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1. Introduction

The field of mathematical science called topology is concerned with all questions di-
rectly or indirectly related to continuity. Continuity is an important concept for the study
and investigation in topological spaces. This concept has been extended to the setting mul-
tifunctions and has been generalized by weaker forms of open sets. In 1965, Njastad [21]
introduced a weak form of open sets called a-sets. Mashhour et al. [19] defined a function
to be a-continuous if the inverse image of each open set is an a-set and obtained sev-
eral characterizations of such functions. Noiri [22] investigated the relationships between
a-continuous functions and several known functions, for example, almost continuous func-
tions, n-continuous functions, d-continuous functions or irresolute functions. In [23], the
present author introduced the concept of almost a-continuity in topological spaces as a gen-
eralization of a-continuity and almost continuity. Neubrunn [20] introduced the notion of
upper (resp. lower) a-continuous multifunctions. These multifunctions are further investi-
gated by the present authors [24]. Boonpok et al. [11] introduced and studied the notions
of upper and lower (7, 73)-precontinuous multifunctions. Viriyapong and Boonpok [26]
introduced and investigated the concepts of upper and lower (71, 72)a-continuous multi-
functions. Moreover, several characterizations of upper and lower (71, 72)d-semicontinuous
multifunctions were established in [6]. In [10], the authors investigated some character-
izations of upper and lower almost weakly (71, 72)-continuous multifunctions. Laprom
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et al. [18] introduced and studied the notions of upper and lower [3(ry,72)-continuous
multifunctions.

The concept of ideal topological spaces was introduced and studied by Kuratowski
[17] and Vaidyanathswamy [25]. Every topological space is an ideal topological space and
all the results of ideal topological spaces are generalizations of the results established in
topological spaces. In 1990, Jankovi¢ and Hamlett [16] introduced the concept of .#-
open sets in ideal topological spaces. Abd El-Monsef et al. [14] further investigated
Z-open sets and #-continuous functions. Later, several authors studied ideal topological
spaces giving several convenient definitions. Some authors obtained decompositions of
continuity. For instance, Agikgoz et al. [1] studied the concepts of a-.#-continuity and -
#-openness in ideal topological spaces and investigated several characterizations of these
functions. Hatir and Noiri [15] introduced the notions of semi-.#-open sets, a-.#-open
sets and 3-#-open sets via idealization and using these sets obtained new decompositions
of continuity. In [4], the author introduced and studied the notions of upper and lower *-
continuous multifunctions. Boonpok [7] investigated some characterizations of upper and
lower [(%)-continuous multifunctions. Furthermore, several characterizations of almost
a-x-continuous multifunctions and weakly a-x-continuous multifunctions were established
in [9] and [8], respectively. In this paper, we introduce the notions of upper and lower
a-x-continuous multifunctions. Moreover, some characterizations of upper and lower a-*-
continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, 7) and (Y, o) (or simply X and Y') always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, 7). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. An ideal .# on a topological space
(X,7) is a nonempty collection of subsets of X satisfying the following properties: (1)
A€ #and BC Aimply Be .#;(2) A€ . and B € . imply AUB € .#. A topological
space (X, 7) with an ideal .# on X is called an ideal topological space and is denoted by
(X, 7,#). For an ideal topological space (X, 7, .#) and a subset A of X, A*(.#) is defined
as follows: A*(F) ={x e X :UNA¢& .# for every open neighbourhood U of z}. In case
there is no chance for confusion, A*(.#) is simply written as A*. In [17], A* is called the
local function of A with respect to .# and 7 and CI*(A) = A* U A defines a Kuratowski
closure operator for a topology 7*(.#) finer than 7. A subset A is said to be *-closed [16]
if A* C A. The interior of a subset A in (X, 7*(.#)) is denoted by Int*(A).

A subset A of an ideal topological space (X, 7,.#) is said to be semi*-%-open [12]
(resp. semi-#-open [15]) if A C Cl(Int*(A)) (resp. A C CI*(Int(A))). The complement of
a semi*-.#-open (resp. semi-.#-open) set is said to be semi*-.# -closed [12] (resp. semi-.#-
closed [15]). For a subset A of an ideal topological space (X, T,.#), the intersection of all
semi-.#-closed (resp. semi*-.#-closed) sets containing A is called the semi-.# -closure [13]
(resp. semi*-# -closure [13]) of A and is denoted by sCl (A) (resp. s*Cls(A)). The union
of all semi-.#-open (resp. semi*-.#-open) sets contained in A is called the semi-.# -interior
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(resp. semi*-.7 -interior) of A and is denoted by sInt s (A) (resp. s*Int s (A)).

