EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1663-1674
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On B-commutators of B-algebras

Joel G. Adanza
Mathematics Department, Negros Oriental State University, Dumaguete City, Philippines

Abstract

In this paper, we investigate some properties of B-commutators of B-algebras. We also characterize solvable B-algebras via B-commutators. 2020 Mathematics Subject Classifications: 08A05, 03G25 Key Words and Phrases: Solvable B-algebras, B-commutators, k th B-commutators

1. Introduction and Preliminaries

In 1966, Y. Imai and K. Iséki introduced the concept of BCK-algebras [14]. It is known that BCK-algebras are inspired by some implicational logic. From then on, several generalizations of BCK-algebras exist. In [15], K. Iséki introduced BCI-algebras and that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In 1983, Q.P. Hu and X . Li introduced a wide class of abstract algebras: BCH-algebras [13]. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. These algebras are of type $(2,0)$, that is, a nonempty set together with a binary operation and a constant, satisfying some axioms. Up to this day, inspired by BCK/BCI/BCHalgebras, there are more than twenty type $(2,0)$ algebras introduced and investigated. One of these algebras is the concept of B-algebras.

In [21], J. Neggers and H.S. Kim introduced and established the notion of B-algebras. A B-algebra is an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$.
X is said to be commutative if $x *(0 * y)=y *(0 * x)$ for any $x, y \in X$. Let X be a B-algebra. Recall that for any $x, y, z \in X$, we have the following properties:
(P1) $0 *(0 * x)=x[21]$,
(P2) $x * y=0 *(y * x)[26]$,
(P3) $x *(y * z)=(x *(0 * z)) * y[21]$,
(P4) $(x * z) *(y * z)=x * y[26]$.
We now present two examples of B-algebras, one is commutative and the other is noncommutative.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4841
Email address: joel.adanza@norsu.edu.ph (J. Adanza)

Example 1. Let $X=\{0,1,2,3\}$ be a set with the following table of operations:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then $(X ; *, 0)$ is a commutative B-algebra [10].
Example 2. Let $X=\{0,1,2,3,4,5\}$ be a set with the following table of operations:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a noncommutative B-algebra [20].
Throughout this paper, let X be a B-algebra ($X ; *, 0$). In [20], a nonempty subset N of X is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. A subalgebra N of X is called normal in X if $(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$. Let N be normal in X. Define a relation \sim_{N} on X by $x \sim_{N} y$ if and only if $x * y \in N$, where $x, y \in X$. Then \sim_{N} is an equivalence relation on X. Denote the equivalence class containing x by $x N$, that is, $x N=\left\{y \in X: x \sim_{N} y\right\}$. Let $X / N=\{x N: x \in X\}$. The binary operation in X / N is defined by $x N *^{\prime} y N=(x * y) N$. The B-algebra X / N is called the quotient B-algebra of X by N. In [1], $x H=\{x *(0 * h): h \in H\}$ and $H x=\{h *(0 * x): h \in H\}$, called the left and right B-cosets of H in X, respectively. The subset $H K$ [11] of X is given by $H K=$ $\{x \in X: x=h *(0 * k)$ for some $h \in H, k \in K\}$.

Other properties and characterizations of B-algebras can be found in some other papers ([2-7, 9, 10, 12, 16-19], [22, 23], [25, 26].) In particular, R. Soleimani [24] introduced the notion of B-commutators of B-algebras. He also established some basic properties of B-commutators. In [8], J.C. Endam and G.S. Dael introduced the notion of solvable B-algebras. In this paper, we established some basic properties of B-commutators of B-algebras. These properties are used in characterizing solvable B-algebras via Bcommutators. As a result, we showed that a B-algebra X is solvable if and only if there is positive integer m such that the m th B-commutator subalgebra $X^{(m)}$ is equal to $\{0\}$.

2. B-commutators

This section presents some identities satisfied by the B-commutators in B-algebras. We recall first from [24] the definition of B-commutators. Let $x, y \in X$. The B-commutator of x and y is given by

$$
[x, y]=((0 * x) * y) *((0 * y) * x)
$$

The subalgebra of X generated by $\{[x, y]: x, y \in X\}$ is called the derived B-algebra, denoted by $D(X)$.

Example 3. Let $(X ; *, 0)$ be the B-algebra in Example 2. We now compute for $[x, y]$ for all $x, y \in X$. These computations are used in the succeeding examples.

