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Abstract. In this paper, we have introduced a graph GEC generated by type-(k1, k2) E-codes
which is (k1, k2) E-torsion graph. The binary codewords of the torsion code of C are the set of
vertices, and the edges are defined using the construction of E-codes. Moreover, we characterized
the graph obtained when k1 = 0 and k2 = 0 and calculated the degrees of every vertex and the
number of edges of GEC . Moreover, we presented necessary and sufficient conditions for a vertex to
be in the center of a graph given the property of the codeword corresponding to the vertex. Finally,
we represent every quasi self-dual codes of short length by defining the vertex-weighted (k1, k2)
E-torsion graph, where the weight of every vertex is the weight of the codeword corresponding to
the vertex.
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1. Introduction

Linear codes, well-studied objects in coding theory, have traditionally been explored
over fields or rings with unity. However, recent researches [2–4, 14] have unveiled a fasci-
nating avenue of investigation by extending the study of linear codes to non-unital rings.
For instance, Alahmadi, et al [1], introduced the notion of Quasi Self-Dual codes (QSD
codes), self-orthogonal linear codes of length n over a non-unital ring E such that the
size of the code is 2n. Moreover, there are some interesting researches in binary codes in
the literature, for instance, [15] explored the Z2-triple cycle codes and their duals, [11]
cyclic codes from a sequence over finite fields, and [6] studied self-dual codes over Rk

and binary self-dual codes. In continuation to the codes over E, Shi, Minjia, et al. [14]
presented a special construction of QSD codes over E, based on combinatorial matrices
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related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly
Regular Tournaments (DRT).

In this article, we delved into the analysis of graphs generated from linear codes over
E, called linear E-codes and examine their properties and use these concepts to formulate
a definition of graph.

Graph theory provides a powerful framework for visualizing and understanding com-
plex systems, making it an ideal tool for investigating linear codes over non-unital rings.
By associating codes with corresponding graphs, we can gain insights into the structure
and behavior of these codes, enabling us to extract valuable information related to er-
ror correction, network coding, and other areas of interest. For standard notations and
concepts in graph theory, the readers are advised to refer to [9].

In this study, we will first establish the foundations of linear codes over E, elucidating
the necessary definitions, properties, and construction methods. Next, we will introduce
the graph representation of such linear codes, by defining (k1, k2) E-torsion graph of an
E-code, and will discuss the construction of such graphs and explore the relationship
between the code’s properties and the resulting graph structure. Moreover, we will study
vertex-weighted graph to separate the isomorphic graph generated by two inequivalent
E-codes.

The study of coding theory in relation to graph theory is not well-established topic.
However, few researchers tried to focus on the subject such as graph theoretic methods
in coding theory [13], where it discusses the application of graph theory in coding theory,
and codes on graphs [8], where it developed a fundamental theory of realizations of linear
and group codes on general graphs using elementary group theory, including basic group
duality theory.

Through our comprehensive analysis of graphs produced from linear codes over the
non-unital ring E, this article seeks to contribute to the expanding field of coding the-
ory and its applications in diverse domains. By exploring the interplay between graph
theory and linear codes over non-unital rings, we strive to unlock new perspectives, in-
sights, and practical solutions that can address challenges in error correction, information
transmission, and beyond.

2. Background

2.1. Binary codes

As defined in [14], denoted by wt(x) the Hamming weight of x ∈ Fn
2 . The dual of a

binary code C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
2 |∀x ∈ C, (x, y) = 0, }

where

(x, y) =
n∑

i=1

xiyi,
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denotes the standard inner product. A code C is self-orthogonal if it is included in
its dual:

C ⊆ C⊥.

Two binary codes are equivalent if there is a permutation of coordinates that maps one
to the other.

2.2. Ring Theory

We describe the main properties of the ring E of order four. The ring E is defined by
the relations on two generators a, b and we shall write

c = a+ b

for the given ring.
The ring E is defined by

E = ⟨a, b|2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b⟩.

It is a non-unital ring and non-commutative ring with characteristic two. For more
details refer to [3, 7, 12]. The ring is local with maximal ideal {0, c}. Its multiplication
table is given in Table 1.

× 0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 b b 0

c 0 c c 0

Table 1: Multiplication table for the ring E

From Table 1, it is clear E is not commutative, and non-unital. It is local with the
maximal ideal

J = {0, c},
and residue field

E/J = F = {0, 1},
the finite filed of order 2.

If we denote
α : E → E/J = F2,

the map of reduction modulo J . It follows that

α(0) = α(c) = 0,

and
α(a) = α(b) = 1.

