EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1809-1816
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

b_{J}^{*} Sets and b_{J}^{*}-Compact Ideal Spaces

Michael P. Baldado Jr.
Mathematics Department, Negros Oriental State University, Dumaguete City, Philippines

Abstract

We came up with the concept b^{*}-open set which has stricter condition with respect to the notion b-open sets, introduced by Andrijevic [2] as a generalization of Levine's [7] generalized closed sets. The condition imposes equality instead of inclusion. In this study, we gave some important properties of b^{*}-open sets with respect to an ideal, and b^{*}-compact spaces.

2020 Mathematics Subject Classifications: 54D30
Key Words and Phrases: b^{*}-open sets, b_{J}^{*}-open sets, ideals, b^{*}-compact space, b_{J}^{*}-compact space

1. Introduction

Topology is a relatively new branch of mathematics, being introduced in the 19th century. But topology is already seen in many areas of science [10]. It is applied in biochemistry [3] and information systems [15]. Topology as a mathematical system is fundamentally comprised of sets together with the operations union and intersection. Over time, open sets (elements of topology) were generalized in different directions. To name a few, Stone [16] presented regular open set. Levine [6] presented semi-open sets. Njasted [12] presented α-open sets. Mashhour et al. [8] presented pre-open sets. Abd El-Monsef et al. [1] presented β-open set.

It was in the year 1970, when Levine [7] presented the concept of generalized closed sets, and achoring on this notion, Andrijevic [2] presented yet another generalization of open sets called b-open sets. This study uses the notion of b-open sets to come up with a new concept called b^{*}-open sets.

The concept ideal topological spaces (or simply, ideal space) was first seen in [5]. Vaidyanathaswamy [19] investigated this concept in point set topology. Tripathy and Shravan [13, 14], Tripathy and Acharjee [17], Tripathy and Ray [18], Catalan et al. [4] among others, also made investigations in ideal topological spaces.

Several concepts in topology were generalized using this structure. One of which is the concept b^{*}-open sets. Consequently, using the notion of b^{*}-open sets, we introduced

[^0]the concepts b^{*}-compact sets, compatible b_{J}^{*}-compact sets, countably b_{J}^{*}-compact sets, b_{J}^{*}-connected sets, in ideal generalized topological spaces.

Let W be a non-empty set. An ideal J on a set W is a non-empty collection of subsets of W which satisfies:

1. $B \in J$ and $D \subseteq B$ implies $D \in J$.
2. $B \in J$ and $D \in J$ implies $B \cup D \in J$.

Let W be a topological space and B be a subset of W. We say that B is b^{*}-open set if $B=\operatorname{cl}(\operatorname{int}(B)) \cup \operatorname{int}(\operatorname{cl}(B))$. For example, consider $W=\{a, b, c\}$ and the topology $\varsigma=\{\varnothing,\{a\},\{b\},\{a, b\}, W\}$ on W. Then the b^{*}-open subsets are $\varnothing,\{a, b\},\{c\}$ and W.

Let W be a topological space and B be a subset of W. The set B is called b^{*}-open relative to an ideal J (or b_{J}^{*}-open), if there is an open set P with $P \subseteq \operatorname{Int}(B)$, and a closed set S with $\mathrm{Cl}(B) \subseteq S$ such that

1. $(\operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B))) \backslash B \in J$, and
2. $B \backslash(\operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P)) \in J$.

In addition, we say that a set B is a b_{J}^{*}-close set if B^{C} is b_{J}^{*}-open.
Consider the ideal space $(\{q, r, s\},\{\varnothing,\{q\},\{r\},\{q, r\},\{q, r, s\}\},\{\varnothing,\{r\}\})$. Then $B=$ $\{r, s\}$ is a b^{*}-open with respect to the ideal $J=\{\varnothing,\{r\}\}$. To see this, we let P be the open set $\{r\}$ and S be the closed set $\{r, s\}$. Then $\operatorname{Int}(S) \cup \operatorname{cl}(\operatorname{int}(\{r, s\})) \backslash\{r, s\}=\operatorname{int}(\{r, s\}) \cup$ $\operatorname{cl}(\{r\}) \backslash\{r, s\}=\{r\} \cup\{r, s\} \backslash\{r, s\}=\{r, s\} \backslash\{r, s\}=\varnothing \in J$. Also, $\operatorname{Int}(\operatorname{cl}(\{r, s\}) \cup$ $\operatorname{cl}(P) \backslash\{r, s\}=\operatorname{int}(\{r, s\}) \cup \operatorname{cl}(\{r\}) \backslash\{r, s\}=\{r\} \cup\{r, s\} \backslash\{r, s\}=\{r, s\} \backslash\{r, s\}=\varnothing \in J$. This shows that $B=\{r, s\}$ is a b_{J}^{*}-open.