$[0,0]=0$	$[1,1]=0$	$[2,2]=0$	$[3,3]=0$	$[4,4]=0$	$[5,5]=0$
$[0,1]=0$	$[1,0]=0$	$[2,0]=0$	$[3,0]=0$	$[4,0]=0$	$[5,0]=0$
$[0,2]=0$	$[1,2]=0$	$[2,1]=0$	$[3,1]=2$	$[4,1]=2$	$[5,1]=2$
$[0,3]=0$	$[1,3]=1$	$[2,3]=2$	$[3,2]=1$	$[4,2]=1$	$[5,2]=1$
$[0,4]=0$	$[1,4]=1$	$[2,4]=2$	$[3,4]=1$	$[4,3]=2$	$[5,3]=1$
$[0,5]=0$	$[1,5]=1$	$[2,5]=2$	$[3,5]=2$	$[4,5]=1$	$[5,4]=2$

A map $\varphi: X \rightarrow Y$ is called a B-homomorphism [20] if $\varphi(x * y)=\varphi(x) * \varphi(y)$ for any $x, y \in X$.

Lemma 1. [24] Let $\varphi: X \rightarrow Y$ be a B-homomorphism and let $x, y \in X$. Then
i. $[x, y]=0$ if and only if $x *(0 * y)=y *(0 * x)$,
ii. $\varphi([x, y])=[\varphi(x), \varphi(y)]$,
iii. if φ is onto, then $\varphi(D(X))=D(\varphi(X))$.

Lemma 2. Let $x, y \in X$. Then
i. $[x, x]=[x, 0]=[0, x]=0$,
ii. $0 *[x, y]=[y, x]$.

Proof. Clearly, (i) follows from Lemma $1(i)$ and (P1); (ii) follows from (P2).
Let $x, w \in X$. We define x^{w} to be the element $(0 * w) *((0 * w) * x)$. For instance, let X be the B-algebra in Example 1. Below are some sample computations to illustrate x^{w} :

$$
\begin{aligned}
& 2^{3}=(0 * 3) *((0 * 3) * 2)=3 *(3 * 2)=3 * 1=2 \\
& 3^{2}=(0 * 2) *((0 * 2) * 3)=2 *(2 * 3)=2 * 1=3 \\
& 1^{3}=(0 * 3) *((0 * 3) * 1)=3 *(3 * 1)=3 * 2=1 \\
& 3^{1}=(0 * 1) *((0 * 1) * 3)=1 *(1 * 3)=1 * 2=3 \\
& 1^{2}=(0 * 2) *((0 * 2) * 1)=2 *(2 * 1)=2 * 3=1 \\
& 2^{1}=(0 * 1) *((0 * 1) * 2)=1 *(1 * 2)=1 * 3=2
\end{aligned}
$$

The following lemma presents the basic properties of x^{w}.
Lemma 3. Let $x, y, w \in X$. Then the following properties hold:
i. $0 * x^{w}=(0 * x)^{w}$,
ii. $(x * y)^{w}=0 *(y * x)^{w}$,
iii. $(0 * x)^{x}=0 * x$,
iv. $x^{x}=x$,
v. $x^{0 * x}=x$,
vi. $x * y^{x}=(0 * y) *(0 * x)$,
vii. $x^{y}=x *[y, x]$,
viii. $x^{0 * y}=y *(y * x)$,
$i x .\left[x^{y}, 0 * y\right]=[y, x]$.
Proof. Let $x, y, w \in X$.
i. By (P2) and (III), we have

$$
\begin{aligned}
0 * x^{w} & =0 *((0 * w) *((0 * w) * x)) \\
& =((0 * w) * x) *(0 * w) \\
& =(0 * w) *((0 * w) *(0 * x)) \\
& =(0 * x)^{w}
\end{aligned}
$$

ii. By (i), we have $(x * y)^{w}=(0 *(y * x))^{w}=0 *(y * x)^{w}$.
iii. By (I) and (II), we have

$$
\begin{aligned}
(0 * x)^{x} & =(0 * x) *((0 * x) *(0 * x)) \\
& =(0 * x) * 0 \\
& =0 * x
\end{aligned}
$$

iv. By P3, (I), and P1, we have

$$
\begin{aligned}
x^{x} & =(0 * x) *((0 * x) * x) \\
& =((0 * x) *(0 * x)) *(0 * x) \\
& =0 *(0 * x) \\
& =x
\end{aligned}
$$