This function α is extended in the natural way in a map from En to Fn
2 . Readers who

wanted further details on the properties of ring R, we refer the readers to [1–3, 10].
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2.3. Codes over E

A linear E-code of length n is a one-sided E-submodule of En. Let C be a code of
length n over E. With the code, there are two binary codes of length n:

(i) the residue code defined by res(C) = {α(y)|y ∈ C},

(ii) the torsion code defined by tor(C) = {x ∈ Fn
2 |cx ∈ C}.

The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En|∀x ∈ C, (x, y) = 0}.

The left dual C⊥R of C is the left module defined by

C⊥L = {y ∈ En|∀x ∈ C, (y, x) = 0}.

An E-code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

It follows that C is self-orthogonal if and only if

C ⊆ C⊥L .

Similarly, C is self-orthogonal if and only if

C ⊆ C⊥R .

Hence, for a self-orthogonal code C, it satisfies that

C ⊆ C⊥L ∩ C⊥R .

An E−code of length n is Quasi Self-Dual (QSD for short) [14] if it is self-orthogonal
and of size 2n. A quasi-self dual code is Type IV if all its codewords have even weight
[5].

3. Some results in linear E-codes

3.1. Linear E-codes

Definition 1. [3] Let C be a linear E-code. Then C is a type-(k1, k2) code if

dim(res(C)) = k1

and
dim(tor(C)) = k1 + k2.
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Theorem 1. [3] Let B be a self-orthogonal binary code of length n. The code C defined
by the relation

C = aB + cB⊥,

is a quasi self-dual code. Its residue code is B and its torsion code is B⊥.

Corollary 1. [3] Let B and B′ be a binary code of length n such that B is self-orthogonal
and B ⊆ B′. Then C is a linear E-code defined by the relation

C = aB + cB′.

4. Results in (k1, k2) E-torsion graph of an E-code

Definition 2. Let C be a linear E-code and B′ be the torsion code of C. Then the simple
graph GEC such that the vertex set

V (GEC) = B′

and
xy ∈ E(GEC),

the edge set and x ̸= y, if
ax+ cy ∈ C

or
ay + cx ∈ C,

is called the (k1, k2) E-torsion graph of C.

To avoid the confusion to whether the binary code is viewed as a codeword in tor(C)
or vertex in GEC , we denote the vertex x̂ which corresponds to the codeword x. This
means that if

x ∈ tor(C),

then
x̂ ∈ V (GEC).

Example 1. Let
C = aB + cB′

where
B = ⟨1100⟩

and
B′ = ⟨1100, 0011⟩ .

This means that
V (GEC) = {0̂000, 1̂100, 0̂011, 1̂111}.

By computation, we get

E(GEC) = {(0̂000, 1̂100), (0̂000, 0̂011), (0̂000, 1̂111), (1̂100, 0̂011), (1̂100, 1̂111)}.

Thus, the (k1, k2)-torsion graph of C, GEC , is illustrated in Figure 1.
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Figure 1: (k1, k2) E-torsion graph of C

Theorem 2. If C is a type-(k1, k2) of an E-code, then

|V (GEC)| = 2k1+k2

and

|E(GEC)| =
2k1∑
i=1

2k1+k2 − i.

Proof. The equation
|V (GEC)| = 2k1+k2

follows from the fact that the torsion of a type-(k1, k2) E-code has dimension k1 + k2. On
the other hand, from the definition of E(GEC),

E(GEC) = {(x̂, ŷ) : x ∈ res(C), y ∈ tor(C)},

that is, each of the 2k1 elements of the residue will be connected by an edge to the

2k1+k2 − 1

elements of the torsion. We can enumerate the edges by starting at an element in the
residue with 2k1+k2 − 1 edges containing that element, then if there is another element of
the residue, we will enumerate the 2k1+k2 − 2 edges containing the second element, since
there is one edge common to the set of edges containing the first element and set of edges
containing the second element, hence the second set of edges is 1 less than the previous
set of edges. We continue the process by subtracting 1 from the number of the previous
set of edges. Using this algorithm, the number of distinct pairs would be

2k1∑
i=1

2k1+k2 − i.

■
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Corollary 2. Let x̂ ∈ V (GEC). If x ∈ res(C), then

deg(x̂) = 2k1+k2 − 1.

If x /∈ res(C), then
deg(x̂) = 2k1 .

Proof. The proof follows from Theorem 2. ■

Corollary 3. If C is a type-(k1, k2) E-code, then

|E(GEC)| = 22k1+k2 − 22k1−1 − 2k1−1.

Proof. The proof follows directly from Corollary 2. ■

Lemma 1. r(GEC) = 1.

