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1. Introduction

The field of mathematical science called topology is concerned with all questions di-
rectly or indirectly related to continuity. Continuity is an important concept for the study
and investigation in topological spaces. This concept has been extended to the setting mul-
tifunctions and has been generalized by weaker forms of open sets. In 1965, Nj̊astad [21]
introduced a weak form of open sets called α-sets. Mashhour et al. [19] defined a function
to be α-continuous if the inverse image of each open set is an α-set and obtained sev-
eral characterizations of such functions. Noiri [22] investigated the relationships between
α-continuous functions and several known functions, for example, almost continuous func-
tions, η-continuous functions, δ-continuous functions or irresolute functions. In [23], the
present author introduced the concept of almost α-continuity in topological spaces as a gen-
eralization of α-continuity and almost continuity. Neubrunn [20] introduced the notion of
upper (resp. lower) α-continuous multifunctions. These multifunctions are further investi-
gated by the present authors [24]. Boonpok et al. [11] introduced and studied the notions
of upper and lower (τ1, τ2)-precontinuous multifunctions. Viriyapong and Boonpok [26]
introduced and investigated the concepts of upper and lower (τ1, τ2)α-continuous multi-
functions. Moreover, several characterizations of upper and lower (τ1, τ2)δ-semicontinuous
multifunctions were established in [6]. In [10], the authors investigated some character-
izations of upper and lower almost weakly (τ1, τ2)-continuous multifunctions. Laprom
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et al. [18] introduced and studied the notions of upper and lower β(τ1, τ2)-continuous
multifunctions.

The concept of ideal topological spaces was introduced and studied by Kuratowski
[17] and Vaidyanathswamy [25]. Every topological space is an ideal topological space and
all the results of ideal topological spaces are generalizations of the results established in
topological spaces. In 1990, Janković and Hamlett [16] introduced the concept of I -
open sets in ideal topological spaces. Abd El-Monsef et al. [14] further investigated
I -open sets and I -continuous functions. Later, several authors studied ideal topological
spaces giving several convenient definitions. Some authors obtained decompositions of
continuity. For instance, Açikgöz et al. [1] studied the concepts of α-I -continuity and α-
I -openness in ideal topological spaces and investigated several characterizations of these
functions. Hatir and Noiri [15] introduced the notions of semi-I -open sets, α-I -open
sets and β-I -open sets via idealization and using these sets obtained new decompositions
of continuity. In [4], the author introduced and studied the notions of upper and lower ⋆-
continuous multifunctions. Boonpok [7] investigated some characterizations of upper and
lower β(⋆)-continuous multifunctions. Furthermore, several characterizations of almost
α-⋆-continuous multifunctions and weakly α-⋆-continuous multifunctions were established
in [9] and [8], respectively. In this paper, we introduce the notions of upper and lower
α-⋆-continuous multifunctions. Moreover, some characterizations of upper and lower α-⋆-
continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. An ideal I on a topological space
(X, τ) is a nonempty collection of subsets of X satisfying the following properties: (1)
A ∈ I and B ⊆ A imply B ∈ I ; (2) A ∈ I and B ∈ I imply A∪B ∈ I . A topological
space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by
(X, τ,I ). For an ideal topological space (X, τ,I ) and a subset A of X, A⋆(I ) is defined
as follows: A⋆(I ) = {x ∈ X : U ∩A ̸∈ I for every open neighbourhood U of x}. In case
there is no chance for confusion, A⋆(I ) is simply written as A⋆. In [17], A⋆ is called the
local function of A with respect to I and τ and Cl⋆(A) = A⋆ ∪ A defines a Kuratowski
closure operator for a topology τ⋆(I ) finer than τ . A subset A is said to be ⋆-closed [16]
if A⋆ ⊆ A. The interior of a subset A in (X, τ⋆(I )) is denoted by Int⋆(A).

A subset A of an ideal topological space (X, τ,I ) is said to be semi⋆-I -open [12]
(resp. semi-I -open [15]) if A ⊆ Cl(Int⋆(A)) (resp. A ⊆ Cl⋆(Int(A))). The complement of
a semi⋆-I -open (resp. semi-I -open) set is said to be semi⋆-I -closed [12] (resp. semi-I -
closed [15]). For a subset A of an ideal topological space (X, τ,I ), the intersection of all
semi-I -closed (resp. semi⋆-I -closed) sets containing A is called the semi-I -closure [13]
(resp. semi⋆-I -closure [13]) of A and is denoted by sClI (A) (resp. s⋆ClI (A)). The union
of all semi-I -open (resp. semi⋆-I -open) sets contained in A is called the semi-I -interior
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(resp. semi⋆-I -interior) of A and is denoted by sIntI (A) (resp. s⋆IntI (A)).

