EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2082-2095
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

J-Domination in Graphs

Javier A. Hassan ${ }^{1, *}$, Jeffrey Imer Salim ${ }^{1}$
${ }^{1}$ Mathematics and Sciences Department, College of Arts and Sciences, MSU-Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines

Abstract

Let G be a graph. A subset $D=\left\{d_{1}, d_{2}, \cdots, d_{m}\right\}$ of vertices of G is called a J-set if $N_{G}\left[d_{i}\right] \backslash N_{G}\left[d_{j}\right] \neq \varnothing$ for every $i \neq j$, where $i, j \in\{1,2, \ldots, m\}$. A J-set is called a J-dominating set of G if $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a dominating set of G. The J-domination number of G, denoted by $\gamma_{J}(G)$, is the maximum cardinality of a J-dominating set of G. In this paper, we introduce this new concept and we establish formulas and properties on some classes of graphs and in join of two graphs. Upper and lower bounds of J-domination parameter with respect to the order of a graph and other parameters in graph theory are obtained. In addition, we present realization result involving this parameter and the standard domination. Moreover, we characterize J-dominating sets in some classes of graphs and join of two graphs and finally determine the exact value of the parameter of each of these graphs.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: J-set, J-dominating set, J-domination number

1. Introduction

Domination in a graph has been one of the most interesting and widely studied topics in Graph Theory. It has many applications in various fields and in networks.

The study of domination in graphs came about partially as a result of the study of games and recreational mathematics. In particular, mathematicians studied how chess pieces of a particular type could be placed on a chessboard in such a way that they would attack, or dominate, every square on the board.

In 1962, Oystein Ore introduced the concepts of dominating set and domination number in a graph in his book on Graph Theory [12]. A decade later, Cockayne and Hedetniemi published a survey paper, in which the notation $\gamma(G)$ was first used for the domination number of a graph G [3]. Since then, several mathematicians had studied and introduced new domination parameters in graphs. Some variants of domination were defined and further studied by researchers can be found in $[1,2,4-11,13,14]$.

[^0]In this paper, new variant of domination called J-domination in a graph will be introduced and investigated. Its relationships with other variants of domination and other concepts in graph theory will be determined. Moreover, characterizations of J-dominating sets in some classes of graphs and join of two of graphs will be presented. These results will be used to determine exact values or bounds of the parameter for these graphs. We believe that this study and its results will help other researchers in the field for more research directions in the future.

2. Terminology and Notation

Let $G=(V(G), E(G))$ be a simple and undirected graph. Two vertices x, y of G are adjacent, or neighbors, if $x y$ is an edge of G. The open neighborhood of x in G is the set $N_{G}(x)=\{y \in V(G): x y \in E(G)\}$. The closed neighborhood of x in G is the set $N_{G}[x]=N_{G}(x) \cup\{x\}$. If $X \subseteq V(G)$, the open neighborhood of X in G is the set $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. The closed neighborhood of X in G is the set $N_{G}[X]=N_{G}(X) \cup X$.

A subset D of $V(G)$ is called a dominating of G if for every $x \in V(G) \backslash D$, there exists $y \in D$ such that $x y \in E(G)$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G.

A graph G is connected if every pair of its vertices can be Joined by a path. Otherwise, G is disconnected. A maximal connected subgraph (not a subgraph of any connected subgraph) of G is called a component of G.

A dominating set D of G is called a connected dominating if the induced subgraph $\langle D\rangle$ of D is connected. The connected domination number of G, denoted by $\gamma_{c}(G)$, is the minimum cardinality of a connected dominating set in G. Any connected dominating set D with cardinality equal to $\gamma_{c}(G)$ is called a γ_{c}-set of G.

The distance $d_{G}(u, v)$ in G of two vertices u, v is the length of a shortest $u-v$ path in G. The greatest distance between any two vertices in G, denoted by $\operatorname{diam}(G)$, is called the diameter of G.

A subset I of $V(G)$ is called an independent if for every pair of distinct vertices $x, y \in I$, $d_{G}(x, y) \neq 1$. The maximum cardinality of an independent set in G, denoted by $\alpha(G)$, is called the independence number of G. Any independent set I with cardinality equal to $\alpha(G)$ is called an α-set of G.

A graph is complete if every pair of distinct vertices are adjacent. A complete graph of order n is denoted by K_{n}.

