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Abstract. In this paper, the Hurwitz-Lerch poly-Cauchy and poly-Bernoulli polynomials are de-
fined using polylogarithm factorial function. Some properties of these types of polynomials were
also established. Specifically, two different forms of explicit formula of Hurwitz-Lerch type poly-
Cauchy polynomials were obtained using Stirling numbers of the first and second kind and an
explicit formula of Hurwitz-Lerch type poly-Bernoulli polynomials was established using the Stir-
ling numbers of the first kind.
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1. Introduction

It is known that Euler’s constant appeared many times in different well-known ex-
pressions or formulas such as in exponential integral, the Laplace transform of the natural
logarithm, the first of the Laurent series expansion for the Riemann Zeta function, solution
of the second kind to Bessel’s equation and many more. Surprisingly, the Cauchy num-
bers have appeared in the formula involving Euler’s constant [16]. This fact has attracted
several researchers to work further on Cauchy numbers.

The Cauchy numbers [6, 12, 15] of the first and second kind, respectively denoted by
¢, and é,, are usually defined by its generating functions:
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The Bernoulli numbers [1] denoted by B,, are defined by the generating function

t =
et 1 —nz:ann'7 (‘t‘ < 27T)'

One of its combinatorial relations is given by
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The Cauchy numbers appear in the Laplace Summation Formula [15] as a coefficient

and are also called the Cauchy numbers of the first kind. In this formula, the Cauchy

numbers are expressed in terms of Stirling numbers as follows,

/f(t)dt N i %A’“
k=0

where A is the forward difference operator. This is analogous to Euler McLaurin Summa-
tion Formula where Bernoulli numbers are expressed in terms of Stirling numbers, however,
differentiation is being used instead of the difference operators as shown below:
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A variation of Cauchy numbers of the first kind was introduced by Komatsu [12]
inspired by the polylogarithm factorial functions
[e.e] zm
Lif = —_—.

These numbers are called poly-Cauchy numbers of the first and second kind, denoted by

c,(lk) and 67(1]6) , respectively. More precisely, these numbers are defined by means of integrals
as follows:
1 1
(k) :n!/ / (1 2 k)dtldtgmdtk
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These numbers have combinatorial relations with Stirling numbers of the first and
second kind as follows
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and explicit formulas
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where m] and {:1} are the Stirling numbers of the first and second kind, respectively,
with generating functions:

In(1 ™ =
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such that ['] =0and {]'} =0 for n <m.
Parallel to this, Kaneko [11] defined certain variation of Bernoulli numbers in terms of

polylogarithm function
[e.e]

le- Zﬁ ’Z| < ].

n=1
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which are called poly-Bernoulli numbers denoted by B,(lk). These types of numbers are
defined by

Lig(1—e7) & t"
e =B

Certain generalization of poly-Cauchy numbers of the first and second kind was in-
troduced by Cenkci and Young [4]. This generalization was motivated by the concept of
Hurwitz-Lerch factorial zeta function defined by

[e.e]
zn

<I>f(z,s,a) = N L A)\s
; nl(n+a)

for s € C when |z] < 1, Re s > 1 when |z| =1 and a ¢ {0,—1,—2,---}. These numbers
were called Hurwitz type poly-Cauchy numbers of the first and second kind, denoted by
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c%k)(a) and & (a), which are respectively defined by

o f(log(l+1t),k,a) = chf)(a)ﬁ
and
Of(—log(1+1),k,a) =3 & (a) =
n=0

These numbers possessed the following properties which are analogous to those of poly-
Cauchy numbers: explicit formulas
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relations with Stirling numbers of the second kind
- 1
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and expressions of Hurwitz type poly-Bernoulli numbers in terms of Hurwitz type poly-
Cauchy numbers

BP(a) = 35 (1) mlSy(n,m)Sa(m, el (a),

=0 m=0

B®(a) = Z Z )™ m! Sy (n, m)Sa(m, 1)é (),
=0 m=0

B = 33 CV G m)Si(m, B (a),
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Recently, several generalizations of these numbers have been introduced relating to
some well-known special numbers. For instance, the poly-Cauchy polynomials are ex-
pressed in terms of polylogarithm factorial function and multi poly-Cauchy polynomials,
multi poly-Bernoulli and multi poly-Euler numbers and polynomials are expressed in terms
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of multiple polylogarithm factorial function [7, 8, 10]. Moreover, other well known families
of polynomials such as the Apell-type classical polynomials and Apostol-type polynomi-
als have attracted research attention due to their important applications in the areas of
applied mathematics, physics and engineering [3, 5].

This present study aims to establish other variation of generalizing Cauchy and Bernoulli
polynomials that can be related to the well-known Hurwitz-Lerch factorial zeta function.
The generalization may contribute to the development of numerous applications in number
theory, numerical analysis and difference-differential equations.

2. Hurwitz-Lerch type Poly-Cauchy and Poly-Bernoulli Polynomials

Kamano and Komatsu [13] defined the poly-Cauchy polynomials of the first and second
kind, c%k) (x) and é%k) (x), respectively, as follows:

1 1 -
) (z) = n!/ . / (t1t2 bet :):> dtidty---dty, (k>1)
0 0
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with generating functions
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Observe that from (3), we get

o0
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If a =1, we get ®f(z,k,1) = Lify(z). Comparing this with the left hand side of (1) and
(2), it would be logical to define the Hurwitz-Lerch poly-Cauchy polynomials of the first
and seconds kind as follows:

Definition 1. The Hurwitz-Lerch type poly-Cauchy polynomials of the first kind denoted

by c,(lk()l(x) are defined by

[e.e]

L+ )"0 f(In(L +1),k,a) = > clF) ().
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Definition 2. The Hurwitz-Lerch type poly-Cauchy polynomials of the second kind denoted
by é,(f()I(:v) are defined by

Pf(—In(l+1t),k,a) <. t"
R DL

These polynomials have an explicit formula involving the Stirling numbers of the first
and second kind.