Lemma 1. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) If A is an open set, then s⋆ClI (A) = Int(Cl⋆(A)).

(2) If A is a ⋆-open set, then sClI (A) = Int⋆(Cl(A)).

Proof. (1) Suppose that A is an open set. Then, A ⊆ Int(Cl⋆(A)) and by Lemma 13(1)
of [13], we have s⋆ClI (A) = A ∪ Int(Cl⋆(A)) = Int(Cl⋆(A)).

(2) Suppose that A is a ⋆-open set. Then, we have A ⊆ Int⋆(Cl(A)) and by Lemma
13(2) of [13], sClI (A) = A ∪ Int⋆(Cl(A)) = Int⋆(Cl(A)).

Recall that a subset A of an ideal topological space (X, τ,I ) is said to be α-⋆-closed
[2] if Cl⋆(Int(Cl⋆(A))) ⊆ A. The complement of an α-⋆-closed set is said to be α-⋆-open.

Proposition 1. Let (X, τ,I ) be an ideal topological space and {Aγ | γ ∈ Γ} be a family
of subsets of X. If Aγ is α-⋆-closed for each γ ∈ Γ, then ∩

γ∈Γ
Aγ is α-⋆-closed.

Proof. Suppose that Aγ is α-⋆-closed for each γ ∈ Γ. Then, we have X − Aγ is α-⋆-
open for each γ ∈ Γ. Thus, ∪

γ∈Γ
(X − Aγ) = X − ∩

γ∈Γ
Aγ is α-⋆-open and hence ∩

γ∈Γ
Aγ is

α-⋆-closed.

For a subset A of an ideal topological space (X, τ,I ), the intersection of all α-⋆-closed
sets containing A is called the α-⋆-closure of A and is denoted by ⋆αCl(A). The α-⋆-
interior of A is defined by the union of all α-⋆-open sets contained in A and is denoted
by ⋆αInt(A).

Proposition 2. For a subset A of an ideal topological space (X, τ,I ), the following
properties hold:

(1) ⋆αCl(A) is α-⋆-closed.

(2) A is α-⋆-closed if and only if A = ⋆αCl(A).

Proof. (1) Follows from Proposition 1.
(2) Follows from (1).

Lemma 2. For a subset A of an ideal topological space (X, τ,I ), the following properties
are equivalent:

(1) A is α-⋆-open in X;

(2) G ⊆ A ⊆ Int⋆(Cl(G)) for some ⋆-open set G;

(3) G ⊆ A ⊆ sClI (G) for some ⋆-open set G;

(4) A ⊆ sClI (Int⋆(A)).
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Proof. (1) ⇒ (2): Suppose that A is an α-⋆-open set. Then, A ⊆ Int⋆(Cl(Int⋆(A))).
Put G = Int⋆(A), then G is a ⋆-open set such that G ⊆ A ⊆ Int⋆(Cl(G)).

(2) ⇒ (3): This follows from Lemma 1(2).
(3) ⇒ (4): Suppose that G ⊆ A ⊆ sClI (G) for some ⋆-open set G. Then, we have

G ⊆ Int⋆(A) and hence A ⊆ sClI (Int⋆(A)).
(4) ⇒ (1): Suppose that A ⊆ sClI (Int⋆(A)). Since Int⋆(A) is ⋆-open in X and by

Lemma 1(2), A ⊆ Int⋆(Cl(Int⋆(A))). Thus, A is α-⋆-open in X.

Lemma 3. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) A is α-⋆-closed in X if and only if sIntI (Cl⋆(A)) ⊆ A.

(2) sIntI (Cl⋆(A)) = Cl⋆(Int(Cl⋆(A))).

(3) ⋆αCl(A) = A ∪ Cl⋆(Int(Cl⋆(A))).

(4) ⋆αInt(A) = A ∩ Int⋆(Cl(Int⋆(A))).