The complement of a graph G, denoted by \bar{G}, is the graph with $V(\bar{G})=V(G)$ and $E(\bar{G})=\{u v: u, v \in V(G)$ and $u v \notin E(G)\}$.

Let G and H be any two graphs. The join of G and H, denoted by $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set

$$
E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\} .
$$

3. Results

We begin this section by introducing the concept of J-domination in a graph.
Definition 1. Let G be a simple and undirected graph and $m \in N$. A subset $D=\left\{d_{1}, d_{2}, \cdots, d_{m}\right\}$ of vertices of G is called a J-set if $N_{G}\left[d_{i}\right] \backslash N_{G}\left[d_{j}\right] \neq \varnothing$ for every $i \neq j$, where $i, j \in\{1,2, \ldots, m\}$. A J-set is called a J-dominating set of G if $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ is a dominating set of G. The J-domination number of G, denoted by $\gamma_{J}(G)$, is the maximum cardinality of a J-dominating set of G. Any J-dominating set D with $|D|=\gamma_{J}(G)$ (resp. $|D|=\gamma(G)$), is called a γ_{J}-set or the maximum (resp. minimum) J-dominating set of G. Moreover, if $x \in N_{G}\left[d_{i}\right] \backslash N_{G}\left[d_{j}\right]$, then we say $d_{i} J$-footprinted a vertex x in G.

Example 1. Consider the graph G in Figure 1. Let $D=\{a, b, c, d\}$. Observe that $a \in N_{G}[a] \backslash N_{G}[u], \forall u \in\{b, c, d\}, b \in N_{G}[b] \backslash N_{G}[v], \forall v \in\{a, c, d\}, c \in N_{G}[c] \backslash N_{G}[w]$, $\forall w \in\{a, b, d\}$ and $d \in N_{G}[d] \backslash N_{G}[x], \forall x \in\{a, b, c\}$. It follows that $N_{G}[s] \backslash N_{G}[t] \neq \varnothing$ for every $s, t \in D, s \neq t$. Thus, D is a J-set of G. Since $N_{G}[D]=V(G)$, it follows that D is a dominating set of G. Consequently, D is a J-dominating set of G. Moreover, it can be verified that $\gamma_{J}(G)=4$.

Figure 1: A graph G with $\gamma_{J}(G)=4$

Theorem 1. Let G be any graph and $m \in \mathbb{N}$. Then $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\} \subseteq V(G)$ is a minimum dominating set in G if and only if T is a minimum J-dominating set in G.

Proof. Suppose that $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\} \subseteq V(G)$ is a minimum dominating set in G. Then it remains to show that T is a J-set in G. Suppose on the contrary that $T=\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}$ is not a J-set in G. Then there exist $a, b \in T$ such that either $N_{G}[a] \backslash N_{G}[b]=\varnothing$ or $N_{G}[b] \backslash N_{G}[a]=\varnothing$. This means that either $N_{G}[a] \subseteq N_{G}[b]$ or $N_{G}[b] \subseteq N_{G}[a]$. If $N_{G}[a] \subseteq N_{G}[b]$, then $D=T \backslash\{a\}$ is a dominating set in G, contradicting to the minimality of T. Similarly, when $N_{G}[b] \subseteq N_{G}[a]=\varnothing$. Hence, T is a
J-dominating set in G. Since $\gamma(G)=|T|$, the assertion follows.
Conversely, suppose that $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ is a minimum J-dominating set of G. Then $|T|=\gamma(G)$ (by definition). It follows that T is a minimum dominating set in G.

Proposition 1. Let G be any graph and $r \in \mathbb{N}$. Then each of the following holds:
(i) A graph G admits a J-domination.
(ii) Given any J-dominating set $D=\left\{d_{1}, d_{2}, \cdots, d_{r}\right\}$ of G, we have $|D|=r \leq \gamma_{J}(G)$.
(iii) $\gamma(G) \leq \gamma_{J}(G)$, and this bound is sharp.

Proof. (i) Since any graph G admits domination, the result follows from Theorem 1.
(ii) Let D be any J-dominating set of G. If D is the maximum, then $\gamma_{J}(G)=|D|$ and we are done. If D is not the maximum, then $\gamma_{J}(G)>|D|$. Consequently, $|D| \leq \gamma_{J}(G)$ for any J-dominating set D of G.
(iii) Let D^{\prime} be a minimum dominating set of G. Then D^{\prime} is a minimum J-dominating set in G by Theorem 1. Thus, by (ii), $\gamma(G)=\left|D^{\prime}\right| \leq \gamma_{J}(G)$. To see the bound is sharp, consider P_{4}. Then $\gamma_{J}\left(P_{4}\right)=2=\gamma\left(P_{4}\right)$.

