v} be an $\ln _{2}$-set of H^{v}. Then $S=A \cup\left(\underset{v \in V(G)}{ } S_{v}\right)$ is a 2-locating set of $G \circ H$. Thus,

$$
\begin{aligned}
\ln _{2}(G \circ H) & \leq|S| \\
& =\sum_{v \in V(G)}\left|S_{v}\right| \\
& =|V(G)| l n_{2}(H)=n \cdot \ln _{2}(H) .
\end{aligned}
$$

Next, let S_{0} be an $l n_{2}$-set in $G \circ H$. Then by Theorem 6, $S_{0}=A_{0} \cup\left(\underset{v \in V(G)}{ } S_{v}\right)$ where $A_{0} \subseteq V(G)$ and S_{v} is a 2-locating set of H^{v}, for all $v \in V(G)$. Thus,

$$
\begin{aligned}
\ln _{2}(G \circ H) & =\left|S_{0}\right| \\
& =\left|A_{0}\right|+\left|\bigcup_{v \in V(G)} S_{v}\right| \\
& \geq \sum_{v \in V(G)}\left|S_{v}\right| \\
& \geq n \cdot \ln _{2}(H)
\end{aligned}
$$

Thus, equality holds.

7. Edge Corona of Graphs

This section presents characterizations on the 2-locating sets in the edge corona of graphs.

Theorem 7. Let G and H be nontrivial connected graphs where $G \neq P_{2}$ and $\Delta(H) \leq|V(H)|-3$. A set $C \subseteq V(G \diamond H)$ is a 2-locating set of $G \diamond H$ if and only if C is a 2-resolving set of $G \diamond H$.

Proof. Let C be a 2-locating set of $G \diamond H$. By Remark 3, C is a 2 -resolving set of $G \diamond H$.

Conversely, suppose C is a 2-resolving set of $G \diamond H$. Let $a, b \in V\left(H^{u v}\right) \backslash S_{u v}$ where $a \neq b$ or $\left[a \in S_{u v}\right.$ and $\left.b \notin S_{u v}\right]$. Since C is a 2-resolving set in $G \diamond H, r_{G \diamond H}(a / C)$ and $r_{G \diamond H}(b / C)$ differ in at least 2 positions. Since $N_{G \diamond H}(a)=N_{H^{u v}}(a) \cup\{u, v\}$ and $N_{G \diamond H}(b)=$ $N_{H^{u v}}(b) \cup\{u, v\}, r_{H^{u v}}\left(a / S_{u v}\right)$ and $r_{H^{u v}}\left(b / S_{u v}\right)$ must differ in at least 2 positions. By definition of $G \diamond H$, there exist at least two vertices say $p, q \in V\left(H^{u v}\right) \cap S_{u v}$ such that either $p, q \in N_{H^{u v}}(a) \backslash N_{H^{u v}}(b)$ or $p, q \in N_{H^{u v}}(b) \backslash N_{H^{u v}}(a)$ or $p \in N_{H^{u v}}(a) \backslash N_{H^{u v}}(b)$ and $q \in N_{H^{u v}}(b) \backslash N_{H^{u v}}(a)$. Similarly, if $a \in S_{u v}$ and $b \in V\left(H^{u v}\right) \backslash S_{u v}$, then there exists a vertex $s \in V\left(H^{u v}\right) \cap S_{u v}$ such that $s \in N_{H^{u v}}(a) \backslash N_{H^{u v}}(b)$ or $s \in N_{H^{u v}}(b) \backslash N_{H^{u v}}(a)$. Thus, it follows that $S_{u v}$ is a 2-locating set of $H^{u v}$.

Accordingly, C is a 2-locating set in $G \diamond H$.
Theorem 8. Let G and H be any nontrivial connected graphs where $G \neq P_{2}$ and $\Delta(H) \leq|V(H)|-3$. A set $C \subseteq V(G \diamond H)$ is a 2-locating set of $G \diamond H$ if and only if

$$
C=A \cup\left(\bigcup_{u v \in E(G)} S_{u v}\right)
$$

where
(i) $A \subseteq V(G), S_{u v} \subseteq V\left(H^{u v}\right)$ and $V\left(H^{u v}\right) \cap C \neq \varnothing$;
(ii) $S_{u v} \subseteq V\left(H^{u v}\right)$ is a 2-locating set of $H^{u v}$ for all $u v \in E(G)$ or if $u v$ is a pendant edge, then $S_{u v}$ is a $(2,1)$-locating set of $H^{u v}$ whenever $l(\langle\{u, v\}\rangle) \subseteq A$ and $S_{u v}$ is a (2,2)-locating set of $H^{u v}$ otherwise.