Let W be a topological space and B be a subset of W. The set B is called nearly b^{*} open relative to an ideal J (or nearly b_{J}^{*}-open) if there is an open set P with $P \subseteq \operatorname{Int}(B)$, and a closed set S with $\mathrm{Cl}(B) \subseteq S$ such that

1. $(\operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B))) \backslash \mathrm{Cl}(B) \in J$, and
2. $B \backslash(\operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P)) \in J$.

Consider the ideal topological space $(\{1,2,3\},\{\varnothing,\{1\},\{2\},\{1,2\},\{1,2,3\}\}$, $\{\varnothing,\{2\}\}$). Then $B=\{2,3\}$ is a nearly b^{*}-open with respect to the ideal J (or nearly b_{J}^{*}-open). To see this, we let P be the open set $\{2\}$ and S be the closed set $\{2,3\}$. Then $\operatorname{Int}(S) \cup \operatorname{cl}(\operatorname{int}(\{2,3\})) \backslash \operatorname{cl}(\{2,3\})=\operatorname{int}(\{2,3\}) \cup \operatorname{cl}(\{2\}) \backslash \operatorname{cl}(\{2,3\})=\{2\} \cup\{2,3\} \backslash \operatorname{cl}(\{2,3\})=$ $\{2,3\} \backslash\{2,3\}=\varnothing \in J$. Also, $\operatorname{Int}(\operatorname{cl}(\{2,3\}) \cup \operatorname{cl}(P) \backslash\{2,3\}=\operatorname{int}(\{2,3\}) \cup \operatorname{cl}(\{2\}) \backslash\{2,3\}=$ $\{2\} \cup\{2,3\} \backslash\{2,3\}=\{2,3\} \backslash\{2,3\}=\varnothing \in J$. This shows that $B=\{2,3\}$ is a nearly b_{J}^{*}-open.

The set B is said to be b^{*}-compact if every cover of B by b^{*}-open sets, containing W, has a smaller finite sub-cover. The space W is said to be a b^{*}-compact space if W is b^{*}-compact set. Consider the topological space $(W=\{a, b, c\},\{\varnothing,\{a\},\{b, c\}, W\}, J=\{\varnothing,\{a\}\})$. Then $B=\{a\}$ is a b^{*}-compact set, while $D=\{a, b\}$ is not. To see this, we note that the
b^{*}-open sets of W are $\varnothing,\{a\},\{b, c\}$ and W. Observe that the covering of B containing W is $\{\{a\}, W\}$. Thus, $\{\{a\}\}$ is a smaller cover. Hence, $B=\{a\}$ is a b^{*}-compact set.

On the other hand, observe that the covering of D containing W are $\{\{a\},\{b, c\}, W\}$ and $\{\{b, c\}, W\}$. Since $\{\{b, c\}, W\}$ has no smaller subcover, $D=\{a, b\}$ is not a b^{*}-compact set.

