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Abstract. In this note, we deal with a perfect sequence space λ and a convex bornological space
E to introduce and study the space λ(E) of all totally λ-summable sequences from E. We prove
that λ(E) is complete if and only if λ and E are complete, nuclear if and only if λ and E are
nuclear, and we make use of a result of Ronald C. Rosier [10] to give a similar characterization of
the nuclearity of the space λ{E} of all absolutely λ−summable sequences in a locally convex E.
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Introduction

In connection with the nuclearity of a locally convex space E, A. Pietsch in [9] in-
troduced the spaces ℓp(E) and ℓp{E} respectively of weakly ℓp-summable and absolutely
ℓp-summable sequences in E. In [8], he used these spaces to study the absolutely p-summing
operators. Later, he introduced and studied also the space λ{E} of λ-summable sequences
in E, for a perfect sequence space λ in the sense of Köthe endowed with its normal topol-
ogy. Many other authors were interested in the study of these spaces. Ronald C. Rosier
in [10] considered a general polar topology on λ{E} and got a precise description of the
topological dual and its equicontinuous subsets. M. Florencio and P. J. Paúl [3], con-
sidering general polar topologies, obtained many interesting results such as barreledness
conditions. In [1] and [2], they studied the space λ(E) of weakly λ−summables sequences
in E and represented this space as the completion of the injective tensor product λ⊗̃ϵE.
In [6] and [7], L. Oubbi and M. A. Ould Sidaty reconsidered the space λ(E) and obtained
some of its properties. They mainly described the continuous dual space of λ(E). While
in [11] and [13], characterizations of the reflexivity of λ(E) in terms of that of λ and E
and the AK-property are given. A characterization of the nuclearity of of the space of
weakly λ−summable sequences is given in [12].
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In this note, we are concerned with the nuclearity of the convex bornological space λ(E) of
all totally λ−summable sequences in E, in the sense of [3], where E is a convex bornolog-
ical space.
In sections 1 and 2, we endow this space with a structure of b-space, and study some of
its properties.
The section 3 is devoted to the nuclearity of λ(E). We prove mainly that λ(E) possesses
this property if and only if both of λ and E have.
In Section 4, we provide an application of the results of Section 3 on the nuclearity of the
space λ{E} of absolutely λ−summable sequences in a locally convex space E.

1. Preliminaries

For a linear space E, we mean by a convex bornology on E, a collection of subsets of
E covering E, hereditary for the inclusion, and closed for the finite unions, the addition,
the scalar multiplication and the formation of absolutely convex hulls. We say then that
E is a convex bornological space or simply a b-space. The elements of the bornology of E
are called bounded sets of E.

A collection B of bounded sets of E is a basis for its bornology if every bounded set in
E is contained in an element of B. In the sequel, we assume that the members of B are
absolutely convex.
A b-space E is said to be Hausdorff if the only bounded linear subspace of E is {0}.
We say that a sequence {xn}∞n=1 ⊂ E converges to x ∈ E, or that x is a limit of {xn}∞n=1

in E if there exists an element B ∈ B such that {xn − x}∞n=1 is contained and convergent
to 0 in the normed space (EB, ∥ · ∥B), where EB is the subspace of E generated by B and
∥ · ∥B is the gauge of B.

A subset of a b-space E will be said to be closed if it contains the limits of all its
sequences.
A Banach disk in a b-space E is an element B ∈ B for which the normed space EB is
complete. E is said to be b-complete or simply complete if every bounded set in E is
contained in a Banach disk in E.

A linear mapping between two b-spaces E and F is said to be bounded if it transforms
bounded sets of E to bounded sets of F . A bounded linear mapping transforms convergent
sequences to convergent ones. A bornological isomorphism is a bounded linear bijection
whose inverse is also bounded.

The Köthe dual of a sequence space λ is defined as

λ× =

{
(βn) ⊂ C :

∞∑
n=1

|αnβn| converges for all (αn) ∈ λ

}
.