Proof. If x ∈ res(C), then the eccentricity of x̂ is 1 since x̂ is connected by an edge to
every vertex in GEC . If x /∈ res(C), then the eccentricity of x̂ is 2 since every vertex in
GEC is connected through a vertex in res(C) to all other vertex not in res(C). Therefore,

r(GEC) = 1.

■

Lemma 2. Let GEC ̸= P2, path of order 2. If there exists x /∈ res(C), then there exists
y ̸= x such that y /∈ res(C).

Proof. Let x /∈ res(C). Then

|res(C)| < |tor(C)| .

This means k1 < k1 + k2, that is, k2 > 0. Now,

|tor(C)| − |res(C)| = 2k1+k2 − 2k1 = 2k1
(
2k2 − 1

)
.

Note that if k1 = 0 and k2 = 1, GEC ̸= P2, which is a contradiction. Thus,

2k1
(
2k2 − 1

)
≥ 2.

■

Theorem 3. Let C be an E-code and GEC be the (k1, k2) E-torsion graph of C which is
not P2. Then vertex x̂ ∈ C(GEC) if and only if x ∈ res(C).



J. Pilongo, L. Paleta, P.L.Benjamin / Eur. J. Pure Appl. Math, 17 (2) (2024), 1369-1384 1376

Proof. Let x̂ ∈ C(GEC). Suppose x /∈ res(C). Then, by Lemma 2 there exists
y ∈ tor(C) such that both

ax+ cy

and
ay + cx

not in C. It follows that eccentricity of x̂ is greater than 1, a contradiction that x̂ ∈
C(GEC) by Lemma 1.
Conversely, suppose x ∈ res(C). Then x̂ is connected by an edge to every vertex in GEC .
Thus, the eccentricity of vertex x̂ is 1, that is, x̂ ∈ C(GEC). ■

4.1. (k1, k2) E-torsion graph of QSD codes

Quasi self-dual codes are classified in [3] using their residue codes. But since every
residue code corresponds to a unique torsion code, the study of the structure of GEC of a
QSD code will be concentrated in this section.

Example 2. Let
C = aB + cB⊥,

where
B = ⟨1100, 0011⟩ .

Then
B⊥ = ⟨1100, 0011⟩

By Theorem 1, C is a QSD code.

V (GEC) = {0̂000, 1̂100, 0̂011, 1̂111}.

By Corollary 3,
|E(GEC)| = 16− 8− 2 = 6,

that is, GEC is a complete graph.

Theorem 4. Let GEC be the (k1, k2) E-torsion graph of a QSD code

C = aB + cB⊥

where B is a binary code. Then B is self-dual if and only if GEC is a complete graph.

Proof. Let B be self-dual. Then

res(C) = tor(C).

By Corollary 2, the degree of every vertex of GEC is

2k1+k2 − 1,
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that is, GEC is a complete graph.
Conversely, suppose that GEC is a complete graph. Let x ∈ tor(C). Then

(x̂, ŷ) ∈ E(GEC)

since GEC is complete. It follows that

ax+ cy ∈ C

for all
y ∈ tor(C).

Applying α, we have x ∈ res(C), that is,

tor(C) ⊆ res(C).

■

Corollary 4. If C is a QSD code of type-(k1, 0), then GEC is a complete graph.

Theorem 5. If C is a QSD code of type-(0, k2), then GEC is a star graph.

Proof. If k1 = 0, then res(C) is the trivial code which contains only the zero vector.
It follows that

tor(C) = Fn
2 .

Hence,
E(GEC) = {(0̂v, x̂) : x ∈ Fn

2}.

■

Remark 1. Let k1, k2 ∈ Z+ and C1, C2 be type-(k1, k2) linear E-codes. Then

GEC1
∼= GEC2 .

Looking at Remark 1, (k1, k2) E-torsion graph alone cannot be used to classify QSD
codes since two inequivalent codes under the same type-(k1, k2) code have the same (k1, k2)
E-torsion graph. So to separate these two inequivalent QSD codes, we use the concept of
vertex-weighted graph which is defined in the following.

Definition 3. The vertex-weighted (k1, k2) E-torsion graph of a QSD code is the
vertex-weighted graph where the weight of a vertex x ∈ GEC is the weight of the codeword
wt(x) of x ∈ tor(C).

Example 3. Let
C1 = aB1 + cB⊥

1

and
C2 = aB2 + cB⊥

2
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where
B1 = ⟨1100⟩

and
B2 = ⟨1111⟩ .