The set B is called b_{J}^{*}-compact if every cover of B by b_{J}^{*}-open sets which contains W, has a smaller finite sub-cover. The space W is called b_{J}^{*}-compact space if it is b_{J}^{*}-compact set. Consider the ideal topological space $(W=\{x, y, z\},\{\varnothing,\{x\},\{y\},\{x, y\}, W\},\{\varnothing,\{y\}\})$. Then $B=\{y, z\}$ is a b_{J}^{*}-compact set where $J=\{\varnothing,\{y\}\}$. To see this, we note that the b_{J}^{*}-open sets of W are $\varnothing,\{y, z\}$ and W. Hence, every cover $\left\{P_{\psi}: \psi \in \Psi\right\}$ of B by b_{J}^{*}-open set must contain $\{y, z\}$ or W. Thus, each of the following is a covering of $B:\{\{y, z\}\}$; $\{\{y, z\}, W\}$; and $\{W\}$. Note that $\{\{y, z\}, W\}$ is a covering of B which has a smaller subcover $\{\{y, z\}\}$. This shows that $B=\{y, z\}$ is a b_{J}^{*}-compact set.

Now, consider the ideal topological space $(W=\{l, m, n\},\{\varnothing,\{l\},\{m\},\{l, m\}, W\}$, $\{\varnothing,\{m\}\})$. Then $B=\{l, m\}$ is a not b_{J}^{*}-compact set where $J=\{\varnothing,\{m\}\}$. To see this, we note again that the b_{J}^{*}-open sets of W are $\varnothing,\{m, n\}$ and W. Hence, every cover $\left\{P_{\psi}: \psi \in \Psi\right\}$ of B by b_{J}^{*}-open set must contain W. Thus, each of the following is a covering of $B:\{\{m, n\}, W\}$; and $\{W\}$. Note that $\{\{m, n\}, W\}$ has no smaller. This shows that $B=\{l, y\}$ is not a b_{J}^{*}-compact set.

The set B is said to be compatible b_{J}^{*}-compact (or simply $c b_{J}^{*}$-compact) if any cover $\left\{P_{\psi}: \psi \in \Psi\right\}$ of B by b_{J}^{*}-open sets containing W, Ψ has a smaller finite subset Ψ_{0} such that $B \backslash \bigcup\left\{U_{\psi}: \psi \in \Psi_{0}\right\} \in J$. The topological space W is said to be a $c b_{J_{-}^{*}}^{*}$ compact space if it is $c b_{J}^{*}$-compact as a set. Consider the ideal topological space $(Z, \varsigma, J)=$ $(\{h, i, j\},\{\varnothing,\{h\},\{i, j\}, Z\},\{\varnothing,\{i\}\})$. Then $\{h, i\}$ is a compatible b_{J}^{*}-compact where $J=$ $\{\varnothing,\{i\}\}$. To see this, we observe that the b_{J}^{*}-open sets of Z are $\varnothing,\{h\},\{i, j\}$ and Z. Hence, every cover $\left\{P_{\psi}: \psi \in \Psi\right\}$ of Z by b_{J}^{*}-open set must contain $\{h\},\{i, j\}$ or Z. Thus, $\left\{P_{\psi}: \psi \in \Psi\right\}$ is $\{\{h\},\{i, j\}\}$ or $\{\{h\}, Z\}$ or $\{Z,\{i, j\},\{h\}\}$ or $\{Z,\{i, j\}\}$. In the first 3 cases, there is a smaller subset $\{\{h\}\}$ such that $\{h, i\} \backslash\{h\}=\{i\} \in J$, and for the last case, there exist a smaller subset $\{\{h, i\}\}$ such that $\{h, i\} \backslash\{h, i\}=\varnothing \in J$. This shows that $\{h, i\}$ is a compatible b_{J}^{*}-compact set. Next, consider the ideal topological space $(V=\{q, r, s\},\{\varnothing,\{q\},\{r, s\}, V\},\{\varnothing,\{s\}\})$. Then $\{q, r\}$ is not compatible b_{J}^{*}-compact. To see this, we note that the b_{J}^{*}-open sets of V are $\varnothing,\{q\},\{r, s\}$ and V. Hence, every cover $\left\{P_{\psi}: \psi \in \Psi\right\}$ of $\{q, r\}$ by b_{J}^{*}-open set must contain $\{q\},\{r, s\}$ or V. Thus, $\left\{P_{\psi}\right.$: $\psi \in \Psi\}$ is $\{\{q\},\{r, s\}\}$ or $\{\{q\}, V\}$ or $\{V,\{r, s\},\{q\}\}$ or $\{V,\{r, s\}\}$. Consider the open cover $\{\{q\},\{r, s\}\}$. Note that its smaller covers are $\{\{q\}\}$ and $\{\{r, s\}\}$. Observe that $\{q, r\} \backslash\{q\}=\{r\} \notin J$ and $\{q, r\} \backslash\{r, s\}=\{q\} \notin J$. This shows that $\{q, r\}$ is not a compatible b_{J}^{*}-compact set.