Lemma 1. For a subset A of an ideal topological space (X, T, %), the following properties
hold:

(1) If A is an open set, then s*Cly(A) = Int(CI(A)).
(2) If A is a x-open set, then sCly(A) = Int*(CI(A)).
Proof. (1) Suppose that A is an open set. Then, A C Int(Cl*(A)) and by Lemma 13(1)
of [13], we have s*Cl s (A) = AU Int(Cl*(A)) = Int(CI*(A)).

(2) Suppose that A is a x-open set. Then, we have A C Int*(Cl(A)) and by Lemma
13(2) of [13], sCl#(A) = AU Int*(Cl(A)) = Int*(Cl(A)).

Recall that a subset A of an ideal topological space (X, 7,.#) is said to be a-x-closed
[2] if C1*(Int(C1*(A))) € A. The complement of an a-%-closed set is said to be a-x-open.

Proposition 1. Let (X, 7,.%) be an ideal topological space and {A, | v € I'} be a family
of subsets of X. If A, is a-x-closed for each v € I', then ﬂFAW 18 a-x-closed.
vE
Proof. Suppose that A, is a-x-closed for each v € I'. Then, we have X — A, is c-»-
open for each v € I'. Thus, U (X —A,) = X — N A, is a-x-open and hence N A, is
yel yel ~yel
a-x-closed.

For a subset A of an ideal topological space (X, 7, %), the intersection of all a-x-closed
sets containing A is called the a-x-closure of A and is denoted by xaCl(A). The a-*-
interior of A is defined by the union of all a-x-open sets contained in A and is denoted
by *alnt(A).

Proposition 2. For a subset A of an ideal topological space (X,T,.7), the following
properties hold:

(1) *aCl(A) is a-x-closed.
(2) A is a-*-closed if and only if A = xaCl(A).

Proof. (1) Follows from Proposition 1.
(2) Follows from (1).

Lemma 2. For a subset A of an ideal topological space (X, T, %), the following properties
are equivalent:

(1) A is a-*-open in X;

(2) G C AC Int*(CUQG)) for some x-open set G;
(3) G C AC sClLy(G) for some x-open set G;
(4) A C sCly(Int*(A)).
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Proof. (1) = (2): Suppose that A is an a-x-open set. Then, A C Int*(Cl(Int*(A))).
Put G = Int*(A), then G is a x-open set such that G C A C Int*(Cl(G)).

(2) = (3): This follows from Lemma 1(2).

(3) = (4): Suppose that G C A C sCl4(G) for some x-open set G. Then, we have
G C Int*(A) and hence A C sCl #(Int*(A)).

(4) = (1): Suppose that A C sCls(Int*(A)). Since Int*(A) is x-open in X and by
Lemma 1(2), A C Int*(Cl(Int*(A))). Thus, A is a-x-open in X.

Lemma 3. For a subset A of an ideal topological space (X,T,.%), the following properties
hold:

(1) A is a-x-closed in X if and only if sIntz(CI*(A)) C A.

(2) sInty(CI(A)) = CI(Int(CI(A))).

(3) % CI(A) = AU CI*(Int(CI*(A))).

(4) *ant(A) = AN Int*(Cl(Int*(A))).

Proof. (1) Follows from Lemma 2.
(2) Follows from Lemma 13(1) of [13].
(3) We observe that
CI*(Int(CI* (A U CI*(Int(C1*(A)))))) € CI*(Int(CI*(A U (CI*(A)))))
C CI*(Int(C1*(A)))
C AUCI*(Int(CI*(A))).

Thus, AU CI*(Int(C1*(A))) is a-x-closed and hence xaCl(4) C A U CI*(Int(CI*(A))). On
the other hand, since xaCl(A) is a-x-closed, we have

CI*(Int(CI*(A))) € CI*(Int(CI* (%aCl(A)))) C xaCl(A)

and hence A U CI*(Int(C1*(A))) C xaCl(A). Thus, xaCl(4) = AU CI*(Int(CI*(A))).
(4) Since xaInt(A) is a--open, we have

*xadnt(A) C Int*(Cl(Int*(xalnt(A)))) C Int*(Cl(Int*(A)))
and hence xalnt(A) € AN Int*(Cl(Int*(A))). On the other hand, we have

ANInt*(Cl(Int*(A))) C Int*(Cl(Int*(A)))
= Int*(Cl(Int*(A) N Int*(Cl(Int*(A)))))
= Int*(Cl(Int* (A N Int*(Cl(Int*(A)))))).