Proof. Suppose that $C \subseteq V(G \diamond H)$ is a 2-locating set in $G \diamond H$. Let $A=V(G) \cap C$ and $S_{u v}=C \cap V\left(H^{u v}\right)$ for all $u v \in E(G)$. Then $C=A \cup\left(\underset{u v \in E(G)}{\bigcup} S_{u v}\right)$ where $A \subseteq V(G)$ and $S_{u v} \subseteq V\left(H^{u v}\right)$. Now, suppose that $S_{u v}=\varnothing$ for some $u v \in E(G)$. Let $x, y \in V\left(H^{u v}\right) \backslash S_{u v}$. Then $\left|\left[\left(N_{H^{u v}}(x) \backslash N_{H^{u v}}(y)\right) \cap S_{u v}\right] \cup\left[\left(N_{H^{u v}}(y) \backslash N_{H^{u v}}(x)\right) \cap S_{u v}\right]\right|=0$, a contradiction to the assumption of C. Thus, $S_{u v} \neq \varnothing$ for all $u v \in E(G)$. Next, we claim that $S_{u v}$ is a 2-locating set in $H^{u v}$ for each $u v \in E(G)$. Let $a, b \in V\left(H^{u v}\right)$ where $u v \in E(G)$. Then $a, b \in V(G \diamond H)$. Since $N_{H^{u v}}(a)=N_{G \diamond H}(a) \backslash\{u, v\}$ and $N_{H^{u v}}(b)=N_{G \diamond H}(b) \backslash\{u, v\}$ and C is a 2-locating set, this implies that $S_{u v}$ is also a 2-locating set in $H^{u v}$. Next, suppose that $u v$ is a pendant edge and suppose u is an end-vertex. Then $\langle u\rangle+H^{u v}$ is a subgraph of $G \diamond H$. Since $S_{u v}=C \cap V\left(H^{u v}\right) \subseteq C$ and C is a 2-locating set, it follows by Corollary 2, $S_{u v}$ is a (2,1)-locating set of $H^{u v}$ whenever $u \in C$ and $S_{u v}$ is a (2,2)-locating set of $H^{u v}$, otherwise.

Conversely, let C be the set as described and satisfies the given conditions. Let $x, y \in V(G \diamond H)$ with $x \neq y$. Then it can be easily verified that $r_{G \diamond H}(x / C)$ and $r_{G \diamond H}(y / C)$ differ in at least two positions for all $x, y \in V(G)$ or $x \in V\left(H^{u v}\right)$ and $y \in V(G)$ for all edges $u v \in E(G)$ or $x \in V\left(H^{p q}\right)$ and $y \in V\left(H^{a b}\right)$, for some $p q, a b \in E(G)$.
Hence, consider only the following cases:

Case 1: $x, y \in V\left(H^{u v}\right) \backslash S_{u v}$ or $x \in V\left(H^{u v}\right) \backslash S_{u v}$ and $y \in S_{u v}$ for some edge $u v \in E(G)$. Now, since $S_{u v}$ is 2-locating set, $r_{H^{u v}}\left(x / S_{u v}\right)$ and $r_{H^{u v}}\left(x / S_{u v}\right)$ differ in at least two positions. Then by definition of $G \diamond H, r_{G \diamond H}(x / C)$ and $r_{G \diamond H}(y / C)$ differ in at least two positions.
Case 2: $x \in V\left(H^{u v}\right) \backslash S_{u v}$ or $x \in S_{u v}$ and $y=u$ for some pendant edge $u v \in E(G)$ and u is an endvertex
Since $S_{u v}$ is a (2,2)-locating set, there exists $a, b \in S_{u v} \backslash N_{H^{u v}}(x)$ but $a, b \in N_{G \circ H}(y)$. Thus, it follows that $r_{G \diamond H}(x / C)$ and $r_{G \diamond H}(y / C)$ differ at $a^{t h}$ and $b^{t h}$ positions. Therefore, C is a 2-resolving set in $G \diamond H$. By Theorem 7, C is a 2-locating set in G.