2. Results

We present some of the important properties of b^{*}-open sets and b_{J}^{*}-open sets. Lemma 1 is a characterization of b^{*}-open sets.

Lemma 1. Let (Y, ς, J) be an ideal space and B be a subset of Y. Then B is an b^{*}-open set precisely when there is an open set P with $P \subseteq \operatorname{Int}(B)$ and there is a close set S with $C l(B) \subseteq S$ such that $\operatorname{Int}(S) \cup C l(\operatorname{Int}(B)) \subseteq B \subseteq \operatorname{Int}(C l(B)) \cup C l(P)$.

Proof. Necessity. Let B is a b^{*}-open set. Then $B=\operatorname{Int}(\operatorname{Cl}(B)) \cup \mathrm{Cl}(\operatorname{Int}(B))$. Take the open set $P=\operatorname{Int}(B)$ and the close set $S=\mathrm{Cl}(B)$. Note that $\operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B)) \subseteq$ $\operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(\operatorname{Int}(B))=B$, and $\operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P) \supseteq \operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(\operatorname{Int}(B))=B$. Hence, $\operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B)) \subseteq B \subseteq \operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P)$.

Sufficiency. Next, let P be an open set with $P \subseteq \operatorname{Int}(B)$ and let S be a closed set with $\mathrm{Cl}(B) \subseteq S$ such that $\operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B)) \subseteq B \subseteq \operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P)$. Then $B \supseteq \operatorname{Int}(S) \cup \mathrm{Cl}(\operatorname{Int}(B)) \supseteq \operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(\operatorname{Int}(B))$, and $B \supseteq \operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(P) \subseteq$ $\operatorname{Int}(\mathrm{Cl}(B)) \cup \mathrm{Cl}(\operatorname{Int}(B))$.

Therefore, $B=\operatorname{Int}(\mathrm{Cl}(B)) \cup \operatorname{Cl}(\operatorname{Int}(B))$, that is B is a b^{*}-open set.

An open set is nearly b_{J}^{*}-open. The next lemma, Lemma 2, shows this idea.
Lemma 2. Let (Y, ς, J) be an ideal space. Then every open set is a b_{J}^{*}-open set.
Proof. Let B be an open set, and consider $S=\varnothing=P$. Then S and P are both open and closed. Observed that $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P) \supseteq \operatorname{int}(B) \cup \operatorname{cl}(\varnothing)=\operatorname{int}(B) \cup \varnothing=\operatorname{int}(B)=B$, and $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B))=\operatorname{int}(\varnothing) \cup \operatorname{cl}(\operatorname{int}(B)) \subseteq \varnothing \cup \operatorname{cl}(B)=\operatorname{cl}(B)$.

Hence, we have $B \backslash \operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P)=\varnothing \in J$, and $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B)) \backslash \operatorname{cl}(B)=\varnothing \in J$, that is, B is nearly b_{J}^{*}-open.

An element of ideal J is nearly b_{J}^{*}-open set. The next lemma, Lemma 3, shows this idea. Please see [9] and [4] to have more insights.

Lemma 3. Let (Y, ς, J) be an ideal space. Then each element of J is b_{J}^{*}-open.
Proof. Let $B \in J$. Since $B-\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(B) \subseteq B$, we have $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(B) \in J$. Next, consider $S=\varnothing$. Then $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B)) \backslash \operatorname{cl}(B)=\operatorname{int}(\varnothing) \cup \operatorname{cl}(\operatorname{int}(B)) \backslash \operatorname{cl}(B)=$ $\varnothing \cup \operatorname{cl}(\operatorname{int}(B)) \backslash \operatorname{cl}(B)=\operatorname{cl}(\operatorname{int}(B)) \backslash \operatorname{cl}(B)=\varnothing \in J$. Therefore, B is nearly b_{J}^{*}-open.