Theorem 2. Let G be any graph. Then each of the following is true.
(i) A J-set may not be a J-dominating set. In particular, if the cardinality of a J-set D is strictly less than the domination number of G, then D cannot be a J-dominating set of G.
(ii) A vertex set $V(G)$ of G may not be a J-set in G.
(iii) Every J-dominating set in G is a dominating set but the converse is not always true.

Proof. (i) Consider the Example 1 and let $D=(b, e)$. Then $N_{G}[b] \backslash N_{G}[e]=\{b\} \neq \varnothing$ and $N_{G}[e] \backslash N_{G}[b]=\{a, d, e, g\} \neq \varnothing$. It follows that D is a J-set in G. However, D is not a J-dominating set in G since $c \notin N_{G}[D]$, that is, D not a dominating set in G. For the particular case, suppose on the contrary that a J-set D can be a J-dominating set of G. Then D is a dominating set (by definition). Thus, $\gamma(G) \leq|D|$, a contradiction. Therefore, D cannot be a J-dominating set of G.
(ii) Consider again the graph in Example 1. Observe that

$$
N_{G}[c] \backslash N_{G}[g]=\{c, g\} \backslash\{c, e, g\}=\varnothing .
$$

This shows that $V(G)$ is not a J-set of G.
(iii) Let G be a graph and let D be a J-dominating set. Then D is a dominating set in G (by definition). To see that the converse is not true, consider the graph in Example 1 and let $\tilde{A}=\{d, e, f, g\}$. Then $N_{G}[\tilde{A}]=V(G)$, and so \tilde{A} is a dominating set of G. However,
$N_{G}[d] \backslash N_{G}[e]=\{d, e\} \backslash\{a, d, e, f, g\}=\varnothing$, showing that \tilde{A} is not a J-set in G. Thus, \tilde{A} cannot be a J-dominating set in G.

Theorem 3. Let G be any graph and $k \in \mathbb{N}$. Then $T=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a maximum J-set of G if and only if T is a maximum J-dominating set of G. In particular, $\gamma_{J}(G)=k$.

Proof. Let $T=\left\{v_{1}, \cdots, v_{k}\right\}$ be a maximum J-set of G. Suppose T is not a dominating set of G. Then there exists $a \in V(G) \backslash T$ such that $a \notin N_{G}[T]$. This implies that $a \notin N_{G}[b]$ for every $b \in T$. Let $T_{0}=\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}$, where $v_{0}=a$. Since T is a J-set and $v_{0} \in N_{G}\left[v_{0}\right]$, it follows that $N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right] \neq \varnothing$ for every $i \neq j$, where $i, j \in\{0,1, \ldots, k\}$. Hence, T_{0} is a J-set in G, contradicting the maximality of T. Therefore, T is a dominating set of G. Since T is a maximum J-set in G, it follows that T is a maximum J-dominating set in G. Consequently, $\gamma_{J}(G)=k$.

The converse is clear.
The following result follows from Theorem 3.
Corollary 1. Let G be a graph and let $D=\left\{x_{1}, x_{2}, \cdots, x_{s}\right\}$ be a J-set of G. Then $|D|=s \leq \gamma_{J}(G)$.

Theorem 4. Let G be any graph and D be any J-dominating set of G. Then
(i) $u \in D$ if and only if $N_{G}[u] \nsubseteq N_{G}[v]$ and $N_{G}[v] \nsubseteq N_{G}[u] \forall v \in D \backslash\{u\}$; and
(ii) a pendant vertex x is in D if and only if its neighbor y is not in D.

Proof. (i) Let D be a J-dominating set of G and $u \in D$. Since D is a J-set, we have $N_{G}[u] \backslash N_{G}[v] \neq \varnothing$ and $N_{G}[v] \backslash N_{G}[u] \neq \varnothing \forall v \in D \backslash\{u\}$. It follows that $N_{G}[u] \nsubseteq N_{G}[v]$ and $N_{G}[v] \nsubseteq N_{G}[u] \forall v \in D \backslash\{u\}$.