Theorem 1. For k € Z,n > 0 we have

n
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Working on the right hand side, we have
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Comparing the coefficients completes the proof. |

Theorem 2. For k € Z,n > 0 we have

n

=3 e ()

s=0
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Proof.
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Working on the right hand side, we have
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Comparing the coefficients yields the result. ]

The Hurwitz-Lerch type poly-Bernoulli Polynomials can also be defined by means of
Hurwitz-Lerch zeta function ®(z, s, a).

Definition 3. The Hurwitz-Lerch type poly-Bernoulli polynomials denoted by Bgfg(x) are

defined by
oo

B(1—etk,a)e! = Z Bk (m)t—

n,a
n=0

where

o0
tr (tx)n
e = Z n!
n=0
Bayad and Hamahata [2] established an explicit formula for poly-Bernoulli polynomi-
als. Analogous to this, the Hurwitz-Lerch type poly-Bernoulli polynomials have explicit
explicit formula involving Stirling numbers.
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Theorem 3. For k € Z,n > 0 we have
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Comparing the coefficients gives the result. |

3. Hurwitz-Lerch type Multi-Poly-Cauchy and Multi-Poly-Bernoulli
Polynomials

Further generalization of poly-Cauchy numbers of the first and second kind was defined
by Lacpao et al. [14] in polynomial form by means of multiple polylogarithm function

Ligy ko, by (2) = Z TR S

0<my <ma<--<m, M1 e

and Hurwitz-Lerch multi-factorial zeta functions

®f(z, (k1, k2, - Kr)y ) = Z ('zmTHmi!(mi—i-clL—r—l—i)ki)’ (4)

0<mi<mo<---<mg i=1
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respectively.
When r =1, (4) gives

mi
Of(z, k1,a) = Z -

0<m1 m1!(m1 + (l)kl )

the Hurwitz-Lerch factorial zeta function. These polynomials, denoted by cq(lkl’k”” ’kr)(x)

A(k1 k2, 7kr)(
n

and ¢é x), are respectively defined by
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We define the Hurwitz-Lerch type multi-poly-Cauchy polynomials of the first and
second kind analogous to the definitions of Hurwitz-Lerch type poly-Cauchy polynomials
as follows:

Definition 4. The Hurwitz-Lerch type multi-poly-Cauchy polynomials of the first kind are
defined by

o0

t’l’b
x . _ (k1,k2, - kr) v
(1+t)*®f(In(1 + t), (k1, ke, Jkr),a) = g eyt (x,a)n!.

0
n=0

Definition 5. The Hurwitz-Lerch type multi-poly-Cauchy polynomials of the second kind
are defined by

Of—In(1+1), (ki ko, k)i @) o~ o ) L
(1+t)® nzocn )

Similarly, these polynomials have explicit formula involving Stirling numbers.

Theorem 4. For ki,ko, -+ , k. € Z,n >0, we have

cn(ki, ko, k) (z, q) (5)

ey SR ™ ] Ty 1
B O(x—k)!( 1 (k) Z <(mr+a)kr LL (m) (mi+a—r+id)k
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n
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Working on the right hand side, we have
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It follows that
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( 1) [n k r—1 m
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Equating the coefficients gives the result. |
Theorem 5. For ki,ko, -+ , k. € Z,n >0, we have
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The result follows by comparing the coefficients. ]

Corcino et. al. defined the Hurwitz-Lerch multi-poly Bernoulli polynomials as follows:
The Hurwitz-Lerch type multi-poly-Bernoulli numbers Blkrka ’kr)(a) are defined by the

generating function

O((1—e™), (k k2, ZB(W“% ) () (6)

n!
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They established an explicit formula of Hurwitz-Lerch multi-poly-Bernoulli polynomials in
[9, Theorem 3.1]. Parallel to this, we obtained an explicit formula of Hurwitz-Lerch multi-
poly-Bernoulli-polynomials in terms of Stirling numbers of the second kind as follows:

Theorem 6. For ki, ko, -+ , k. € Z,n >0, we have
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3 D"} H 1 1+ (4 )
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Comparing the coefficients proves the theorem. |
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4. Conclusions

This paper defined variations of poly-Cauchy and poly-Bernoulli polynomials called
the Hurwitz-Lerch poly-Cauchy and poly-Bernoulli polynomials and Hurwitz-Lerch multi
poly-Cauchy polynomials using polylogarithm factorial and multiple polylogarithm facto-
rial functions, respectively. Moreover, explicit formulas parallel to those of poly-Cauchy
and poly-Bernoulli polynomials were explored and obtained. These types of polynomials
could have significant applications in the field of numerical analysis, analytic number the-
ory and difference-differential equations. The generalizations of these polynomials yield
symmetries for Stirling number series and lead to a unified investigation of algebraic prop-
erties for these polynomials. Furthermore, future researches may include properties of
these polynomials with multiple parameters and relations to other family of polynomials.
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