Lemma 4 says that each b^{*}-open set is b_{J}^{*}-open.
Lemma 4. Let (Y, ς, J) be an ideal space. Then a b^{*}-open set is b_{J}^{*}-open.
Proof. Let B be a b^{*}-open set. Then $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(\operatorname{int}(B))=B$. Consider $P=\operatorname{int}(B)$ and $S=\operatorname{cl}(B)$. Then P is open with $P \subseteq \operatorname{int}(B)$, and S is closed with $S \subseteq \operatorname{cl}(B)$. Observed that $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P)=\operatorname{int}(B) \cup \operatorname{cl}(\operatorname{int}(B))=B$, and $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B))=$ $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(\operatorname{int}(B))=B$.

Hence, we have $B \backslash \operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P)=\varnothing \in J$, and $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B)) \backslash B=\varnothing \in J$, that is, B is b_{J}^{*}-open.

Lemma 5. Let (Y, ς, J) be an ideal space with $J=\{\varnothing\}$. Then B is b^{*}-open precisely if B is b_{J}^{*}-open.

Proof. Necessity. Let B be b_{J}^{*}-open. Then there is an open set P such that $P \subseteq \operatorname{int}(B)$, and there is a close set S such that $S \subseteq \operatorname{cl}(B)$. Hence, $B \subseteq \operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P)$, and $\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B)) \subseteq B$. Thus, $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(\operatorname{int}(B))=\operatorname{int}(S) \cup \operatorname{cl}(\operatorname{int}(B)) \subseteq B$, and $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(\operatorname{int}(B))=\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(P) \supseteq B$. Therefore, $\operatorname{int}(\operatorname{cl}(B)) \cup \operatorname{cl}(\operatorname{int}(B))=B$, that is, B is b^{*}-open.

Sufficiency. The converse follows from Lemma 4.

If J is the minimal ideal, then the notions b^{*}-compact, b_{J}^{*}-compact and $c b^{*} J$-compact are the same. Theorem 1 shows this idea.

Theorem 1. Let (Y, ς, J) be an ideal space with $J=\{\varnothing\}$. Then the following are equivalent.
(i). (Y, ς, J) is a b^{*}-compact ideal space.
(ii). (Y, ς, J) is a b_{J}^{*}-compact ideal space.
(iii). (Y, ς, J) is a cb ${ }_{J}^{*}$-compact ideal space.

Proof. (i) implies (ii): Let $\left\{U_{\psi}: \psi \in \Psi\right\}$ be a b_{J}^{*}-open covering Y. By Lemma 5, $\left\{U_{\psi}: \psi \in \Psi\right\}$ is also a b^{*}-open covering Y. Since Y is a b^{*}-compact ideal space, Ψ has a smaller finite subset, say Ψ_{0}, with $\left\{U_{\psi}: \psi \in \Psi_{0}\right\}$ still covering Y. Thus, by Lemma 5 , $\left\{U_{\psi}: \psi \in \Psi_{0}\right\}$ is a smaller finite b_{J}^{*}-covering of Y. This shows that Y is a b_{J}^{*} compact set.
(ii) implies (iii): Let $\left\{U_{\psi}: \psi \in \Psi\right\}$ be a b_{J}^{*}-open covering Y. Since Y is a b_{J}^{*}-compact ideal space, Ψ has a smaller finite subset, say Ψ_{0}, with $\left\{U_{\psi}: \psi \in \Psi_{0}\right\}$ still covering Y. Thus, $Y-\underset{\psi \in \Psi_{0}}{\bigcup} U_{\psi}=\varnothing \in J$. Therefore, Y is $c b_{J}^{*}$ compact set.
(iii) implies (i): Let $\left\{U_{\psi}: \psi \in \Psi\right\}$ be a b^{*}-open covering Y. y Lemma 5 , $\left\{U_{\psi}: \psi \in \Psi\right\}$ is also a b_{J}^{*}-open covering Y. Since Y is a $c b_{J}^{*}$-compact ideal space, Ψ has a smaller finite subset, say Ψ_{0}, with $Y-\bigcup_{\psi \in \Psi_{0}} U_{\psi}=\varnothing \in J$, that is, $\left\{U_{\psi}: \psi \in \Psi_{0}\right\}$ is a smaller finite b^{*}-covering of Y. Therefore, Y is b^{*} compact set.