Proof. (1) Follows from Lemma 2.
(2) Follows from Lemma 13(1) of [13].
(3) We observe that

Cl⋆(Int(Cl⋆(A ∪ Cl⋆(Int(Cl⋆(A)))))) ⊆ Cl⋆(Int(Cl⋆(A ∪ (Cl⋆(A)))))

⊆ Cl⋆(Int(Cl⋆(A)))

⊆ A ∪ Cl⋆(Int(Cl⋆(A))).

Thus, A ∪ Cl⋆(Int(Cl⋆(A))) is α-⋆-closed and hence ⋆αCl(A) ⊆ A ∪ Cl⋆(Int(Cl⋆(A))). On
the other hand, since ⋆αCl(A) is α-⋆-closed, we have

Cl⋆(Int(Cl⋆(A))) ⊆ Cl⋆(Int(Cl⋆(⋆αCl(A)))) ⊆ ⋆αCl(A)

and hence A ∪ Cl⋆(Int(Cl⋆(A))) ⊆ ⋆αCl(A). Thus, ⋆αCl(A) = A ∪ Cl⋆(Int(Cl⋆(A))).
(4) Since ⋆αInt(A) is α-⋆-open, we have

⋆αInt(A) ⊆ Int⋆(Cl(Int⋆(⋆αInt(A)))) ⊆ Int⋆(Cl(Int⋆(A)))

and hence ⋆αInt(A) ⊆ A ∩ Int⋆(Cl(Int⋆(A))). On the other hand, we have

A ∩ Int⋆(Cl(Int⋆(A))) ⊆ Int⋆(Cl(Int⋆(A)))

= Int⋆(Cl(Int⋆(A) ∩ Int⋆(Cl(Int⋆(A)))))

= Int⋆(Cl(Int⋆(A ∩ Int⋆(Cl(Int⋆(A)))))).

Thus, A ∩ Int⋆(Cl(Int⋆(A))) is α-⋆-open and so A ∩ Int⋆(Cl(Int⋆(A))) ⊆ ⋆αInt(A). This
shows that ⋆αInt(A) = A ∩ Int⋆(Cl(Int⋆(A))).
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By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [3] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower α-⋆-continuous multifunctions

In this section, we introduce the notions of upper and lower α-⋆-continuous multifunc-
tions. Moreover, several characterizations of upper and lower α-⋆-continuous multifunc-
tions are discussed.

Definition 1. A multifunction F : (X, τ,I ) → (Y, σ,J ) is said to be:

(1) upper α-⋆-continuous at a point x of X if, for each ⋆-open set V such that F (x) ⊆ V ,
there exists an α-⋆-open set U of X containing x such that F (U) ⊆ V ;

(2) lower α-⋆-continuous at a point x of X if, for each ⋆-open set V such that

F (x) ∩ V ̸= ∅,

there exists an α-⋆-open set U of X containing x such that F (z) ∩ V ̸= ∅ for each
z ∈ U ;

(3) upper (resp. lower) α-⋆-continuous if F is upper (resp. lower) α-⋆-continuous at
each point of X.

Theorem 1. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper α-⋆-continuous at x ∈ X;

(2) x ∈ sClI (Int⋆(F+(V ))) for every α-⋆-open set V of Y containing F (x);

(3) x ∈ ⋆αInt(F+(V )) for every α-⋆-open set V of Y containing F (x).

Proof. (1) ⇒ (2): Let V be any ⋆-open set of Y containing F (x). Then, there exists
an α-⋆-open set U of X containing x such that F (U) ⊆ V ; hence x ∈ U ⊆ F+(V ). Since
U is α-⋆-open, by Lemma 2, we have x ∈ U ⊆ sClI (Int⋆(U)) ⊆ sClI (Int⋆(F+(V ))).

(2) ⇒ (3): Let V be any ⋆-open set of Y containing F (x). Then by (2), we have
x ∈ sClI (Int⋆(F+(V ))) and by Lemma 1(2), x ∈ Int⋆(Cl(Int⋆(F+(V )))). Thus, by Lemma
3(4), x ∈ ⋆αInt(F+(V )).

(3) ⇒ (1): Let V be any ⋆-open set of Y containing F (x). By (3), x ∈ ⋆αInt(F+(V ))
and so there exists an α-⋆-open set U of X containing x such that U ⊆ F+(V ); hence
F (U) ⊆ V . This shows that F is upper α-⋆-continuous at x.
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Theorem 2. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower α-⋆-continuous at x ∈ X;

(2) x ∈ sClI (Int⋆(F−(V ))) for every α-⋆-open set V of Y such that F (x) ∩ V ̸= ∅;

(3) x ∈ ⋆αInt(F−(V )) for every α-⋆-open set V of Y such that F (x) ∩ V ̸= ∅.