We see that λ ⊂ λ×× =: (λ×)×; we say that λ is perfect if the equality holds.
The normal cover of a subset S of λ is the subset of λ formed by the sequences of the
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form (εnαn)n where (αn)n ∈ S and (εn)n ⊂ C with |εn| ≤ 1, for all n. We see that S is
contained in its normal cover. S is said to be normal or solid if it coincides with its normal
cover.
For the general theory of locally convex spaces and Köthe sequence spaces, we refer the
reader to [5].
Throughout this paper, λ will be a perfect (and then a normal) sequence space endowed
with a normal bornology, that is a convex bornology having a basis S of solid sets, and for
which the standard coordinate projections from λ to C are bounded.

Following the terminology of [3], a sequence (xn)n ⊂ E is said to be totally λ−summable
in E if there exists an absolutely convex element B ∈ B such that (xn)n ⊂ EB and
(∥xn∥B)n ∈ λ. In other words, (xn)n = (αnbn)n, with (αn)n ∈ λ and {bn}∞n=1 ⊂ B.

Starting from this definition, we introduce the vector valued sequence space

λ(E) =

{
(xn)n ⊂ E : ∃B ∈ B, (xn)n ⊂ EB and (∥xn∥)n ∈ λ

}
.

Due to the properties of B, the triangle inequality of the norms ∥ · ∥B and the fact that λ
is normal, we see that λ(E) is a linear space. For S ∈ S and B ∈ B, we define

S(B) =

{
(xn)n ⊂ EB, (∥xn∥B)n ∈ S

}
.

2. Properties of λ(E)

In the sequel, the b-spaces E equipped with the convex bornology with basis B and λ
with the normal bornology with basis S, will be supposed to be Hausdorff spaces.
Starting from this setting, one can define, in a natural way, a convex bornology on λ(E)
with basis S(B) by setting

S(B) =
{
H ⊂ λ(E) : ∃S ∈ S, B ∈ B such that H = S(B)

}
.

In view of the hypothesis made on S and B, S(B) is indeed a basis for a convex bornology
on λ(E) for which λ(E) is a Hausdorff space.

Lemma 1. For a fixed k ∈ N, denote by πk the projection from λ(E) on E defined by

πk(x) = xk, for all x = (xn) ∈ λ(E).

Then, πk is a bounded linear map.

Proof. Let B ∈ B and S ∈ S and fix k ∈ N. Since the bornology of λ is normal, the
set {αk : (αn)n ∈ S} is bounded in C, and then so is {∥xk∥ : (xn)n ∈ S(B)}. This means
that {xk : (xn)n ∈ S(B)} is bounded in EB. Thus, πk is bounded. ■
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Proposition 1. The spaces λ and E can be identified with closed subspaces of λ(E).

Proof. Let I : E −→ λ(E), t −→ te1, where t is at the first component. It is clear that
I is linear and one to one. Let B ∈ B, and S ∈ S such that e1 ∈ S, then I(B) ⊂ S(B) and
I is bounded. Inversely, I−1 : I(E) = Ee1 → E is the restriction of π1 to the subspace
I(E), and then it is bounded by Lemma 1. It remains to show that I(E) is closed in λ(E).
We have I(E) =

⋂
k ̸=1 π

−1
k ({0}). Since E is supposed to be a Hausdorff space, then {0} is

closed and so is I(E).
Now, fix 0 ̸= x0 ∈ E and let g : λ −→ λ(E), α = (αn)n −→ (αnx0)n = αx0. It is clear that
g is linear and one to one. Let S ∈ S, and B ∈ B with x0 ∈ B. Then, g(S) ⊂ S(B); so

g is bounded. Inversely, if S ∈ S and B ∈ B, then g−1(S(B) ∩ λx0) =
1

∥x0∥B
S, and then

g−1 : g(E) = λx0 → λ is bounded. It remains to show that g(λ) is closed in λ(E). Let

{α(k)x0 = (α
(k)
n x0)n}∞k=1 be a sequence in λx0 which converges to x = (xn)n ∈ λ(E). By

Lemma 1, {α(k)
n x0}∞k=1 converges to xn in E, for every n. As, the subspace Cx0 of E is

closed in E, xn must belong to Cx0. Then, there is α = (αn) such that x = (xn)n = αx0.
It is easy to see that α ∈ λ. We conclude that λx0 is closed in λ(E). ■

Proposition 2. λ(E) is complete if and only if λ and E are complete.