Another characterization of b_{J}^{*}-compact topological spaces is presented in Theorem 2.
Theorem 2. Let (Y, ς, J) be an ideal space. Then statement (i) is a necessary and sufficient condition for statement (ii).
i. (Y, ς, J) is a b_{J}^{*}-compact space.
ii. If $\left\{S_{\psi}: \psi \in \Psi\right\}$ is a class of b_{J}^{*}-closed sets with $\bigcap\left\{S_{\psi}: \psi \in \Psi\right\}=\varnothing$, then Ψ has a smaller finite subset, say Ψ_{0}, with $\bigcap\left\{S_{\psi}: \psi \in \Psi_{0}\right\}=\varnothing$.

Proof. (i) implies (ii): Let $\left\{S_{\psi}: \psi \in \Psi\right\}$ be a class of b_{J}^{*}-closed sets with $\bigcap\left\{S_{\psi}: \psi \in\right.$ $\Psi\}=\varnothing$. Then $Y=\varnothing^{C}=\left(\bigcap\left\{S_{\psi}: \psi \in \Psi\right\}\right)^{C}=\bigcup\left\{S_{\psi}^{C}: \psi \in \Psi\right\}$. Hence, $\left\{S_{\psi}^{C}: \psi \in \Psi\right\}$ is a class of b_{J}^{*}-open sets which covers of Y. By assumption, Ψ has a smaller finite subset, say Ψ_{0}, with the property $\bigcup\left\{S_{\psi}^{C}: \psi \in \Psi_{0}\right\}=X$. Hence, $\left(\bigcap\left\{S_{\psi}: \psi \in \Psi_{0}\right\}=\bigcup\left\{S_{\psi}^{C}: \psi \in\right.\right.$ $\left.\left.\Psi_{0}\right\}\right)^{C}=Y^{C}=\varnothing$.
(ii) implies (i) : Let $\left\{P_{\psi}: \psi \in \Psi\right\}$ be a b_{J}^{*}-open covering of Y, i.e. $\bigcup\left\{P_{\psi}: \psi \in \Psi\right\}=Y$. Then $\bigcap\left\{P_{\psi}^{C}: \psi \in \Psi\right\}=\left(\bigcup\left\{P_{\psi}: \psi \in \Psi\right\}\right)^{C}=\varnothing$. Note that P^{C} is b_{J}^{*}-close since P is $b_{J^{-o p}}^{*}$. By assumption, Ψ has a smaller finite subset, say Ψ_{0}, with the property that $\bigcap\left\{P_{\psi}^{C}: \psi \in \Psi_{0}\right\}=\varnothing$. Note that $\bigcup\left\{P_{\psi}: \psi \in \Psi_{0}\right\}=\left(\bigcap\left\{P_{\psi}^{C}: \psi \in \Psi_{0}\right\}\right)^{C}=Y$. Hence, $\left\{P_{\psi}: \psi \in \Psi_{0}\right\}$ is a class of b_{J}^{*}-open sets that covers Y.

Another characterization of $c b_{J}^{*}$-compact topological spaces is presented in Theorem 3.
Theorem 3. Let (Y, ς, J) be an ideal topological space. Then (i) is a necessary and sufficient condition for statement (ii).
i. (Y, ς, J) is $c b_{J}^{*}$-compact.
ii. If $\left\{S_{\psi}: \psi \in \Psi\right\}$ is a class of b_{J}^{*}-closed sets with $\bigcap\left\{S_{\psi}: \psi \in \Psi\right\}=\varnothing$, then Ψ has a smaller finite subset, say Λ_{0}, with the property that $\bigcap\left\{F_{\lambda}: \lambda \in \Lambda_{0}\right\} \in I$.