Corollary 7. Let G and H be any nontrivial connected graphs where $G \neq P_{2}$ with $|E(G)|=m$ and $\Delta(H) \leq|V(H)|-3$. Then the following statements hold.
(i) If G is a graph with no pendant edges, then $\ln _{2}(G \diamond H)=m \cdot \ln _{2}(H)$.
(ii) If G is a graph with $k \geq 1$ pendant edges, then $\ln _{2}(G \diamond H)=\min \left\{(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k,(m-k) \ln _{2}(H)\right.$
$\left.+k \cdot \ln _{(2,2)}(H)\right\}$ and $\ln _{2}(G \diamond H)=(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H)$ whenever $\ln _{(2,2)}(H)=\ln _{(2,1)}(H)$.

Proof. (i) Suppose G is a graph with no pendant edges. Now, set $A=\varnothing$ and let $S_{u v}$ be an $l n_{2}-s e t$ of $H^{u v}$ for all $u v \in E(G)$. Then $C=A \cup\left(\underset{u v \in E(G)}{\bigcup} S_{u v}\right)$ is a 2-locating set in $G \diamond H$ by Theorem 8. Hence,

$$
\ln _{2}(G \diamond H) \leq|C|=|A|+|E(G)|\left|S_{u v}\right|=m\left(\ln _{2}(H)\right) .
$$

Next, let C_{0} be an $l n_{2}-$ set in $G \diamond H$. Then by Theorem $8, C_{0}=A_{0} \cup\left(\underset{u v \in E(G)}{\bigcup} S_{u v}\right)$ where $A_{0} \subseteq V(G)$ and $S_{u v}$ is a 2-locating set of $H^{u v}$ for all $u v \in E(G)$. Thus,

$$
\begin{aligned}
\ln _{2}(G \diamond H) & =\left|C_{0}\right| \\
& =\left|A_{0}\right|+\left|\bigcup_{u v \in E(G)} S_{u v}\right| \\
& \geq \sum_{u v \in E(G)}\left|S_{u v}\right| \\
& \geq m \cdot \ln _{2}(H) .
\end{aligned}
$$

Therefore, $\ln _{2}(G \diamond H)=m \cdot \ln _{2}(H)$.
(ii) Let G be a graph with pendant edges and $A \subseteq V(G)$ consists of pendant edges in a graph G, that is $|A|=k$. By Theorem $8, S_{u v}$ is a 2-locating set of $H^{u v}$ for all $u v \in E(G)$ and $S_{u v}$ is a (2,1)-locating set of $H^{u v}$ whenever $l(u v) \subseteq A$ and $S_{u v}$ is a (2,2)-locating set
of $H^{u v}$, otherwise. If $S_{u v}$ is a $(2,2)$-locating sets in $H^{u v}$, then

$$
(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H) \leq|C|=\ln _{2}(G \diamond H)
$$

If $S_{u v}$ is a $(2,2)$-locating sets in $H^{u v}$, then

$$
(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k \leq|C|=\ln _{2}(G \diamond H)
$$

Thus,

$$
\begin{gathered}
\ln _{2}(G \diamond H) \geq \min \left\{(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k,\right. \\
\left.(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H)\right\}
\end{gathered}
$$

Let $(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k \leq(m-k) \ln _{2}(H)+k \cdot \ln n_{(2,2)}(H)$. Let $S_{u v}$ be the minimum (2,1)-locating set in $H^{u v}$ whenever $l(u v) \subseteq A$ and $S_{u v}$ be the minimum (2,2)-locating set in $H^{u v}$, otherwise. Then, C is a 2-locating set in $G \diamond H$ by Corollary 7. Hence, $\ln _{2}(G \diamond H) \leq|C|=(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k$. Similarly, if $(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H) \leq(m-k) \ln _{2}(H)+k \cdot \ln (2,1)(H)+k$. Then $\ln _{2}(G \diamond H) \leq|C|=(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H)$. Thus,

$$
\begin{aligned}
\ln _{2}(G \diamond H) \leq & \min \left\{(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k,\right. \\
& \left.(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H)\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\ln _{2}(G \diamond H)=\min \left\{(m-k) \ln _{2}(H)+k \cdot \ln _{(2,1)}(H)+k,\right. \\
\left.(m-k) \ln _{2}(H)+k \cdot \ln _{(2,2)}(H)\right\}
\end{gathered}
$$

8. Lexicographic Product of Graphs

This section presents characterizations on the 2-locating sets in the lexicographic product of graphs.