Proof. The proof is similar to that of Theorem 1.

Definition 2. A subset N of an ideal topological space (X, τ,I ) is said to be a ⋆-
neighbourhood (resp. α-⋆-neighbourhood) of x ∈ X if there exists a ⋆-open (resp. α-⋆-open)
set V of X such that x ∈ V ⊆ N .

Theorem 3. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper α-⋆-continuous;

(2) F+(V ) is α-⋆-open in X for every ⋆-open set V of Y ;

(3) F−(K) is α-⋆-closed in X for every ⋆-closed set K of Y ;

(4) sIntI (Cl⋆(F−(B))) ⊆ F−(Cl⋆(B)) for every subset B of Y ;

(5) ⋆αCl(F−(B)) ⊆ F−(Cl⋆(B)) for every subset B of Y ;

(6) for each x ∈ X and each ⋆-neighbourhood V of F (x), F+(V ) is an α-⋆-neighbourhood
of x;

(7) for each x ∈ X and each ⋆-neighbourhood V of F (x), there exists an α-⋆-neighbourhood
U of x such that F (U) ⊆ V .

Proof. (1) ⇒ (2): Let V be any ⋆-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V .
Since F is upper α-⋆-continuous at x, there exists an α-⋆-open set U of X containing x
such that F (U) ⊆ V ; hence x ∈ U ⊆ F+(V ). By Lemma 2,

x ∈ U ⊆ sClI (Int⋆(U)) ⊆ sClI (Int⋆(F+(V ))).

Thus, F+(V ) ⊆ sClI (Int⋆(F+(V ))). It follows from Lemma 2 that F+(V ) is α-⋆-open in
X.

(2) ⇔ (3): This follows from the fact that F+(Y −B) = X −F−(B) for any subset B
of Y .

(3) ⇒ (4): Let B be any subset of Y . Then, Cl⋆(B) is ⋆-closed in Y and by (3),
F−(Cl⋆(B)) is α-⋆-closed in X. Thus, by Lemma 3(1),

sIntI (Cl⋆(F−(B))) ⊆ sIntI (Cl⋆(F−(Cl⋆(B)))) ⊆ F−(Cl⋆(B)).
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(4) ⇒ (5): Let B be any subset of Y . By (4) and Lemma 3(3),

⋆αCl(F−(B)) = F−(B) ∪ sIntI (Cl⋆(F−(B))) ⊆ F−(Cl⋆(B)).

(5) ⇒ (3): Let K be any ⋆-closed set of Y . By (5), we have

⋆αCl(F−(K)) ⊆ F−(Cl⋆(K)) = F−(K).

This shows that F−(K) is α-⋆-closed in X.
(2) ⇒ (6): Let x ∈ X and V be a ⋆-neighbourhood of F (x). Then, there exists a

⋆-open set G of Y such that F (x) ⊆ G ⊆ V . Thus, x ∈ F+(G) ⊆ F+(V ). By (2), F+(G)
is α-⋆-open and hence F+(V ) is an α-⋆-neighbourhood of x.

(6) ⇒ (7): Let x ∈ X and V be a ⋆-neighbourhood of F (x). By (6), we have F+(V ) is
an α-⋆-neighbourhood of x. Put U = F+(V ), then U is an α-⋆-neighbourhood of x such
that F (U) ⊆ V .

(7) ⇒ (1): Let x ∈ X and V be any ⋆-open set of Y such that F (x) ⊆ V . Then, V
is a ⋆-neighbourhood of F (x) and so there exists an α-⋆-neighbourhood U of x such that
F (U) ⊆ V . Since U is an α-⋆-neighbourhood of x, there exists an α-⋆-open set G of X
such that x ∈ G ⊆ U ; hence F (G) ⊆ V . This shows that F is upper α-⋆-continuous.

Theorem 4. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower α-⋆-continuous;

(2) F−(V ) is α-⋆-open in X for every ⋆-open set V of Y ;

(3) F+(K) is α-⋆-closed in X for every ⋆-closed set K of Y ;

(4) sIntI (Cl⋆(F+(B))) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(5) ⋆αCl(F+(B)) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(6) F (⋆αCl(A)) ⊆ Cl⋆(F (A)) for every subset A of X;

(7) F (sIntI (Cl⋆(A))) ⊆ Cl⋆(F (A)) for every subset A of X;

(8) F (Cl⋆(Int(Cl⋆(A)))) ⊆ Cl⋆(F (A)) for every subset A of X.