Proof. If λ(E) is complete, then so are λ and E by Proposition 1. Inversely, suppose
that λ and E are complete. We only show that if B and S are Banach disks in E and
λ respectively, then S(B) is a Banach disk in λ(E). To simplify the notations, we set
F = λ(E), H = S(B) and π the gauge of H.
Let {(xi)i}∞i=1 be a Cauchy sequence in (FH , π). We have∣∣∣∣∥∥(∥xin∥B)n∥∥S −

∥∥(∥xjn∥B)n∥∥S∣∣∣∣ ≤ ∣∣∣∣∥∥(∥xin∥B)n − (∥xjn∥B)n
∥∥
S

∣∣∣∣ ≤
∥∥(∥xin∥B − ∥xjn∥B)n

∥∥
S

≤
∥∥(∥xin − xjn∥B)n

∥∥
S

= π((xi − xj)n).

This means that {(∥xi∥B)i}∞i=1 is a Cauchy sequence in the complete space (λS , ∥ · ∥S);
let α = (αn)n be its limit in λS . Fix n ∈ N. Due to the boundedness of the projections,
{∥xin∥B}∞i=1 converges to αn and {xin}∞i=1 is a Cauchy sequence in the complete space EB;
denote by xn its limit. Thus, ∥xn∥B = αn, and x = (xn)n ∈ λ(E). It remains to prove
the convergence of {(xi)i}∞i=1 to x. This derives from the fact that {(∥xi − x∥B)i}∞i=1 is a
Cauchy sequence in (λS , ∥ · ∥S) and its limit is nothing but the zero sequence in λ. ■

3. Nuclearity of λ(E)

A linear mapping f : E → F between complete normed spaces is said to be nuclear
if there exist (εn)n ∈ ℓ1, a bounded sequence (an)n in the continuous dual E′ of E and a
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bounded sequence (yn)n ⊂ F such that

f(x) =
∞∑
n=1

εnan(x)yn, for all x ∈ E.

A b-space E is said to be nuclear (a Schwartz space) if for every Banach disk A in E
there is a Banach disk B ⊃ A in E such that the inclusion mapping EA → EB is nuclear
(compact).

Proposition 3. The tensor product λ⊗ E is identifiable with a subspace of λ(E).

Proof. We see that for all α = (αn)n ∈ λ and x ∈ E, (αnx)n ∈ λ(E). Define the
bilinear mapping φ : λ × E → λ(E), such that φ(α, x) = (αnx)n. There exists a linear
mapping ℓ : λ ⊗ E → λ(E), with ℓ(α ⊗ x) = (αnx)n. Let us show that ℓ is one to one.
Suppose that z ∈ λ⊗ E such that ℓ(z) = 0. We can write z =

∑k
i=1(α

i
n)n ⊗ xi, for which

{(αi
n)n}ki=1 and {xi}ki=1 are linearly independent. But,

ℓ(z) =
k∑

i=1

ℓ(αi ⊗ xi) =
k∑

i=1

(αi
nxi)n =

(
k∑

i=1

αi
nxi

)
n

.