Conversely, suppose that $N_{G}[u] \nsubseteq N_{G}[v]$ and $N_{G}[v] \nsubseteq N_{G}[u] \forall v \in D \backslash\{u\}$. Then $N_{G}[u] \backslash N_{G}[v] \neq \varnothing$ and $N_{G}[v] \backslash N_{G}[u] \neq \varnothing \forall v \in D \backslash\{u\}$. This means that $u \in D$.
(ii) Let $x \in D$ be a pendant vertex of G and let y be a neighbor of x. Then $N_{G}[x] \subseteq N_{G}[y]$. Suppose on the contrary that $y \in D$. Then by (i), $N_{G}[x] \nsubseteq N_{G}[y]$ and $N_{G}[y] \nsubseteq N_{G}[x] \forall y \in D \backslash\{x\}$, a contradiction. Thus, $y \notin D$.

Conversely, suppose on the contrary that $x \notin D$. Then by (i), $N_{G}[x] \subseteq N_{G}[a]$ or $N_{G}[a] \subseteq N_{G}[x]$ for some $a \in D$. Since its neighbor y is not in D, we have $x \notin N_{G}[w]$ for every $w \in D$. Thus, $N_{G}[D] \neq V(G)$, showing that D is not a dominating set in G. However, this is a contradiction to the fact that D is a J-dominating set in G. Therefore, $x \in D$.

Theorem 5. Let G be any graph and let $S \subseteq V(G)$. Then
(i) every independent set S is a J-set; and
(ii) every maximum independent set S is a J-dominating set. Moreover, $\alpha(G) \leq \gamma_{J}(G)$.

Proof. (i) Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be an independent set in G. Then $d_{G}\left(s_{i}, s_{j}\right) \geq 2$ for every $i \neq j$, where $i, j \in\{1,2, \ldots, k\}$. It follows that $s_{i} \in N_{G}\left[s_{i}\right] \backslash N_{G}\left[s_{j}\right]$ for every $i \neq j$. Thus, $N_{G}\left[s_{i}\right] \backslash N_{G}\left[s_{j}\right] \neq \varnothing$ for every $i \neq j$. This shows that S is a J-set of G.
(ii) Next, let $S^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a maximum independent set of G. Then S^{\prime} is a J-set in G by (i). Now, suppose on the contrary that S^{\prime} is not a dominating set of G. Then there exists $x \in V(G) \backslash S^{\prime}$ such that $x \notin N_{G}[y] \forall y \in S^{\prime}$. This means that $d_{G}(x, y) \geq 2$ for all $y \in S^{\prime}$. Thus, $S^{*}=\{x\} \cup S^{\prime}$ is an independent set in G, contradicting the maximality of S^{\prime}. Therefore, S^{\prime} is a dominating set of G, and so S^{\prime} is a J-dominating in G. Consequently, $\alpha(G) \leq \gamma_{J}(G)$ by Proposition 1.

Remark 1. The converse of the Theorem 5 is not true. Moreover, the sharpness of the bound is attainable.

To see this, consider the graph G in Figure 2. Let $C=\{a, e, h\}$. Then $N_{G}[a]=\{a, b\}$, $N_{G}[e]=\{b, c, d, e, f, g, h\}$ and $N_{G}[h]=\{e, g, h, i\}$. Thus, $N_{G}[a] \backslash N_{G}[e]=\{a\} \neq \varnothing$, $N_{G}[a] \backslash N_{G}[h]=N_{G}[a] \neq \varnothing, N_{G}[e] \backslash N_{G}[a]=\{c, d, e, f, g, h\} \neq \varnothing, N_{G}[e] \backslash N_{G}[h]=$ $\{b, c, d, f\} \neq \varnothing, N_{G}[h] \backslash N_{G}[a]=N_{G}[h] \neq \varnothing$ and $N_{G}[h] \backslash N_{G}[e]=\{i\} \neq \varnothing$. Therefore, C is a J-set in G. However, C is not an independent set in G since $d_{G}(e, h)=1$. For the sharpness, consider again the graph G in Figure 2 and let $T=\{a, c, d, f, g, i\}$. Then T is an α-set of G, and so $\alpha(G)=6$. Now, since $x \in N_{G}[x] \backslash N_{G}[y] \forall x, y \in T$, it follows that T is a J-set in G. Moreover, observe that $N_{G}[T]=V(G)$. Hence, T is J-dominating set in G. Since a, d, f and i are pendant vertices of G, it follows that T is the maximum J-dominating of G by Theorem 4. Consequently, $\alpha(G)=6=\gamma_{J}(G)$.