Proof. (i) implies (ii): Let $\left\{S_{\psi}: \psi \in \Psi\right\}$ be a class of b_{J}^{*}-closed sets such that $\bigcap\left\{S_{\psi}: \psi \in \Psi\right\}=\varnothing$. Note that $\bigcup\left\{S_{\psi}^{C}: \psi \in \Psi\right\}=\left(\bigcap\left\{S_{\psi}: \psi \in \Psi\right\}\right)^{C}=Y$. Hence, $\left\{S_{\psi}^{C}: \psi \in \Psi\right\}$ is a class of b_{J}^{*}-open sets covering Y. By assumption, Ψ has a finite subset, say Ψ_{0}, with $Y-\bigcup\left\{S_{\lambda}^{C}: \psi \in \Psi_{0}\right\} \in J$, i.e. $\bigcap\left\{S_{\psi}: \psi \in \Psi_{0}\right\} \in J$.
(ii) implies (i) : Let $\left\{P_{\psi}: \psi \in \Psi\right\}$ be a b_{J}^{*}-open covering of Y, i.e. $\bigcup\left\{P_{\psi}: \psi \in \Psi\right\}=Y$. Note that $\bigcap\left\{P_{\psi}^{C}: \psi \in \Psi\right\}=\left(\bigcup\left\{P_{\psi}: \psi \in \Psi\right\}\right)^{C}=\varnothing$. By assumption, Ψ has a smaller finite subset, say Ψ_{0}, with $\bigcap\left\{P_{\psi}^{C}: \psi \in \Psi_{0}\right\} \in J$, i.e. $Y-\bigcup\left\{P_{\psi}: \psi \in \Psi_{0}\right\} \in J$.

Remark 1. [11] Let (Y, ς, J) and (W, ξ, K) be ideal topological spaces, and $\zeta: Y \rightarrow W$ be a mapping. Then:
i. $\zeta(J)=\{\zeta(B): B \in J\}$ is an ideal in W; And,
i. if ζ is a one to one correspondence, then $\zeta^{-1}(K)=\left\{\zeta^{-1}(D): D \in K\right\}$ is an ideal in Y.

Definition 1. Let (Y, ς, J) and (W, ξ, K) be ideal spaces. A mapping $\zeta: Y \rightarrow W$ is
i. b_{J}^{*}-open if $\zeta(B)$ is b_{K}^{*}-open for every b_{J}^{*}-open set B in Y, and
ii. b_{J}^{*}-irresolute if $\zeta^{-1}(D)$ is b_{J}^{*}-open for each b_{K}^{*}-open set D in W.

If the domain of a b^{*}-irresolute map is $c b_{J}^{*}$-compact with respect to an ideal, then so is the image. We show this idea in Theorem 4.

Theorem 4. Let (Y, ς, J) and (W, ξ, K) be ideal spaces, and $\zeta: Y \rightarrow W$ be a b_{J}^{*}-irresolute function with $\zeta(J)=K$. If Y is a cb J_{J}^{*}-compact, then $\zeta(Y)$ is $c b_{K}^{*}$-compact.

Proof. Let $\left\{P_{\psi}: \psi \in \Psi\right\}$ be a b_{K}^{*}-open covering of $\zeta(Y)$. Since ζ is b_{J}^{*}-irresolute, $\left\{\zeta^{-1}\left(P_{\psi}\right): \psi \in \Psi\right\}$ is a b_{J}^{*}-open covering Y. By assumption, Ψ has a smaller finite subset, say Ψ_{0}, with $Y-\bigcup\left\{\zeta^{-1}\left(P_{\psi}\right): \psi \in \Psi_{0}\right\} \in J$. And so by Remark 1 $\zeta(Y) \backslash \bigcup\left\{P_{\psi}: \psi \in \Psi_{0}\right\}=\zeta\left(Y-\bigcup\left\{\zeta^{-1}\left(P_{\psi}\right): \psi \in \Psi_{0}\right\}\right) \in K$.

If the co-domain of a b^{*}-open and onto map is $c b_{J}^{*}$-compact with respect to an ideal, then so is the domain. We show this idea in Theorem 5.