Since ℓ(z) = 0 then
(∑k

i=1 α
i
nxi

)
n
= 0 and

∑k
i=1 α

i
nxi = 0, for every n. But, as {xi}ki=1 is

linearly independent, αi
n = 0, for all 1 ≤ i ≤ k and n ∈ N. Thus, z =

∑k
i=1(α

i
n)n ⊗ xi = 0,

and ℓ is one to one. ■

Lemma 2. Let S and B be Banach disks in λ and E respectively, N(x) =
∥∥(∥xn∥B)n∥∥S

for all x = (xn)n ∈ λS(EB) and N1(z) = N(ℓ(z)) for all z ∈ λS ⊗ EB. Then,
1. N1 is a cross-norm on λS ⊗ EB, that is N(α⊗ x) = ∥α∥S∥x∥B, for every α ∈ λS and
x ∈ EB.
2. The mapping ℓ : λS ⊗ EB → λS(EB) is isometric and can be extended to a unique
linear mapping ℓ̂ : λS⊗̂N1EB → λS(EB), where λS⊗̂N1EB the completion of the normed
space (λS ⊗N1 EB, N1).

Proof. Since N is a solid norm and ℓ is a one to one linear mapping, N1 is a norm. It
is clear that N1(α⊗ x) = ∥α∥S∥x∥B, and 1. holds. By the definition of N1, we see that ℓ
is isometric from λS ⊗EB to the complete space λS(EB), and then it has an extension to
the completion λS⊗̂N1EB of λS ⊗N1 EB. This gives the second item. ■

We will make use of the following result to represent λ(E) as a bornological tensor
product.

Proposition 4. [4, Ch VIII, Prop. 4]
1. There is a convex bornology b on λ⊗ E (the finest one) making bounded the inclusion
mappings λS ⊗N1 EB → λ(E). Moreover, λ⊗b E = lim−→λS ⊗N1 EB.
2. b is located between the projective bornology π and the injective bornology ε.
3. If λ or E is nuclear, then π = b = ε.
4. If λ and E are nuclear, the bornological completion λ⊗̃bE of λ ⊗b E is the inductive
limit of the Banach spaces λS⊗̂N1EB.
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Now, we prove

Theorem 1. If λ and E are nuclear, the equality λ(E) = λ⊗̃bE holds algebraically and
bornologically.

Proof. Consider the linear mapping ℓ : λ⊗b E → λ(E) defined in the proof of Propo-
sition 3.
According to the definition of the norms N and N1, we see that ℓ is bounded, and since
λ(E) is complete, ℓ can be extended to a bounded linear mapping ℓ̃ from the bornological
completion λ⊗̃bE of λ⊗b E to λ(E).
We will prove that ℓ̃ makes λ⊗̃bE and λ(E) bornologically isomorphic.
Let z ∈ λ⊗̃bE be such that ℓ̃(z) = 0. By [4, Ch VIII, Prop. 2], a sequence {zk}∞k=1 of
elements of λ⊗b E converges to z. Then {zk − z}∞k=1 is a null sequence in some subspace
λS⊗̃bEB. Thus,

ℓ̂(z) = ℓ̂(lim
k

ι(zk)) = lim
k
(ℓ̂ ◦ ι)(zk) = lim

k
ℓ(zk) = lim

k
(ℓ̃ ◦ ι)(zk) = ℓ̃(lim

k
zk) = ℓ̃(z) = 0.

Here ι is the canonical injection from λ⊗b E to its completion λ⊗̃bE.
By Lemma 2, ℓ̂ is isometric and then it is one to one, then z = 0, and ℓ̃ is one to one.
We will prove that ℓ̃ is onto as follows. Let A ∈ B be a Banach disk; since E is nuclear we
can select a Banach disk B ∈ B containing A such that the inclusion EA → EB is nuclear.
There are (εk)k ∈ ℓ1, a bounded sequence (ak)k in the continuous dual (EA)

′ of EA and a
bounded sequence (yk)k ⊂ EB such that

x =
∞∑
k=1

εkak(x)yk, for all x ∈ EA. (1)

Let x = (xn)n ∈ λS(EA), and αk = (αk
n)n =: (ak(xn))n. We have

|αk
n| = |ak(xn)| ≤ ∥ak∥∥xn∥A ≤

(
sup
p

∥ap∥
)
∥xn∥A, for all k, n. (2)