Figure 2: A graph G with a J-set C which is not an independent set in G

Theorem 6. Let G be any graph on $n \geq 1$ vertices. Then each of the following statements holds.
(i) $1 \leq \gamma_{J}(G) \leq n$.
(ii) $\gamma_{J}(G)=1$ if and only if G is complete.
(iii) If $\gamma_{J}(G) \leq n-1$, then $\left|N_{G}[v]\right| \geq 2$ for some $v \in V(G)$. However, the converse is not true.
(iv) If $G=\bar{K}_{n}$, then $\gamma_{J}(G)=|V(G)|=n$. However, the converse is not true.

Proof. (i) Since any singleton set $\{a\}$ is a J-set for any $a \in V(G)$, the lower bound follows by Corollary 1. Moreover, since any γ_{J}-set D is always a subset of $V(G)$, the upper bound follows. Consequently, $1 \leq \gamma_{J}(G) \leq n$.
(ii) Assume that $\gamma_{J}(G)=1$. Suppose G is non-complete graph. Then there exist $a, b \in V(G)$ such that $d_{G}(a, b) \geq 2$. Let $C=\{a, b\}$. Since $d_{G}(a, b) \geq 2$, it follows that $a \in N_{G}[a] \backslash N_{G}[b]$ and $b \in N_{G}[b] \backslash N_{G}[a]$. Thus, $N_{G}[a] \backslash N_{G}[b] \neq \varnothing$ and $N_{G}[b] \backslash N_{G}[a] \neq \varnothing$ C, showing that C is a J-set in G. By Corollary $1, \gamma_{J}(G) \geq 2$ which is a contradiction. Hence, G is complete.

Conversely, suppose that G is complete. Then $N_{G}[a]=V(G)$ for any $a \in V(G)$. It follows that for every two distinct vertices $x, y \in V(G), N_{G}[x] \backslash N_{G}[y]=V(G) \backslash V(G)=\varnothing$. Thus, $\gamma_{J}(G) \geq 2$ is impossible. Hence, $\gamma_{J}(G)=1$ by (i).
(iii) Assume that $\gamma_{J}(G) \leq n-1$. Suppose on the contrary that $\left|N_{G}[v]\right|<2$ for every $v \in$ $V(G)$. This means that $\left|N_{G}[v]\right|=1$ for every $v \in V(G)$. It follows that $G=\bar{K}_{n}$. Observe that $\gamma\left(\bar{K}_{n}\right)=n$. Thus, $\gamma\left(\bar{K}_{n}\right)=n \leq \gamma_{J}(G)$ by Proposition 1, a contradiction. To see that the converse is not true, consider the graph G in Figure 3. Let $K=V(G)=\{a, b, c, d, e, f\}$. Then $N_{G}[a] \backslash N_{G}[b]=\{d\}, N_{G}[a] \backslash N_{G}[c]=\{a\}, N_{G}[a] \backslash N_{G}[d]=\{b\}$, $N_{G}[a] \backslash N_{G}[e]=\{a, b\}, N_{G}[a] \backslash N_{G}[f]=\{a, d\}, N_{G}[b] \backslash N_{G}[a]=\{c, f\}$, $N_{G}[b] \backslash N_{G}[c]=\{a, f\}, N_{G}[b] \backslash N_{G}[d]=\{b, f\}, N_{G}[b] \backslash N_{G}[e]=\{a, b, c\}$, $N_{G}[b] \backslash N_{G}[f]=\{a, c\}, \quad N_{G}[c] \backslash N_{G}[a]=\{c\}, N_{G}[c] \backslash N_{G}[b]=\{d\}$, $N_{G}[c] \backslash N_{G}[d]=\{b\}, N_{G}[c] \backslash N_{G}[e]=\{b, c\}, N_{G}[c] \backslash N_{G}[f]=\{d, c\}$, $N_{G}[d] \backslash N_{G}[a]=\{c, e\}, N_{G}[d] \backslash N_{G}[b]=\{d, e\}, N_{G}[d] \backslash N_{G}[c]=\{a, e\}$, $N_{G}[d] \backslash N_{G}[e]=\{a, c\}, N_{G}[d] \backslash N_{G}[f]=\{a, c, d\}, N_{G}[e] \backslash N_{G}[a]=\{e, f\}$, $N_{G}[e] \backslash N_{G}[b]=\{e, d\}, N_{G}[e] \backslash N_{G}[c]=\{e, f\}, N_{G}[e] \backslash N_{G}[d]=\{f\}$, $N_{G}[e] \backslash N_{G}[f]=\{d\}, N_{G}[f] \backslash N_{G}[a]=\{e, f\}, N_{G}[f] \backslash N_{G}[b]=\{e\}$, $N_{G}[f] \backslash N_{G}[c]=\{e, f\}, N_{G}[f] \backslash N_{G}[d]=\{b, f\}, N_{G}[f] \backslash N_{G}[e]=\{b\}$. Thus, K is a $J-$ dominating set of G, and so $\gamma_{G}(G)=\mid V(G \mid=6$.