v. By P1, (I), and (II), we have

$$
\begin{aligned}
x^{0 * x} & =(0 *(0 * x)) *((0 *(0 * x)) * x) \\
& =x *(x * x) \\
& =x * 0 \\
& =x
\end{aligned}
$$

vi. By P3, P2, (III), and (I), we have

$$
\begin{aligned}
x * y^{x} & =x *((0 * x) *((0 * x) * y)) \\
& =(x *(0 *((0 * x) * y))) *(0 * x) \\
& =(x *(y *(0 * x))) *(0 * x) \\
& =((x * x) * b) *(0 * x) \\
& =(0 * y) *(0 * x)
\end{aligned}
$$

vii. By P3, P2, (III), and (I), we have

$$
\begin{aligned}
x *[y, x] & =x *(((0 * y) * x) *((0 * x) * y)) \\
& =(x *(0 *((0 * x) * y))) *((0 * y) * x) \\
& =(x *(y *(0 * x))) *((0 * y) * x) \\
& =((x * x) * y) *((0 * y) * x) \\
& =(0 * y) *((0 * y) * x) \\
& =x^{y} .
\end{aligned}
$$

viii. This follows from P1.
ix. By P1, (vi), P4, (vii), P2, and (II), we get

$$
\begin{aligned}
{\left[x^{y}, 0 * y\right] } & =\left(\left(0 * x^{y}\right) *(0 * y)\right) *\left((0 *(0 * y)) * x^{y}\right) \\
& =\left(\left(0 * x^{y}\right) *(0 * y)\right) *\left(y * x^{y}\right) \\
& =\left(\left(0 * x^{y}\right) *(0 * y)\right) *((0 * x) *(0 * y)) \\
& =\left(0 * x^{y}\right) *(0 * x) \\
& =(0 *(x *[y, x])) *(0 * x) \\
& =([y, x] * x) *(0 * x) \\
& =[y, x] * 0 \\
& =[y, x]
\end{aligned}
$$

The following lemma is used to prove the succeeding theorems.
Lemma 4. Let $a, b, c \in X$. Then the following properties hold:
i. $((a * b) * a) *(a *(a * c))=a *(a *((0 * b) * c))$,
ii. $(a *(a * b)) *(a *(a * c))=a *(a *(b * c))$,
iii. $[((a * b) *((0 * b) *(0 * a))) * c] *(c *(c * b))=(a * b) *(c *(0 * a))$.

Proof. i. By (III), P2, P4, and P3, we have

$$
((a * b) * a) *(a *(a * c))=(a * b) *[(a *(a * c)) *(0 * a)]
$$

$$
\begin{aligned}
& =a *[((a *(a * c)) *(0 * a)) *(0 * b)] \\
& =a *[(a *((0 * a) *(0 *(a * c)))) *(0 * b)] \\
& =a *[(a *((0 * a) *(c * a))) *(0 * b)] \\
& =a *[(a *(0 * c)) *(0 * b)] \\
& =a *(a *((0 * b) * c)) .
\end{aligned}
$$

ii. By (III), P2, and P4, we have

$$
\begin{aligned}
(a *(a * b)) *(a *(a * c)) & =a *[(a *(a * c)) *(0 *(a * b))] \\
& =a *((a *(a * c)) *(b * a)) \\
& =a *[a *((b * a) *(0 *(a * c)))] \\
& =a *(a *((b * a) *(c * a))) \\
& =a *(a *(b * c)) .
\end{aligned}
$$

iii. By (III), P2, P4, P3, (I), and (II), we have

$$
\begin{aligned}
{[((a * b) *((0} & * b) *(0 * a)) * c] *(c *(c * b)) \\
& =[(a * b) *(c *(0 *((0 * b) *(0 * a))))] *(c *(c * b)) \\
& =[(a * b) *(c *((0 * a) *(0 * b)))] *(c *(c * b)) \\
& =(a * b) *[(c *(c * b)) *(0 *(c * *((0 * a) *(0 * b))))] \\
& =(a * b) *[(c *(c * b)) *(((0 * a) *(0 * b)) * c)] \\
& =(a * b) *[c *((((0 * a) *(0 * b)) * c) *(0 *(c * b)))] \\
& =(a * b) *[c *((((0 * a) *(0 * b)) * c) *(b * c))] \\
& =(a * b) *[c *(((0 * a) *(0 * b)) * b)] \\
& =(a * b) *[c *((0 * a) *(b * b))] \\
& =(a * b) *(c *((0 * a) * 0)) \\
& =(a * b) *(c *(0 * a))
\end{aligned}
$$