Proof. The proofs except for the following are similar to the proof of Theorem 3.
(5) ⇒ (6): Let A be any subset of X. Since A ⊆ F+(F (A)), we have

⋆αCl(A) ⊆ ⋆αCl(F+(F (A))) ⊆ F+(Cl⋆(F (A)))

and hence F (⋆αCl(A)) ⊆ Cl⋆(F (A)).
(6) ⇒ (7): Let A be any subset of X. By (6) and Lemma 3,

F (sIntI (Cl⋆(A))) = F (Cl⋆(Int(Cl⋆(A))))
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⊆ F (A ∪ Cl⋆(Int(Cl⋆(A))))

= F (⋆αCl(A))

⊆ Cl⋆(F (A)).

(7) ⇒ (8): Let A be any subset of X. By (7) and Lemma 3(2), we have

F (Cl⋆(Int(Cl⋆(A)))) = F (sIntI (Cl⋆(A))) ⊆ Cl⋆(F (A)).

(8) ⇒ (1): Let x ∈ X and V be any ⋆-open set such that F (x) ∩ V ̸= ∅. Then,
we have x ∈ F−(V ). We shall show that F−(V ) is α-⋆-open in X. By the hypothesis,
F (Cl⋆(Int(Cl⋆(F+(Y − V ))))) ⊆ Cl⋆(F (F+(Y − V ))) ⊆ Y − V and hence

Cl⋆(Int(Cl⋆(F+(Y − V )))) ⊆ F+(Y − V ) = X − F−(V ).

Thus, F−(V ) ⊆ Int⋆(Cl(Int⋆(F−(V )))) and so F−(V ) is α-⋆-open in X. Put U = F−(V ),
then U is an α-⋆-open set of X containing x such that F (z)∩V ̸= ∅ for every z ∈ U . This
shows that F is lower α-⋆-continuous.

Definition 3. A function f : (X, τ,I ) → (Y, σ,J ) is called α-⋆-continuous if f−1(V ) is
α-⋆-open in X for every ⋆-open set V of Y .

Corollary 1. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is α-⋆-continuous;

(2) f−1(K) is α-⋆-closed in X for every ⋆-closed set K of Y ;

(3) sIntI (Cl⋆(f−1(B))) ⊆ f−1(Cl⋆(B)) for any subset B of Y ;

(4) ⋆αCl(f−1(B)) ⊆ f−1(Cl⋆(B)) for any subset B of Y ;

(5) for each x ∈ X and each ⋆-neighbourhood V of f(x), f−1(V ) is an α-⋆-neighbourhood
of x;

(6) for each x ∈ X and each ⋆-neighbourhood V of f(x), there exists an α-⋆-neighbourhood
U of x such that f(U) ⊆ V ;

(7) f(⋆αCl(A)) ⊆ Cl⋆(f(A)) for every subset A of X;

(8) f(sIntI (Cl⋆(A))) ⊆ Cl⋆(f(A)) for every subset A of X;

(9) f(Cl⋆(Int(Cl⋆(A)))) ⊆ Cl⋆(f(A)) for every subset A of X.

Definition 4. [5] A subset A of an ideal topological space (X, τ,I ) is said to be:

(1) ⋆-paracompact if every cover of A by ⋆-open sets of X is refined by a cover of A
which consists of ⋆-open sets of X and is ⋆-locally finite in X;
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(2) ⋆-regular if for each x ∈ A and each ⋆-open set U of X containing x, there exists a
⋆-open set V of X such that x ∈ V ⊆ Cl(V ) ⊆ U .

Lemma 4. [5] Let A be a subset of an ideal topological space (X, τ,I ). If A is a ⋆-regular
⋆-paracompact set of X and each ⋆-open set U containing A, then there exists a ⋆-open
set V such that A ⊆ V ⊆ Cl(V ) ⊆ U .

A multifunction F : (X, τ,I ) → (Y, σ,J ) is called punctually ⋆-paracompact (resp.
punctually ⋆-regular) if for each x ∈ X, F (x) is ⋆-paracompact (resp. ⋆-regular).