Note that C1 and C2 are two nonequivalents E-codes. Now,

V (GEC1) = {0̂000, 1̂100, 0̂010, 1̂110, 0̂001, 1̂101, 0̂011, 1̂111}

and
V (GEC2) = {0̂000, 1̂111, 1̂100, 0̂011, 0̂110, 1̂001, 1̂010, 0̂101}.

Figure 2 shows the graph representation of GEC1:

Figure 2: (k1, k2) E-torsion graph of GEC1

Furthermore, Figure 3 is the graph representation of graph GEC2.

Figure 3: (k1, k2) E-torsion graph of GEC2

Note that the two graphs are isomorphic. However, if we look at the vertex-weighted
graph of GEC1 and GEC2 , respectively, (see Figure 4 and 5) using the weights of every
codeword, we see the difference between these two vertex-weighted (1, 2) E-torsion graphs.
Hence, two codes can have isomorphic graphs but different vertex-weighted (k1, k2) E-
torsion graphs.
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Figure 4: (k1, k2) E-torsion graph of GEC1

Figure 5: (k1, k2) E-torsion graph of GEC2

5. Vertex-weighted (k1, k2) E-torsion graph of QSD codes with n ≤ 4

Quasi self-dual E-codes of short length were classified in [3]. In this section, we will
illustrate those QSD codes using their vertex-weighted (k1, k2) E-torsion graphs up to
n = 4.

5.1. (k1, k2) E-torsion graph of QSD codes for n=2.

For
C1 = a ⟨00⟩+ c ⟨10, 01⟩ ,

we have a (0, 2) E-torsion graph which is illustrated in Figure 6.

Figure 6: Vertex-weighted (k1, k2) E-torsion graph of C1



J. Pilongo, L. Paleta, P.L.Benjamin / Eur. J. Pure Appl. Math, 17 (2) (2024), 1369-1384 1380

For
C2 = a ⟨11⟩+ c ⟨11⟩ ,

we have a (1, 0) E-torsion graph which is illustrated in Figure 7.

Figure 7: Vertex-weighted (k1, k2) E-torsion graph of C2

5.2. (k1, k2) E-torsion graph of QSD codes for n=3.

For
C3 = a ⟨000⟩+ c ⟨100, 010, 001⟩ ,

we have a (0, 3) E-torsion graph which is illustrated in Figure 8.

Figure 8: Vertex-weighted (k1, k2) E-torsion graph of C3

5.3. (k1, k2) E-torsion graph of QSD codes for n=4.

For
C5 = a ⟨0000⟩+ c ⟨1000, 0100, 0010, 0001⟩ ,

we have a (0, 4) E-torsion graph which is illustrated in Figure 10.
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For
C4 = a ⟨101⟩+ c ⟨101, 010⟩ ,

we have a (1, 1) E-torsion graph which is illustrated in Figure 9.

Figure 9: Vertex-weighted (k1, k2) E-torsion graph of C4

Figure 10: Vertex-weighted (k1, k2) E-torsion graph of C5

For
C6 = a ⟨1100⟩+ c ⟨1100, 0010, 0001⟩ ,

we have a (1, 2) E-torsion graph which is illustrated in Figure 11.

Figure 11: Vertex-weighted (k1, k2) E-torsion graph of C6
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For
C7 = a ⟨1111⟩+ c ⟨1111, 1100, 0110⟩ ,

we have a (1, 2) E-torsion graph which is illustrated in Figure 12.

Figure 12: Vertex-weighted (k1, k2) E-torsion graph of C7

For
C8 = a ⟨1100, 0011⟩+ c ⟨1100, 0011⟩ ,

we have a (2, 0) E-torsion graph which is illustrated in Figure 13.

Figure 13: Vertex-weighted (k1, k2) E-torsion graph of C8
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6. Conclusion

In this paper, we studied the (k1, k2) E-torsion graph of a type-(k1, k2) E-codes. In
particular, the size of the set of vertices and set of edges. We also characterized (k1, k2)
E-torsion graph when k1 = 0 and k2 = 0 and introduced the notion of vertex-weighted
(k1, k2) E-torsion graph to differentiate inequivalent QSD codes of the same type. Finally,
we were able to represent QSD codes which were classified in [3] up to n = 4 using the
vertex-weighted (k1, k2) E-torsion graph. By defining a (k1, k2) E-torsion graph G such
that the V (G) = 2k1+k2 , there are 2k1 vertices that have degree 2k1+k2 − 1 with the rest
vertices, if there exist, have degree 2k1 . For future study, after graph operations of two
(k1, k2) E-torsion graphs is a (k1, k2) E-torsion graph? Also, one can explore center of
(k1, k2) E-torsion graphs and the dominating sets of (k1, k2) E-torsion graphs.
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