Theorem 9. [6] Let G and H be nontrivial connected graphs. Then $W=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$, is a 2-resolving set in $G[H]$ if and only if
(i) $S=V(G)$;
(ii) T_{x} is a 2-locating set in H for every $x \in V(G)$;
(iii) T_{x} and T_{y} are (2,1)-locating sets or one of T_{x} and T_{y} is a(2,2)-locating set in H whenever $x, y \in E Q_{1}(G)$; and
(iv) T_{x} and T_{y} are (2-locating)dominating sets in H or one of T_{x} and T_{y} is a 2-dominating set whenever $x, y \in E Q_{2}(G)$.

Theorem 10. Let G and H be nontrivial connected graphs with $\Delta(H) \leq|V(H)|-3$. Then $W=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$, is a 2-locating set in $G[H]$ if and only if it is a 2 -resolving set and it satisfies the following:
(i) $S=V(G)$;
(ii) T_{x} is a 2-locating set in H for every $x \in V(G)$;
(iii) T_{x} and T_{y} is a (2,1)-locating set or one of T_{x} and T_{y} is a (2,2)-locating set in H whenever $x, y \in V(G)$ with $N_{G}[x]=N_{G}[y]$; and
(iv) T_{x} and T_{y} are (2 - locating) dominating sets in H or one of T_{x} and T_{y} is a 2dominating set whenever $x, y \in V(G)$ with $d_{G}(x, y)=2$ and $N_{G}(x)=N_{G}(y)$.

Proof. Suppose $W=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ is a 2-locating set in $G[H]$. Suppose there exists $x \in V(G) \backslash S$. Pick $a, b \in V(H)$, where $a \neq b$. Then $(x, a),(x, b) \notin W$ and $(x, a) \neq(x, b)$. Since $x \notin S,(x, r) \in V(G[H]) \backslash W$. Note that $(z, c) \in N_{G[H]}(x, a) \cup N_{G[H]}(x, b)$ for all $z \in N_{G}(x)$. Thus, $N_{G[H]}(x, a) \backslash N_{G[H]}(x, b)=\varnothing$ and $N_{G[H]}(x, b) \backslash N_{G[H]}(x, a)=\varnothing$. This implies that W is not a 2-locating set of $G[H]$, a contradiction to the assumption on W. Therefore, $S=V(G)$.

To prove (ii), let $x \in V(G)$ and $p, q \in V(H)$ where $p \neq q$. Then $(x, p) \neq(x, q)$. If $p, q \notin T_{x}$ or $\left[p \in T_{x}\right.$ and $\left.q \notin T_{x}\right]$, then $(x, p),(x, q) \notin W$ or $[(x, p) \in W$ and $(x, q) \notin W]$. Since W is a 2-locating set in $G[H]$, by definition of $G[H]$ there exist at least two vertices $(x, r),(x, s) \in V(H) \cap T_{x}$ such that either $(x, r),(x, s) \in N_{H}((x, p)) \backslash N_{H}((x, q))$ or $(x, r),(x, s) \in N_{H}((x, q)) \backslash N_{H}((x, p))$ or $(x, r) \in N_{H}((x, p)) \backslash N_{H}((x, q))$ and $(x, s) \in$ $N_{H}((x, q)) \backslash N_{H}((x, p))$. Similarly, if $(x, p) \in W$ and $(x, q) \notin W$, then there exists a vertex $t \in V(H) \cap T_{x}$ such that $(x, t) \in N_{H}((x, p)) \backslash N_{H}((x, q))$ or $(x, t) \in N_{H}((x, q)) \backslash N_{H}((x, p))$. Therefore, it follows that T_{x} is a 2-locating set of H for every $x \in V(G)$. Thus, (ii) follows.

To prove (iii), let $x, y \in V(G)$ with $N_{G}[x]=N_{G}[y]$. Let $a, b \in V(H), a \neq b$. Since W is a 2-locating set, it is not possible that $N_{H}(a) \cap T_{x}=T_{x}$ and $N_{H}(b) \cap T_{y}=T_{y}$. If T_{x} or T_{y} is (2,2)-locating, then we are done. Otherwise, T_{x} and T_{y} are (2,1)-locating.