Figure 3: A graph G with $\left|N_{G}[v]\right| \geq 2$ for some $v \in V(G)$, however, $\gamma_{J}(G)=|V(G)|$
(iv). Let $G=\bar{K}_{n}$ and $D=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a vertex set of G. Then $N_{G}\left[v_{i}\right]=\left\{v_{i}\right\}$ for each $i \in\{1,2, \ldots, n\}$. Thus, $v_{i} \in N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right]$ for each $i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. This means that $N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right] \neq \varnothing$ for each $i \neq j$. Thus, $V(G)$ is a J-set of G. Since $V(G)$ is a dominating set of $G, V(G)$ is a J-dominating set in G. Hence, $\gamma_{J}(G)=|V(G)|=n$ by (i). The converse follows by considering the graph in Figure 3.

Theorem 7. Let G be any non-complete graph. Then every dominating vertex v of G is not in γ_{J}-set D of G.

Proof. Suppose G is non-complete graph. Then $\gamma_{J}(G) \geq 2$ by Theorem 6(ii). Now, let $v \in V(G)$ be a dominating vertex of G. Suppose on the contrary that $v \in D$. Since v is a dominating vertex of G, we have $N_{G}[v]=V(G)$. Thus,

$$
N_{G}[u] \backslash N_{G}[v]=N_{G}[u] \backslash V(G)=\varnothing \forall u \in D \backslash\{v\} .
$$

It follows that $\{v\}$ is a maximum J-set of G. By Theorem $3, \gamma_{J}(G)=1$, a contradiction. Therefore, $v \notin D$.

The next result is a realization result involving J-domination number and domination number of a graph.

Theorem 8. Let m and n be positive integers such that $2 \leq a \leq b$. Then there exists a connected graph G such that $\gamma(G)=a$ and $\gamma_{J}(G)=b$. That is, $\gamma_{J}(G)-\gamma(G)$ can be made arbitrarily large.

Proof. For equality, consider the graph \bar{K}_{a}. Since $\gamma\left(\bar{K}_{s}\right)=s$, it follows that $\gamma_{J}\left(\bar{K}_{a}\right)=a=\gamma\left(\bar{K}_{a}\right)$ by Theorem 6(iv).

For the inequality $(a<b)$, consider the following cases:
Case 1: $\mathrm{a}=2$
Let $m=b-2$ and consider consider the graph G in Figure 4. Let $D_{1}=\left\{y_{1}, y_{2}\right\}$ and
$D_{2}=\left\{x_{1}, x_{2}, z_{1}, z_{2}, \ldots, z_{m}\right\}$. Since for any $x \in V(G)$ is not a dominating vertex, it follows that D_{1} is a γ-set of G, that is, $\gamma(G)=2$. Now, observe that $x_{1}, y_{1} \in N_{G}\left[x_{1}\right] \backslash N_{G}[u] \forall u \in$ $D_{2} \backslash\left\{x_{1}\right\}, x_{2} \in N_{G}\left[x_{2}\right] \backslash N_{G}[v] \forall v \in D_{2} \backslash\left\{x_{2}\right\}$, and $z_{i} \in N_{G}\left[z_{i}\right] \backslash N_{G}[w] \forall w \in D_{2} \backslash\left\{z_{i}\right\}$, $i \in\{1,2, \ldots, m\}$. Thus, D_{2} is a J-set of G. Since D_{2} is a dominating set, D_{2} is a J-dominating of G. Since x_{i} and z_{j} are pendant vertices for each $i \in\{1,2\}$ and $j \in$ $\{1,2, \ldots, m\}$, it follows that D_{2} is a maximum J-dominating set of G by Theorem 4. Hence, $\gamma_{J}(G)=m+2=b$ by Theorem 3. Consequently, $\gamma(G)=a<b=\gamma_{J}(G)$.