Theorem 5. Let (Y, ς, J) and (W, ξ, K) be ideal spaces, and $\zeta: Y \rightarrow W$ be a b_{J}^{*}-open and onto map with $\zeta(J)=K$. If W is $c b_{K}^{*}$-compact, then Y is $c b_{K}^{*}$-compact.

Proof. Let $\left\{P_{\psi}: \psi \in \Psi\right\}$ be a b_{J}^{*}-open covering of Y. Since ζ is a b_{J}^{*}-open and onto, $\left\{\zeta\left(P_{\psi}\right): \psi \in \Psi\right\}$ is a b_{K}^{*}-open covering of W. By assumption, Ψ has a smaller finite subset, say Ψ_{0}, with $W \backslash \bigcup\left\{\zeta\left(P_{\psi}\right): \psi \in \Psi_{0}\right\} \in K$. Thus, $Y \backslash \bigcup\left\{P_{\psi}: \psi \in \Psi_{0}\right\}=$ $\zeta^{-1}\left(W \backslash \bigcup\left\{\zeta\left(P_{\psi}\right): \psi \in \Psi_{0}\right\}\right) \in J$.

References

[1] M E Abd El-Monsef. β-open sets and β-continuous mappings. Bull. Fac. Sci. Assiut Univ., 12:77-90, 1983.
[2] Dimitrije Andrijević. On b-open sets. Matematički Vesnik, (205):59-64, 1996.
[3] Paritosh Bhattacharyya. Semi-generalized closed sets in topology. Indian J. Math., 29(3):375-382, 1987.
[4] Glaisa T. Catalan, Michael P. Baldado, and Roberto N. Padua. β_{I}-compactness, β_{I}^{*}-hyperconnectedness and β_{I}-separatedness in ideal topological spaces. In Francisco Bulnes, editor, Advanced Topics of Topology, chapter 7. IntechOpen, Rijeka, 2022.
[5] Kazimierz Kuratowski. Topologie. Bull. Amer. Math. Soc, 40:787-788, 1934.
[6] Norman Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70(1):36-41, 1963.
[7] Norman Levine. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19(1):89-96, 1970.
[8] A S Mashhour, M E Abd El-Monsef, and S N El-Deeh. On pre-continuous and weak pre-continuous mappings. In Proc. Math. Phys. Soc. Egypt., volume 53, pages 47-53, 1982.
[9] F I Michael. On semi-open sets with respect to an ideal. European Journal of Pure and Applied Mathematics, 6(1):53-58, 2013.
[10] S A Morris. Topology without Tears. University of New England, 1989.
[11] R L Newcomb. Topologies which are compact modulo an ideal [ph.d. dissertation]. University of California at Santa Barbara, 1967.
[12] Olav Njástad. On some classes of nearly open sets. Pacific Journal of Mathematics, 15(3):961-970, 1965.
[13] Karishma Shravan and Binod Chandra Tripathy. Generalised closed sets in multiset topological space. Proyecciones (Antofagasta), 37(2):223-237, 2018.
[14] Karishma Shravan and Binod Chandra Tripathy. Multiset ideal topological spaces and local functions. Proyecciones (Antofagasta), 37(4):699-711, 2018.
[15] A Skowron. On topology information systems. Bulletin of the Polish Academy of Sciences, 3:87-90, 1989.
[16] M H Stone. Applications of the theory of boolean rings to general topology. Transactions of the American Mathematical Society, 41(3):375-481, 1937.
[17] Binod Chandra Tripathy and Santanu Acharjee. On (γ, δ)-bitopological semi-closed set via topological ideal. Proyecciones (Antofagasta), 33(3):245-257, 2014.
[18] Binod Chandra Tripathy and Gautam Chandra Ray. Mixed fuzzy ideal topological spaces. Applied mathematics and computation, 220:602-607, 2013.
[19] R Vaidyanathaswamy. Set topology, chelsea, new york, 1960. University of New Mexico, Albuquerque, New Mexico Texas Technological College, Lubbock, Texas.

[^0]: DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4855
 Email address: michael.baldadojr@norsu.edu.ph (M. Baldado Jr.)