Thus, A N Int*(Cl(Int*(A))) is a-*-open and so A N Int*(Cl(Int*(A))) C *alnt(A). This
shows that xalnt(A) = A N Int*(Cl(Int*(A))).
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By a multifunction F' : X — Y, we mean a point-to-set correspondence from X into
Y, and we always assume that F(z) # ) for all z € X. For a multifunction F : X — Y,
following [3] we shall denote the upper and lower inverse of a set B of Y by F*(B) and
F~(B), respectively, that is, FT(B) = {z € X | F(z) C B} and

F~(B)={xe€ X | F(z)N B # 0}.

In particular, F~(y) = {z € X | y € F(z)} for each point y € Y. For each A C X,
F(A) = UxEAF(x)'

3. Upper and lower a-+x-continuous multifunctions

In this section, we introduce the notions of upper and lower a-%-continuous multifunc-
tions. Moreover, several characterizations of upper and lower a-+-continuous multifunc-
tions are discussed.

Definition 1. A multifunction F : (X,7,.7) = (Y,0, _#) is said to be:

(1) upper a-*-continuous at a point x of X if, for each x-open set V such that F(x) CV,
there exists an a-x-open set U of X containing x such that F(U) CV;

(2) lower a-x-continuous at a point x of X if, for each x-open set V' such that
F(z)nV #0,

there exists an a-x-open set U of X containing x such that F(z) NV #£ 0 for each
zeU;

(3) upper (resp. lower) a-x-continuous if F is upper (resp. lower) a-x-continuous at
each point of X.

Theorem 1. For a multifunction F : (X,7,.%) — (Y,0, #), the following properties are
equivalent:

(1) F is upper a-x-continuous at x € X;
(2) x € sCly(Int"(F*(V))) for every a-x-open set V of Y containing F(x);
(3) x € xalnt(FT(V)) for every a-x-open set V of Y containing F(z).

Proof. (1) = (2): Let V be any x-open set of Y containing F'(z). Then, there exists
an a-x-open set U of X containing z such that F(U) C V; hence z € U C F* (V). Since
U is a-x-open, by Lemma 2, we have x € U C sCl 4 (Int*(U)) C sCl 4 (Int*(F*(V))).

(2) = (3): Let V be any x-open set of Y containing F'(xz). Then by (2), we have
x € sCly (Int*(F(V))) and by Lemma 1(2), z € Int*(Cl(Int*(F*(V)))). Thus, by Lemma
3(4), x € xaInt(F+(V)).

(3) = (1): Let V be any x-open set of Y containing F(z). By (3), x € xalnt(F*(V))
and so there exists an a-x-open set U of X containing x such that U C F*(V); hence
F(U) C V. This shows that F' is upper a-x-continuous at x.
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Theorem 2. For a multifunction F : (X, 7,.%) = (Y,0, #), the following properties are
equivalent:

(1) F is lower a-%-continuous at x € X;
(2) x € sCly(Int"(F~(V))) for every a-x-open set V of Y such that F(x) NV # (;
(3) x € xalnt(F~(V)) for every a-x-open set V of Y such that F(z) NV # (.

Proof. The proof is similar to that of Theorem 1.

Definition 2. A subset N of an ideal topological space (X, T,.%) is said to be a *-
neighbourhood (resp. a-%x-neighbourhood) of x € X if there exists a x-open (resp. a-%-open)
set V of X such thatx € V C N.

Theorem 3. For a multifunction F : (X,7,.7) = (Y,0, #), the following properties are
equivalent:

(1) F is upper a-x-continuous;

(2) F(V) is a-x-open in X for every x-open set V of Y;

(3) F~(K) is a-x-closed in X for every x-closed set K of Y ;
(4) sInty(CI'(F~(B))) C F~(CI(B)) for every subset B of Y ;
(5) xaCl(F~(B)) C F~(CI'(B)) for every subset B of Y';

(6) for each z € X and each x-neighbourhood V of F(x), FT (V) is an a-x-neighbourhood
of z;

(7) for eachx € X and each x-neighbourhood V' of F(x), there ezists an a-x-neighbourhood
U of x such that F(U) C V.