The sequence (ak)k being bounded in (EA)
′, supp ∥ap∥ is finite, αk = (αk

n)n ∈ λS(EA), for

all k, and, by (2), ∥αk∥S ≤ (supp ∥ap∥)∥(∥xn∥A)n∥S and then supk ∥αk∥S is finite. Then,

r∑
k=1

N1(εkα
k ⊗ yk) =

r∑
k=1

|εk|∥αk∥S∥yk∥B ≤ (sup
p

∥ap∥)(sup
p

∥yp∥)N(x)

r∑
k=1

εk. (3)

As, λS(EB) is a complete normed spaces, the series
∑∞

k=1 εkα
k ⊗ yk converges in λS(EB)

to a limit g(x). Moreover,
ℓ̃(g(x)) = x. (4)

Indeed, if z = (zn)n ∈ λS(EB) is such that z = ℓ̃(g(x)), then

z = (zn)n = ℓ̃
( ∞∑
k=1

εk(ak(xn))n ⊗ yk
)

=
∞∑
k=1

εk ℓ̃((ak(xn))n ⊗ yk)
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=

∞∑
k=1

εkℓ((ak(xn))n ⊗ yk)

=

∞∑
k=1

εk(ak(xn)yk)n.

But the projections are bounded by Lemma 1, then

zn =

∞∑
k=1

εkak(xn)yk, for all n.

By (1), zn = xn, for all n, and ℓ̃(g(x)) = x. This means that ℓ̃ is onto. In the other
hand, if K is bounded in λ(E), then K is contained and bounded in some λS(EB), and
ℓ̃(g(K)) = K, from what, we conclude that the inverse of ℓ̃ is bounded. ■

We are now ready to prove the main result of this section.

Theorem 2. Let E be a complete b-space and λ be a normal sequence space. Then λ(E)
is nuclear if and only if λ and E are nuclear.

Proof. If λ(E) is nuclear then, by Proposition 1, E and λ are closed subspaces of λ(E)
and then they are nuclear also.
Inversely, suppose that E and λ are nuclear. By Proposition 4, λ⊗̃bE is nuclear. So by
Theorem 1, λ(E) is nuclear. ■

Theorem 3. Let E be a complete b-space and λ be a normal sequence space.

(i) If λ is nuclear then, λ(E) is a Schwartz space if and only if E is a Schwartz space.

(ii) If E is nuclear then, λ(E) is a Schwartz space if and only if λ is a Schwartz space.

Proof. Suppose that E is nuclear. If λ(E) is a Schwartz space, then λ, being a closed
subspace of λ(E) by Proposition 1, is a Schwartz space. Inversely, suppose that E is
nuclear and λ is a Schwartz space. Let A ∈ B and S ∈ S be a Banach disks in E and λ
respectively. Since E is nuclear we can select a Banach disk B ∈ B containing A such that
the inclusion EA → EB is nuclear. So, there are (εk)k ∈ ℓ1, a bounded sequence (ak)k in
the continuous dual (EA)

′ of EA and a bounded sequence (yk)k ⊂ EB such that

x =

∞∑
k=1

εkak(x)yk, for all x ∈ EA. (5)

Since λ is a Schwartz space, there is a Banach disk T in λ such that the injection λS → λT

is compact. We will show that the injection λS(EA) → λT (EB) is compact. Let

{xi = (xin)n}∞i=1 (6)
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be a sequence in S(A). By (5), we have

xin =
∞∑
k=1

εkak(x
i
n)yk, for all n, i. (7)

The sequence (ak)k being bounded in (EA)
′, there is a constant c > 0 such that

|ak(xin)| ≤ c∥xin∥A for all i, k, n.

This means that {(ak(xin))n}∞i=1 ⊂ λS and that

{(ak(xin))n}∞i=1 ⊂ cS. (8)

A subsequence {(ak(xjn))n}∞j=1 of {(ak(xin))n}∞i=1 should converge in λT to αk = (αk
n)n.