By Cl⋆α(F ) : (X, τ,I ) → (Y, σ,J ), we shall denote a multifunction defined as follows:
[Cl⋆α(F )](x) = ⋆αClJ (F (x)) for each x ∈ X.

Lemma 5. If F : (X, τ,I ) → (Y, σ,J ) is punctually ⋆-regular and punctually ⋆-
paracompact, then [Cl⋆α(F )]+(V ) = F+(V ) for every ⋆-open set V of Y .

Proof. Let V be any ⋆-open set of Y and x ∈ [Cl⋆α(F )]+(V ). Then, ⋆αClJ (F (x)) ⊆ V .
Thus, F (x) ⊆ V and hence x ∈ F+(V ). Therefore, [Cl⋆α(F )]+(V ) ⊆ F+(V ). On the other
hand, let V be any ⋆-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V . Since F (x) is
punctually ⋆-regular and punctually ⋆-paracompact, by Lemma 4, there exists a ⋆-open
set G such that F (x) ⊆ G ⊆ Cl(G) ⊆ V ; hence ⋆αClJ (F (x)) ⊆ Cl(G) ⊆ V . This shows
that x ∈ [Cl⋆α(F )]+(V ). Therefore, F+(V ) ⊆ [Cl⋆α(F )]+(V ). Consequently, we obtain
[Cl⋆α(F )]+(V ) = F+(V ).

Theorem 5. Let F : (X, τ,I ) → (Y, σ,J ) be punctually ⋆-regular and punctually ⋆-
paracompact. Then F is upper α-⋆-continuous if and only if

Cl⋆α(F ) : (X, τ,I ) → (Y, σ,J )

is upper α-⋆-continuous.

Proof. Suppose that F is upper α-⋆-continuous. Let x ∈ X and V be any ⋆-open set
of Y such that ⋆αClJ (F (x)) ⊆ V . By Lemma 5, we have x ∈ [Cl⋆α(F )]+(V ) = F+(V ).
Since F is upper α-⋆-continuous, there exists an α-⋆-open set U of X containing x such
that F (U) ⊆ V . Sine F (z) is punctually ⋆-regular and punctually ⋆-paracompact for each
z ∈ U , by Lemma 4, there exists a ⋆-open set G such that F (z) ⊆ G ⊆ Cl(G) ⊆ V . Thus,
⋆αClJ (F (z)) ⊆ Cl(G) ⊆ V and hence ⋆αClJ (F (U)) ⊆ V . This shows that Cl⋆α(F ) is
upper α-⋆-continuous.

Conversely, suppose that Cl⋆α(F ) is upper α-⋆-continuous. Let x ∈ X and V be any
⋆-open set of Y such that F (x) ⊆ V . By Lemma 5, we have x ∈ F+(V ) = [Cl⋆α(F )]+(V )
and hence ⋆αClJ (F (x)) ⊆ V . Since Cl⋆α(F ) is upper α-⋆-continuous, there exists an α-⋆-
open set U of X containing x such that ⋆αClJ (F (U)) ⊆ V ; hence F (U) ⊆ V . This shows
that F is upper α-⋆-continuous.

Lemma 6. For a multifunction F : (X, τ,I ) → (Y, σ,J ), it follows that for each ⋆-open
set V of Y [Cl⋆α(F )]−(V ) = F−(V ).
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Proof. Suppose that V is any ⋆-open set of Y . Let x ∈ [Cl⋆α(F )]−(V ). Then, we have
⋆αClJ (F (x)) ∩ V ̸= ∅ and hence F (x) ∩ V ̸= ∅. Thus, x ∈ F−(V ). This shows that
[Cl⋆α(F )]−(V ) ⊆ F−(V ). On the other hand, let x ∈ F−(V ). Then,

∅ ≠ F (x) ∩ V ⊆ ⋆αClJ (F (x)) ∩ V.

Therefore, x ∈ [Cl⋆α(F )]−(V ). Thus, F−(V ) ⊆ [Cl⋆α(F )]−(V ) and hence [Cl⋆α(F )]−(V ) =
F−(V ).

Theorem 6. A multifunction F : (X, τ,I ) → (Y, σ,J ) is lower α-⋆-continuous if and
only if Cl⋆α(F ) : (X, τ,I ) → (Y, σ,J ) is lower α-⋆-continuous.

Proof. By utilizing Lemma 6, this can be proved similarly to that of Theorem 5.
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