To prove (iv), let $x, y \in V(G)$ where $d_{G}(x, y)=2$ and $N_{G}(x)=N_{G}(y)$. Let $a, b \in$ $V(H), a \neq b$. Suppose one of T_{x} and T_{y}, say T_{x} is not a dominating set in H. Pick $a \in V(H) \backslash N_{H}\left[T_{x}\right]$ and let $b \in V(H) \backslash T_{y}$. Since $d_{G[H]}((x, a),(y, b))=2$, for all (y, b), it follows that $\left|N_{H}(b) \cap T_{y}\right| \geq 2$, i.e., T_{y} is a 2 -dominating set.

Conversely, let W be the set as described and satisfies the given conditions. Let $(x, a),(y, b) \in V(G[H]),(x, a) \neq(y, b)$. Consider the following cases.
Case 1. $x=y$
Suppose $(x, a),(y, b) \notin W$. Then $a \neq b$ and $a, b \notin T_{x}=T_{y}$. By (ii), T_{x} is a 2-locating set. On the other hand, if $(x, a) \in W,(y, b) \notin W$, then $a \in T_{x}, b \notin T_{y}$. Since T_{x} is a 2-locating set, there exists $(x, s) \in V(H) \cap T_{x}$ such that $(x, s) \in N_{H}((x, a)) \backslash N_{H}((y, b))$ or $(x, s) \in N_{H}((y, b)) \backslash N_{H}((x, a))$. Thus, it follows that W is a 2-locating set of $G[H]$.

Case 2. $x \neq y$.
Subcase $2.1 x y \in E(G)$.
If $N_{G}[x] \neq N_{G}[y]$, then we are done. Suppose $N_{G}[x]=N_{G}[y]$, then by (iii), T_{x} and T_{y} are (2,1)-locating sets in H or one of T_{x} and T_{y} is a (2,2)-locating set in H.
Subcase $2.2 x y \notin E(G)$
If $d_{G}(x, y)>2$, then we are done. Suppose $d_{G}(x, y)=2$ and $N_{G}(x)=N_{G}(y)$. Suppose $(x, a),(y, b) \notin W$. Then $a \notin T_{x}$ and $y \notin T_{y}$. If T_{x} and T_{y} are both dominating, then there exist at least two vertices $(x, r),(x, s) \in V(H) \cap T_{x}$ such that either $(x, r),(x, s) \in N_{H}((x, p)) \backslash N_{H}((x, q))$ or $(x, r),(x, s) \in N_{H}((x, q)) \backslash N_{H}((x, p))$ or $(x, r) \in$ $N_{H}((x, p)) \backslash N_{H}((x, q))$ and $(x, s) \in N_{H}((x, q)) \backslash N_{H}((x, p))$. If one, say T_{y}, is a 2-dominating set, then there exist at least two vertices $r, s \in V(H) \cap T_{x}$ such that either $(x, r),(x, s) \in$ $N_{H}((x, p)) \backslash N_{H}((x, q))$ or $(x, r),(x, s) \in N_{H}((x, q)) \backslash N_{H}((x, p))$ or $(x, r) \in N_{H}((x, p)) \backslash N_{H}((x, q))$ and $(x, s) \in N_{H}((x, q)) \backslash N_{H}((x, p))$. Similarly, if $(x, a) \in W,(y, b) \notin W$, there exists $(x, s) \in V(H) \cap T_{x}$ such that $(x, s) \in N_{H}((x, a)) \backslash N_{H}((y, b))$ or $(x, s) \in N_{H}((y, b)) \backslash N_{H}((x, a))$.

Accordingly, W is a 2 -locating set of $G[H]$.
Corollary 8. Let G and H be nontrivial connected graphs with $\Delta(H) \leq|V(H)|-3$. If G is a totally point determining graph, then

$$
\ln _{2}(G[H])=|V(G)| \cdot \ln _{2}(H) .
$$

Proof. Supppose that G is totally point determining graph. Let $S=V(G)$ and let T_{x} be an $l n_{2}$-set of H for each $x \in S$. By Theorem 10, $W=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ is a 2-locating set of $G[H]$. It follows that

$$
\ln _{2}(G[H]) \leq|W|=|V(G)|\left|T_{x}\right|=|V(G)| \cdot \ln _{2}(H) .
$$

Now, if $W_{0}=\bigcup_{x \in S_{0}}\left[\{x\} \times T_{x}\right]$ is an $\ln _{2}$-set of $G[H]$, then $S_{0}=V(G)$ and T_{x} is a 2-locating set of H for each $x \in V(G)$ by Theorem 10. Hence,

$$
\ln _{2}(G[H])=\left|W_{0}\right|=|V(G)|\left|T_{x}\right| \geq|V(G)| \cdot \ln _{2}(H) .
$$

Therefore, $\ln _{2}(G[H])=|V(G)| \cdot \ln _{2}(H)$.