Proof. (1) = (2): Let V be any *-open set of Y and x € F*(V). Then, F(z) C V.
Since F' is upper a-x-continuous at x, there exists an a-x-open set U of X containing x
such that F(U) C V; hence x € U C F*(V). By Lemma 2,

x €U C sCly(Int*(U)) C sCly(Int*(F1(V))).
Thus, FT(V) C sCly (Int*(F*(V))). It follows from Lemma 2 that F* (V) is a-x-open in
2) (3): This follows from the fact that F*(Y — B) = X — F~(B) for any subset B

) (4): Let B be any subset of Y. Then, CI*(B) is *-closed in Y and by (3),
F~(CI*(B)) is a-x-closed in X. Thus, by Lemma 3(1),

sInt » (CI*(F~(B))) C slnt» (CI*(F~(CI*(B)))) € F~(CI*(B)).
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(4) = (5): Let B be any subset of Y. By (4) and Lemma 3(3),
*xaCl(F~(B)) = F~(B) UssInt_»(CI*(F~(B))) C F~(CI*(B)).
(5) = (3): Let K be any x-closed set of Y. By (5), we have
*aCl(F~(K)) C F (CI"(K)) = F (K).

This shows that F'~(K) is a-*-closed in X.

(2) = (6): Let x € X and V be a x-neighbourhood of F(z). Then, there exists a
x-open set G of Y such that F(z) C G C V. Thus, z € F*(G) C FT(V). By (2), F™(G)
is a-x-open and hence F'*(V) is an a-*-neighbourhood of .

(6) = (7): Let z € X and V be a x-neighbourhood of F(z). By (6), we have F*(V) is
an a-x-neighbourhood of z. Put U = F*(V), then U is an a-+-neighbourhood of = such
that F'(U) C V.

(7) = (1): Let x € X and V be any *-open set of Y such that F(z) C V. Then, V
is a x-neighbourhood of F'(z) and so there exists an a-x-neighbourhood U of x such that
F(U) C V. Since U is an a-x-neighbourhood of z, there exists an a-x-open set G of X
such that z € G C U; hence F(G) C V. This shows that F' is upper a-%-continuous.

Theorem 4. For a multifunction F : (X,7,.%) = (Y,0, #), the following properties are
equivalent:

(1) F is lower a—%-continuous;

(2) F~(V) is a-*-open in X for every x-open set V of Y ;

(3) FH(K) is a--closed in X for every x-closed set K of Y ;
(4) sInty(CI'(F*(B))) C FT(CI*(B)) for every subset B of Y ;
(5) xaC(F+(B)) C F*(CI(B)) for every subset B of Y;

(6) F(xaCl(A)) C CIF(F(A)) for every subset A of X;

(7) F(sInty(CPF(A))) C CI*(F(A)) for every subset A of X;
(8) F(CI(Int(CI(A)))) C CIF(F(A)) for every subset A of X.

Proof. The proofs except for the following are similar to the proof of Theorem 3.
(5) = (6): Let A be any subset of X. Since A C F*(F(A)), we have

*xaCl(A) € *aCl(FT(F(A))) C FT(CI(F(A)))

and hence F(xaCl(A)) C CI*(F(A)).
(6) = (7): Let A be any subset of X. By (6) and Lemma 3,

F(sInt #(CI*(A))) = F(CI*(Int(CI*(A))))
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C F(AUCI*(Int(CI*(A))))
= F(xaCl(A))
C CI*(F(A)).

(7) = (8): Let A be any subset of X. By (7) and Lemma 3(2), we have
F(CI*(Int(CI*(A)))) = F(sInt_#(CI*(A))) C CI*(F(A)).

(8) = (1): Let z € X and V be any x-open set such that F(z) NV # (. Then,
we have x € F~ (V). We shall show that I~ (V) is a-%-open in X. By the hypothesis,
F(CI*(Int(CI*(FH(Y —V))))) CCI*(F(FT(Y —=V))) CY — V and hence

CI*(Int(CP*(FH(Y = V) CFHY = V) =X — F (V).

Thus, F~ (V) C Int*(Cl(Int*(F~(V)))) and so F~ (V) is a-x-open in X. Put U = F~(V),
then U is an a-x-open set of X containing x such that F(z) NV # () for every z € U. This
shows that F' is lower a-x-continuous.

Definition 3. A function f: (X, 7, %) — (Y,0, #) is called a-x-continuous if f~1(V) is
a-x-open in X for every x-open set V. of Y.

Corollary 1. For a function f : (X,7,.%) — (Y,0,_#), the following properties are
equivalent:

(1) f is a-%-continuous;

(2) f~HK) is a-x-closed in X for every x-closed set K of Y;
(3) sInty(CP(f~1(B))) C f~1(CI(B)) for any subset B of Y';
(4) *aCl(f~Y(B)) C f~Y(CI(B)) for any subset B of Y ;

(5) for each x € X and each x-neighbourhood V of f(z), f~1(V) is an a-x-neighbourhood
of x;

(6) for each x € X and each x-neighbourhood V' of f(x), there exists an a-x-neighbourhood
U of x such that f(U) CV;

(7) f(xaCI(A)) C CIF(f(A)) for every subset A of X ;
(8) f(sInty(CI(A))) C CI(f(A)) for every subset A of X;
(9) f(CIF(Int(CI*(A)))) C CPF(f(A)) for every subset A of X.