Theorem 1. Let $w, x, y \in X$. Then $[x, y]^{w}=\left[x^{w}, y^{w}\right]$.
Proof. By P2, we have

$$
\begin{aligned}
{\left[x^{w}, y^{w}\right] } & =\left(\left(0 * x^{w}\right) * y^{w}\right) *\left(\left(0 * y^{w}\right) * x^{w}\right) \\
& =\left[(0 *((0 * w) *((0 * w) * x))) * y^{w}\right] *\left[(0 *((0 * w) *((0 * w) * y))) * x^{w}\right] \\
& =\underbrace{\left[(((0 * w) * x) *(0 * w)) * y^{w}\right]}_{(1)} * \underbrace{\left[(((0 * w) * y) *(0 * w)) * x^{w}\right]}_{(2)}
\end{aligned}
$$

We first consider (1), by Lemma $4(i)$ [with $a=0 * w, b=x, c=y$], we have

$$
\begin{aligned}
(((0 * w) * x) *(0 * w)) * y^{w} & =(((0 * w) * x) *(0 * w)) *((0 * w) *((0 * w) * y)) \\
& =(0 * w) *((0 * w) *((0 * x) * y)) .
\end{aligned}
$$

Similarly for (2), by Lemma $4(i)$ [with $a=0 * w, b=y, c=x$], we have

$$
(((0 * w) * y) *(0 * w)) * x^{w}=(((0 * w) * y) *(0 * w)) *((0 * w) *((0 * w) * x))
$$

$$
=(0 * w) *((0 * w) *((0 * y) * x))
$$

Thus,

$$
\begin{aligned}
{\left[x^{w}, y^{w}\right] } & =\underbrace{\left[(((0 * w) * x) *(0 * w)) * y^{w}\right]}_{(1)} * \underbrace{\left[(((0 * w) * y) *(0 * w)) * x^{w}\right]}_{(2)} \\
& =[(0 * w) *((0 * w) *((0 * x) * y))] *[(0 * w) *((0 * w) *((0 * y) * x))] .
\end{aligned}
$$

Applying Lemma $4(i i)$ [with $a=0 * w, b=(0 * x) * y, c=(0 * y) * x$], we have

$$
\begin{aligned}
{\left[x^{w}, y^{w}\right] } & =[(0 * w) *((0 * w) *((0 * x) * y))] *[(0 * w) *((0 * w) *((0 * y) * x))] \\
& =(0 * w) *[(0 * w) *(((0 * x) * y) *((0 * y) * x))] \\
& =(0 * w) *((0 * w) *[x, y]) \\
& =[x, y]^{w}
\end{aligned}
$$

Theorem 2. Let $w, x, y, z \in X$. Then $[x *(0 * y), z]=[x, z]^{y} *[z, y]$.
Proof. By (III) and P2, we have

$$
\begin{aligned}
{[x, z]^{y} *[z, y] } & =((0 * y) *((0 * y) *[x, z])) *[z, y] \\
& =(0 * y) *([z, y] *(0 *((0 * y) *[x, z]))) \\
& =(0 * y) *([z, y] *([x, z] *(0 * y))) \\
& =(0 * y) *[(((0 * z) * y) *((0 * y) * z)) *((((0 * x) * z) *((0 * z) * x)) *(0 * y)))]
\end{aligned}
$$

For simplicity, we write $x^{\prime}=0 * x, y^{\prime}=0 * y, z^{\prime}=0 * z$. Thus, by (III), P1, and P2, we get

$$
\begin{aligned}
{[x, z]^{y} *[z, y] } & =y^{\prime} *\left[\left(\left(z^{\prime} * y\right) *\left(y^{\prime} * z\right)\right) *\left(\left(\left(x^{\prime} * z\right) *\left(z^{\prime} * x\right)\right) * y^{\prime}\right)\right] \\
& =y^{\prime} *\left[\left(z^{\prime} *\left(\left(y^{\prime} * z\right) * y^{\prime}\right)\right) *\left(\left(\left(x^{\prime} * z\right) *\left(z^{\prime} * x\right)\right) * y^{\prime}\right)\right] \\
& =y^{\prime} *\left[z^{\prime} *\left(\left(\left(\left(x^{\prime} * z\right) *\left(z^{\prime} * x\right)\right) * y^{\prime}\right) *\left(y^{\prime} *\left(y^{\prime} * z\right)\right)\right)\right]
\end{aligned}
$$