Figure 4: A graph G with $\gamma(G)<\gamma_{J}(G)$
Case 2: $a \geq 3$
Let $m=b-a$ and consider the graph G^{\prime} in Figure 5. Let $D^{\prime}=\left\{y_{1}, y_{2}, \ldots, y_{a}\right\}$ and $D^{*}=\left(x_{1}, x_{2}, \cdots, x_{a}, z_{1}, z_{2}, \cdots, z_{m}\right)$. Then D^{\prime} is a γ-set of G. Thus, $\gamma(G)=a$. Observe that $x_{i} \in N_{G}\left[x_{i}\right] \backslash N_{G}[u] \forall u \in D^{*} \backslash\left\{x_{i}\right\}, z_{k-1} \in N_{G}\left[z_{k}\right] \backslash N_{G}\left[z_{l}\right] \forall l>k$, $z_{s+1} \in N_{G}\left[z_{s}\right] \backslash N_{G}\left[z_{t}\right] \forall s>t$, and $z_{q} \in N_{G}\left[z_{q}\right] \backslash N_{G}\left[x_{r}\right]$, where $i, r \in\{1,2, \ldots, a\}$, and $i, k, l, s, t, q \in\{1,2, \ldots, m\}$. Thus, D^{*} is a J-set of G. Since D^{*} is a dominating set, D^{*} is a J-dominating of G. Since x_{i} is a pendant vertex for each $i \in\{1,2, \ldots, a\}$, it follows that D^{*} is a maximum J-dominating set of G by Theorem 4. Hence, $\gamma_{J}(G)=m+a=b$ by Theorem 3. Therefore, $\gamma(G)=a<b=\gamma_{J}(G)$.

Figure 5: A graph G^{\prime} with $\gamma\left(G^{\prime}\right)<\gamma_{J}\left(G^{\prime}\right)$

Proposition 2. Given any positive integer $n \geq 1$, we have
(i) $\gamma_{J}\left(P_{n}\right)=\left\{\begin{array}{l}1 \text { if } n=1,2 \\ 2 \text { if } n=3,4 \\ n-2 \text { if } n \geq 5,\end{array}\right.$
(ii) $\gamma_{J}\left(C_{n}\right)=\left\{\begin{array}{ll}1 & \text { if } n=3 \\ n & \text { if } n \geq 4\end{array}\right.$.