9. Conclusion

It is shown that the difference of the 2 -metric dimension and 2-locating number can be made arbitrarily large. 2-locating sets in the join, corona, edge corona, and lexicographic product of two graphs have been characterized. From these characterizations, 2-locating numbers have been determined. This new invariant can also be studied for graphs under other binary operations.

Acknowledgements

The authors would like to thank the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)Philippines, MSU-Iligan Institute of Technology.

References

[1] R. Bailey, J. Cáceres, J. Garijo, A. González, A. Márquez, K. Meagher, and M.L. Puertas. Resolving sets for johnson and kneser graphs. European Journal of Combinatorics, 34:736-751, 2013.
[2] R. Bailey and I. Yero. Error-correcting codes from k-resolving sets. Discussiones Mathematicae, Graph Theory, 39:341-355, 2019.
[3] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
[4] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[5] J. Cabaro and H. Rara. On 2-Resolving Sets in the Join and Corona of Graphs. European Journal of Pure and Applied Mathematics, 14(3):773-782, 2021.
[6] J. Cabaro and H. Rara. On 2-Resolving Dominating Sets in the Join and Corona and Lexicographic Product of Graphs. European Journal of Pure and Applied Mathematics, 15(3):1201-1210, 2022.
[7] S. Canoy Jr and G. Malacas. Locating Dominating Sets in Graphs. Applied Mathematical Sciences, 8(88):4381-4388, 2014.
[8] S. Canoy Jr and G. Malacas. Locating Sets in a Graph. Applied Mathematical Sciences, 9:2957-2964, 2015.
[9] A. Mahistrado and H. Rara. On 2-Resolving Hop Dominating Sets in the Join and Corona and Lexicographic Product of Graphs. European Journal of Pure and Applied Mathematics, 15(4):1982-1997, 2022.
[10] A. Mahistrado and H. Rara. Outer-Connected 2-Resolving Hop Domination in Graphs. European Journal of Pure and Applied Mathematics, 16(2):1180-1195, 2023.
[11] A. Mahistrado and H. Rara. Restrained 2-Resolving Hop Domination in Graphs. European Journal of Pure and Applied Mathematics, 16(1):286-303, 2023.
[12] D. Managbanag and H. Rara. Forcing 2-Metric Dimension in the Join and Corona of Graphs. European Journal of Pure and Applied Mathematics, 16(2):1068-1083, 2023.
[13] J. S. Mohamad and H. Rara. On Resolving Hop Domination in Graphs. European Journal of Pure and Applied Mathematics, 14(3):1015-1023, 2021.
[14] J. S. Mohamad and H. Rara. 1-Movable Resolving Hop Domination in Graphs. European Journal of Pure and Applied Mathematics, 16(1):418-429, 2023.
[15] J. S. Mohamad and H. Rara. Strong Resolving Hop Domination in Graphs. European Journal of Pure and Applied Mathematics, 16(1):131-143, 2023.
[16] B. Omamalin, S. Canoy, and H. Rara. Locating Total Dominating Sets in the Join, Corona and Composition of Graphs. Applied Mathematical Scciences, 8(48):23632374, 2014.
[17] V. Saenpholphat and P. Zhang. On connected resolvability of graphs. Australian Journal of Combinatorics, 28:26-37, 2003.
[18] S. Seo and P. Slater. Open Neighborhood Locating-Dominating Sets. Australian Journal of Combinatorics, 46:109-119, 2010.
[19] P. Slater. Dominating and Reference Sets in a Graph. Journal of Mathematics and Physical Science, 22(4):445-455.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4821
 Email addresses: gymaima.canete@g.msuiit.edu.ph (G. Canete),
 helen.rara@g.msuiit.edu.ph (H. Rara),
 angelicamae.mahistrado@g.msuiit.edu.ph (A.M. Mahistrado)
 https://www.ejpam.com (C) 2023 EJPAM All rights reserved.