Applying Lemma $4(i i i)$ [with $\left.a=x^{\prime}, b=z, c=y^{\prime}\right]$, P2, and (III), we get

$$
\begin{aligned}
{[x, z]^{y} *[z, y] } & =y^{\prime} *\left[z^{\prime} *\left(\left(x^{\prime} * z\right) *\left(y^{\prime} * x\right)\right)\right] \\
& =y^{\prime} *\left[z^{\prime} *\left(\left(x^{\prime} * z\right) *\left(0 *\left(x * y^{\prime}\right)\right)\right)\right] \\
& =y^{\prime} *\left[\left(z^{\prime} *\left(x * y^{\prime}\right)\right) *\left(x^{\prime} * z\right)\right] \\
& =y^{\prime} *\left[\left(z^{\prime} *\left(x * y^{\prime}\right)\right) *\left(0 *\left(z * x^{\prime}\right)\right)\right] \\
& =\left(y^{\prime} *\left(z * x^{\prime}\right)\right) *\left(z^{\prime} *\left(x * y^{\prime}\right)\right) \\
& =((0 * y) *(z *(0 * x))) *((0 * z) *(x *(0 * y))) \\
& =(((0 * y) * x) * z) *((0 * z) *(x *(0 * y))) \\
& =((0 *(x *(0 * y))) * z) *((0 * z) *(x *(0 * y))) \\
& =[x *(0 * y), z] .
\end{aligned}
$$

Corollary 1. Let $x, y, z \in X$. Then $[x, y *(0 * z)]=[x, z] *[y, x]^{z}$.
Proof. By Lemma 2(ii), Theorem 2, and P2, we get

$$
\begin{aligned}
{[x, y *(0 * z)] } & =0 *[y *(0 * z), x] \\
& =0 *\left([y, x]^{z} *[x, z]\right) \\
& =[x, z] *[y, x]^{z} .
\end{aligned}
$$

Theorem 3. Let $x, y \in X$. Then $[x, 0 * y]=[y, x]^{0 * y}$.
Proof. By Theorem 1, Lemma $3(v, v i), \mathrm{P} 1, \mathrm{P} 4$, Lemma $3(v i i i), \mathrm{P} 2$, and P 3 , we get

$$
\begin{aligned}
{[y, x]^{0 * y} } & =\left[y^{0 * y}, x^{0 * y}\right] \\
& =\left[y, x^{0 * y}\right] \\
& =\left((0 * y) * x^{0 * y}\right) *\left(\left(0 * x^{0 * y}\right) * y\right) \\
& =((0 * x) *(0 *(0 * y))) *\left(\left(0 * x^{0 * y}\right) * y\right) \\
& =((0 * x) * y) *\left(\left(0 * x^{0 * y}\right) * y\right) \\
& =(0 * x) *\left(0 * x^{0 * y}\right) \\
& =(0 * x) *(0 *(y *(y * x))) \\
& =(0 * x) *((y * x) * y) \\
& =((0 * x) *(0 * y)) *(y * x) \\
& =((0 * x) *(0 * y)) *((0 *(0 * y)) * x) \\
& =[x, 0 * y] .
\end{aligned}
$$

Corollary 2. Let $x, y \in X$. Then $[0 * x, y]=[y, x]^{0 * x}$.
Proof. By Lemma 2(ii), Theorem 3, and Lemma 3(i), we get

$$
\begin{aligned}
{[0 * x, y] } & =0 *[y, 0 * x] \\
& =0 *[x, y]^{0 * x} \\
& =(0 *[x, y])^{0 * x} \\
& =[y, x]^{0 * x}
\end{aligned}
$$

3. k th B-commutators

We recall first the concept of solvable B-algebras [8]. Let

$$
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n}=\{0\}
$$

be a series of subalgebras of X. The series is called a subnormal B-series if each H_{i} is normal in H_{i-1}. The series is called a normal B-series if each H_{i} is normal in X. Since $\{0\}$ is normal in X, every B -algebra has a normal B -series. If X has a subnormal B-series $X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\}$ such that H_{i} / H_{i+1} is commutative, $i=0,1, \ldots, n-1$, then we say that X is solvable. Such a subnormal B-series is called a solvable B-series for X.