Definition 4. [5] A subset A of an ideal topological space (X, 7,.7) is said to be:

(1) *-paracompact if every cover of A by x-open sets of X is refined by a cover of A
which consists of x-open sets of X and is x-locally finite in X ;
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(2) *-regular if for each x € A and each x-open set U of X containing x, there exists a
*-open set V of X such thatx € V C C(V) CU.

Lemma 4. [5] Let A be a subset of an ideal topological space (X, 7,.7). If A is a x-reqular
*-paracompact set of X and each x-open set U containing A, then there exists a *-open

set V such that ACV C C(V)CU.

A multifunction F : (X,7,.) — (Y,0, #) is called punctually x-paracompact (resp.
punctually x-regular) if for each x € X, F(z) is x-paracompact (resp. x-regular).

By CI(F) : (X,7,.%) — (Y,0, _#), we shall denote a multifunction defined as follows:
[CIL(F)](x) = %aCl 4 (F(x)) for each z € X.

Lemma 5. If F' : (X,7,.) — (Y,0, ¢) is punctually *-reqular and punctually x-
paracompact, then [CLL(F)|T(V) = FT (V) for every x-open set V of Y.

Proof. Let V be any -open set of Y and z € [CI;,(F)]* (V). Then, xaCl 4 (F(z)) C V.
Thus, F(z) C V and hence z € F*(V). Therefore, [CI%(F)]T(V) C FT(V). On the other
hand, let V be any *-open set of Y and z € F* (V). Then, F(z) C V. Since F(x) is
punctually *-regular and punctually *-paracompact, by Lemma 4, there exists a x-open
set G such that F(z) € G C CI(G) C V; hence xaCl 4 (F(z)) € CI(G) € V. This shows
that = € [CLI5(F)]T(V). Therefore, F* (V) C [CI%(F)]" (V). Consequently, we obtain
[CILE) (V) = FH(V).

Theorem 5. Let F : (X,7,.%) — (Y,0, _7) be punctually *-reqular and punctually -
paracompact. Then F is upper a-x-continuous if and only if

CL(F): (X,7,7) = (Y0, 7)
1S upper a-x-continuous.

Proof. Suppose that F' is upper a-x-continuous. Let x € X and V be any %-open set
of Y such that «aCl 4 (F(x)) C V. By Lemma 5, we have z € [CI}(F)]*(V) = F*(V).
Since F' is upper a-*x-continuous, there exists an a-x-open set U of X containing x such
that F(U) C V. Sine F(z) is punctually x-regular and punctually x-paracompact for each
z € U, by Lemma 4, there exists a x-open set G such that F'(z) C G C CI(G) C V. Thus,
*xaCl 4 (F(z)) € CI(G) € V and hence xaCl 4 (F(U)) € V. This shows that CI}(F) is
upper a-x-continuous.

Conversely, suppose that CI%(F') is upper a-x-continuous. Let z € X and V be any
x-open set of Y such that F(z) C V. By Lemma 5, we have z € F™ (V) = [CI5(F)]" (V)
and hence xaCl 4 (F(z)) € V. Since CI(F) is upper a-%-continuous, there exists an a-*-
open set U of X containing = such that xaCl 4 (F(U)) C V; hence F'(U) C V. This shows
that F' is upper a-x-continuous.

Lemma 6. For a multifunction F : (X, 1,.9) = (Y,0, #), it follows that for each x-open
set V of Y [CT(F)]~(V)=F— (V).
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Proof. Suppose that V' is any x-open set of Y. Let = € [CI}(F)]~ (V). Then, we have
*xaCl 7 (F(z)) NV # 0 and hence F(x) NV # @. Thus, x € F~(V). This shows that
[CLIL(F)]~ (V) C F~(V). On the other hand, let x € F~ (V). Then,

0#F(x) NV C*aCl 4 (F(x))NV.
Therefore, x € [CL5(F)]~ (V). Thus, F~ (V) C [CI5(F)]~ (V) and hence [CL(F)]~ (V) =
F=(V).
Theorem 6. A multifunction F : (X,7,.%) = (Y,0, #) is lower a-%-continuous if and
only if CL(F) : (X,7,7) = (Y,0, _7) is lower a-x-continuous.

Proof. By utilizing Lemma 6, this can be proved similarly to that of Theorem 5.
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