In the other hand, the equation (8) shows that the sequence {(ak(xjn))n}∞k,j=1 is bounded
in λS . For every n ∈ N, there cn > 0 such that for all j, k

|ak(xjn)| ≤ cn and then |αk
n| ≤ cn. (9)

For every n ∈ N, since {αk
nyk}∞k=1 is bounded in the complete normed space EB, the

series
∑

k εkα
k
nyk converges to a limit xn ∈ EB. Let x = (xn)n. Since {(αk

n)n}∞k=1 is
bounded in λS and {yk}∞k=1 is bounded in EB, the sequence {(αk

nyk)n}∞k=1 is bounded
in λS(EB) and then in λT (EB). Thus, the series

∑
k εk(α

k
nyk)n converges in λT (EB) to

z = (zn)n. Since the projections are bounded by Lemma 1, one has zn =
∑

k εkα
k
nyk for

all n, and then x = z ∈ λT (EB).
It remains to prove that {xj}∞i=1 converges in (λT (EB), N) to x. We have,

xj − x =
∑
k

εk(an(x
j
n)− αj

n)nyk

and
N(xj − x) ≤

∑
k

|εk|∥(an(xjn)− αj
n)n∥S∥yk∥B (10)

For j, k, let
βj
k = ∥ak(xjn)− αk

n∥T and γk = ∥yk∥B. (11)

Then, (γk)k ∈ c0 and {(εkβj
k)k}

∞
j=1 is a sequence in ℓ1 which is σ(ℓ1, c0)−bounded, then it

has a convergent subsequence say,

{(εkβr
k)k}∞r=1. (12)

As, lim
r→∞

εkβ
r
k = 0, for all k, then the sequence in (12) converges to 0 in (ℓ1, σ(ℓ1, c0)). By

(11) and (10), we have

N(xr − x) ≤
∑
k

|εkβr
k|γk, for all r ∈ N.

Thus, {xr − x}∞r=1 converges to 0 in λT (EB), and (6) has a convergent subsequence. This
finishes the proof of (i). The proof of (ii) is similar by interchanging the roles of E and λ
in the proof. ■
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4. Nuclearity of λ{E}

Notice that a locally convex space is said to be nuclear (resp. a Schwartz space) if
the convex bornology of equicontinuous subsets of its topological dual is nuclear (resp. of
Schwartz).
Let λ be a perfect sequence space and E a locally convex space whose topology is defined
by a family M of absolutely convex equicontinuous subsets of its topological dual E′.
Define

λ{E} = {(xn)n ⊂ E : (PM (xn))n ∈ λ}, where PM (xn) = sup
a∈M

|a(xn)|.

If a topology on λ is defined by family S of normal, absolutely convex and σ(λ×, λ)−bounded
subsets of λ×, then a locally convex topology can be defined on λ{E} by the family of
semi-norms (πS,M )S∈S,M∈M, such that, if x = (xn)n ∈ λ{E} then

πS,M ((xn)n) = PS((PM (xn))) = sup{
∞∑
n=1

|αnPM (xn)| : (αn)n ∈ S}.

For the topology so defined, Ronald C. Rosier in [10] proved that the dual space
(λ{E})∗ of λ{E} is λ×(E′) and that a subset of (λ{E})∗ is equicontinuous if and only if
it is contained in some S(M) for S ∈ S and M ∈ M.
Starting from this setting, Theorem 2 gives

Theorem 4. λ{E} is nuclear if and only if λ and E are nuclear.

Also, Theorem 3 gives

Theorem 5. If E (resp. λ) is nuclear, then λ{E} is a Schwartz space if and only if λ
(resp. E) is a Schwartz space.

5. Conclusion

In this paper we have characterized the bornological structure, the completeness and
the nuclearity of λ(E) in terms of that of λ and E. An application to the nuclearity of
the locally convex space λ{E} is given.
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