For simplicity, we write the derived B-algebra $D(X)$ as X^{\prime}.
Definition 1. Set $X^{(1)}=X^{\prime}$ and define inductively $X^{(k+1)}=X^{(k)^{\prime}}$, the B-commutator subalgebra of $X^{(k)}, k>0$. For any positive integer $k, X^{(k)}$ is called the k th B-commutator subalgebra of X.

By Lemma 1, a B-algebra X is commutative if and only if $X^{\prime}=\{0\}$.
Example 4. Let $(X ; *, 0)$ be the noncommutative B-algebra in Example 2. Then from the computations in Example 3, we see that $X^{\prime}=\{0,1,2\}$ and $X^{(2)}=\{0,1,2\}^{\prime}=\{0\}$. Thus, $X^{(k)}=\{0\}$ for all $k \geq 2$.

The following theorem characterizes solvable B-algebra.
Theorem 4. X is solvable if and only if there is positive integer m such that $X^{(m)}=\{0\}$.
Proof. Suppose that X is solvable. Then X has a solvable series, say,

$$
X=H_{0} \supseteq H_{1} \supseteq H_{2} \supseteq \cdots \supseteq H_{n-1} \supseteq H_{n}=\{0\} .
$$

Since H_{i+1} is normal in H_{i} and H_{i} / H_{i+1} is commutative, $H_{i}^{\prime} \subseteq H_{i+1}$ by [24, Theorem 4.14]. Hence,

$$
H_{1} \supseteq H_{0}^{\prime}=X^{(1)}, H_{2} \supseteq H_{1}^{\prime} \supseteq X^{(2)}, \ldots,\{0\}=H_{n} \supseteq H_{n-1}^{\prime} \supseteq X^{(n)} .
$$

Thus, $X^{(n)}=\{0\}$.
Conversely, suppose that $X^{(m)}=\{0\}$. The series $X \supseteq X^{(1)} \supseteq \cdots \supseteq X^{(m-1)}=\{0\}$ is a solvable B-series. Thus, X is solvable.

Proposition 1. Let $H \neq\{0\}$ be a subalgebra of a solvable B-algebra X. Then $H^{\prime} \neq H$.
Proof. Suppose $H^{\prime}=H$. Then $H^{(2)}=\left(H^{\prime}\right)^{\prime}=H^{\prime}=H \neq\{0\}$. By induction, $H^{(n)}=H \neq\{0\}$ for any positive integer n. By [8, Theorem 12], H is solvable. Thus, by Theorem 4, there exists a positive integer n such that $H^{(n)}=\{0\}$, a contradiction. Hence, $H^{\prime} \neq H$.

Theorem 5. A finite B-algebra X is solvable if and only if $H^{\prime} \neq H$ for any subalgebra $H \neq\{0\}$ of X.

Proof. Let X be a finite B-algebra. Suppose that X is solvable. By Proposition $1, H^{\prime} \neq H$ for any subalgebra $H \neq\{0\}$ of X. Conversely, suppose that $H^{\prime} \neq H$ for any subalgebra $H \neq\{0\}$ of X. Then $X \neq X^{\prime}$. Thus, $X^{\prime} \subset X$. If $X^{(n)} \neq\{0\}$, then $X^{(n)} \neq X^{(n+1)}$, that is $X^{(n+1)} \subset X^{(n)}$. Hence, we have the following strictly descending series of subalgebras:

$$
X \supset X^{\prime} \supset \cdots \supset X^{(n)} \supset X^{(n+1)} \supset \cdots
$$

Since X is finite and $H^{\prime} \neq H$ for any subalgebra $H \neq\{0\}$ of X, there exists a positive integer n such that $X^{(n)}=\{0\}$. Hence, X is solvable.

Example 5. Let $(X ; *, 0)$ be the noncommutative B-algebra in Example 2. The nontrivial subalgebras of X are the following: $H_{1}=\{0,3\}, H_{2}=\{0,4\}, H_{3}=\{0,5\}, H_{4}=\{0,1,2\}$. Clearly, from the computations in Example 3, we get $H_{1}^{\prime}=\{0\} \neq H_{1}, H_{2}^{\prime}=\{0\} \neq H_{2}$, $H_{3}^{\prime}=\{0\} \neq H_{3}$, and $H_{4}^{\prime}=\{0\} \neq H_{4}$. In Example $4, X^{\prime}=\{0,1,2\} \neq X$. Hence, $H^{\prime} \neq H$ for any subalgebra $H \neq\{0\}$ of X. Therefore, by Theorem $5, X$ is solvable, which confirms the result in [8, Example 11].

4. Conclusion

We established some basic properties of B-commutators of B-algebras. These properties are used in characterizing solvable B-algebras via B-commutators. As a result, we showed that a B-algebra X is solvable if and only if there is positive integer m such that the m th B-commutator subalgebra $X^{(m)}$ is equal to $\{0\}$.

Acknowledgements

The author would like to thank the referees for the comments and suggestions which were incorporated into this revised version.

References

[1] J Bantug and J Endam. Lagrange's theorem for b-algebras. Int. J. Algebra, 11:15-23, 2007.
[2] J Bantug and J Endam. Maximal bp-subalgebras of b-algebras. Discuss. Math. Gen. Algebra Appl., 40:25-36, 2020.
[3] J Cho and H Kim. On b-algebras and quasigroups. Quasigroups and Related Systems, 8:1-6, 2001.
[4] J Endam. Centralizer and normalizer of b-algebras. Sci. Math. Jpn., 81:17-23, 2018.
[5] J Endam. A note on maximal bp-subalgebras of b-algebras. Afr. Mat., 34:5, 2023.
[6] J Endam and E Banagua. B-algebras acting on sets. Sci. Math. Jpn., 2:1-7, 2018.
[7] J Endam and J Bantug. Cauchy's theorem for b-algebras. Sci. Math. Jpn., 82:221228, 2019.
[8] J Endam and G Dael. Solvability of b-algebras. Discuss. Math. Gen. Algebra Appl., to appear.
[9] J Endam and A Mamhot. On blo-algebras. Asian-Eur. J. Math., 16:225-234, 2023.
[10] J Endam and R Teves. Some properties of cyclic b-algebras. Int. Math. Forum, 11:387-394, 2016.
[11] J Endam and J Vilela. The second isomorphism theorem for b-algebras. Appl. Math. Sci., 8:1865-1872, 2014.
[12] N Gonzaga and J Vilela. On cyclic b-algebras. Appl. Math. Sci., 9:5507-5522, 2015.
[13] Q Hu and X Li. On bch-algebras. Math. Seminar Notes, 11:313-320, 1983.
[14] Y Imai and K Iseki. On axiom system of propositional calculi. Proc. Japan Acad. Ser. A Math. Sci., 42:19-22, 1966.
[15] K Iseki. An algebra related with a propositional calculus. Proc. Japan Acad. Ser. A Math. Sci., 42:26-29, 1966.
[16] H Kim and H Park. B-algebras and groups. Sci. Math. Jpn., 62:7-12, 2005.
[17] J Lingcong and J Endam. Direct product of b-algebras. Int. J. Algebra, 10:33-40, 2016.
[18] J Lingcong and J Endam. Mappings of the direct product of b-algebras. Int. J. Algebra, 10:133-140, 2016.
[19] A Mamhot and J Endam. On bpo-algebras. Afr. Mat., 30:1237-1248, 2019.
[20] J Neggers and H Kim. A fundamental theorem of b-homomorphism for b-algebras. Int. Math. J., 2:207-214, 2002.
[21] J Neggers and H Kim. On b-algebras. Mat. Vesnik, 54:21-29, 2002.
[22] J Neggers P Allen and H Kim. B-algebras and groups. Sci. Math. Jpn., 9:159-165, 2003.
[23] A Saied R Ameri, S Nematolah Zadeh, A Radfar, and R Borzooei. On finite b-algebra. Afr. Mat., 26:825-847, 2015.
[24] R Soleimani. A note on automorphisms of finite b-algebras. Afr. Mat., 29:263-275, 2018.
[25] A Walendziak. A note on normal subalgebras in b-algebras. Sci. Math. Jpn., 62:1-6, 2005.
[26] A Walendziak. Some axiomatizations of b-algebras. Math. Slovaca, 56:301-306, 2006.