Proof. (i) Clearly, $\gamma_{J}\left(P_{n}\right)=1$ for $n=1,2$ and $\gamma_{J}\left(P_{n}\right)=2$ for $n=3,4$. Suppose $n \geq 5$. Let $P_{n}=G=\left[v_{1}, v_{2}, \ldots, v_{n}\right], D=\left\{v_{2}, v_{3} \cdots, v_{n-2}, v_{n-1}\right\}$ and let $i, j \in\{2,3, \ldots, n-1\}$. Then $v_{i-1} \in N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right]$ and $v_{j+1} \in N_{G}\left[v_{j}\right] \backslash N_{G}\left[v_{i}\right]$ for all $j>i, i, j \in\{2,3, \ldots, n-1\}$. Thus, $N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right] \neq \varnothing$ for all $i \neq j, i, j \in\{2,3, \ldots, n-1\}$, showing that D is a J-set in G. Therefore, $\gamma_{J}\left(P_{n}\right) \geq n-2$ by Corollary 1. If $\gamma_{J}\left(P_{n}\right)=n$, then $V\left(P_{n}\right)$ is the maximum J-dominating set in P_{n}. However, $N_{G}\left[v_{n}\right] \subseteq N_{G}\left[v_{n-1}\right]$. Thus, $N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{n-1}\right]=\varnothing$, a contradiction. Next, suppose that $\gamma_{J}(G)=n-1$, say $A=\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\}$ is a J-dominating set of G. Then either $\langle A\rangle$ is connected or disconnected. Assume that $\langle A\rangle$ is connected. Then either v_{1} or v_{n} is not in A. If $v_{1} \notin A$, then $v_{n-1}, v_{n} \in A$. However, $N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{n-1}\right]=\left\{v_{n}, v_{n-1}\right\} \backslash\left\{v_{n}, v_{n-1}, v_{n-2}\right\}=\varnothing$, a contradiction. If $v_{n} \notin A$, then $v_{1}, v_{2} \in A$. However, $N_{G}\left[v_{1}\right] \backslash N_{G}\left[v_{2}\right]=\left\{v_{1}, v_{2}\right\} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}=\varnothing$, a contradiction. Next, suppose that $\langle A\rangle$ is disconnected. Then there exists $v_{j} \in V(G)$ such that $v_{j} \notin A$ for some $j \in\{2,3, \ldots, n-1\}$. If $v_{2} \notin A$, then $v_{n-1}, v_{n} \in A$ and $N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{n-1}\right]=\left\{v_{n}, v_{n-1}\right\} \backslash\left\{v_{n}, v_{n-1}, v_{n-2}\right\}=\varnothing$, a contradiction. If $v_{n-1} \notin A$, then $v_{1}, v_{2} \in A$ and $N_{G}\left[v_{1}\right] \backslash N_{G}\left[v_{2}\right]=\left\{v_{1}, v_{2}\right\} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}=\varnothing$, a contradiction. Lastly, suppose that $v_{j} \notin A$, where $2<j<n-1$. Then $v_{n-1}, v_{n} \in A$ and $v_{1}, v_{2} \in A$, a contradiction by the preceding arguments. Therefore, $\gamma_{J}(G)=n-1$ is impossible. Consequently,
$\gamma_{J}\left(P_{n}\right)=n-2$ for all $n \geq 5$.
(ii) Clearly, $\gamma_{J}\left(C_{3}\right)=1$. Suppose $n \geq 4$. Let $C_{n}=G=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$ and let $D^{*}=V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $v_{n} \in N_{G}\left[v_{1}\right] \backslash N_{G}\left[v_{j}\right]$ for all $j \in\{2,3, \ldots, n-2\}$, $v_{1} \in N_{G}\left[v_{1}\right] \backslash N_{G}\left[v_{n-1}\right], v_{2} \in N_{G}\left[v_{1}\right] \backslash N_{G}\left[v_{n}\right], v_{1} \in N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{s}\right]$ for all $s \in\{3,4, \ldots, n-1\}, v_{n} \in N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{2}\right], v_{n-1} \in N_{G}\left[v_{n}\right] \backslash N_{G}\left[v_{1}\right], v_{i+1} \in N_{G}\left[v_{i}\right] \backslash$ $N_{G}\left[v_{j}\right] \forall i, j \in\{1,2, \ldots, n-1\}, i>j$, and $v_{k-1} \in N_{G}\left[v_{k}\right] \backslash N_{G}\left[v_{l}\right] \forall k, l \in\{2,3, \ldots, n\}$, $k<l$. It follows that $N_{G}\left[v_{q}\right] \backslash N_{G}\left[v_{r}\right] \neq \varnothing$ for every $q \neq r, q, r \in\{1,2, \ldots, n\}$. Therefore, $D^{*}=V(G)$ is a J-dominating set in G, showing that $\gamma_{J}\left(C_{n}\right)=n$ for all $n \geq 4$.

Theorem 9. Let G and H be two non-complete graphs. A subset D of distinct vertices of $G+H$ is a J-dominating set in $G+H$ if and only if one of the following condition holds:
(i) D is a J-dominating set of G.
(ii) D is a J-dominating set of H.
(iii) $D=D_{G} \cup D_{H}$, where D_{G} and D_{H} are J-sets in G and H, respectively.

Proof. Suppose that D is J-dominating set in $G+H$. If $D_{H}=\varnothing$, then $D=D_{G}$ is a J-dominating set in G, and so (i) holds. If $D_{G}=\varnothing$, then $D=D_{H}$ is a J-dominating set in H, showing that ($i i$) holds. Now, assume that D_{G} and D_{H} are both non-empty. Suppose on the contrary that D_{G} is not a J-set in G. Then there exist $a, b \in D_{G} \subseteq D$ such that either $N_{G}[a] \backslash N_{G}[b]=\varnothing$ or $N_{G}[b] \backslash N_{G}[a]=\varnothing$, a contradiction. Therefore, D_{G} is a J-set in G. Similarly, D_{H} is a J-set in H. Consequently, (iii) holds.

Conversely, suppose that (i) holds. Then D is a J-dominating set in $G+H$. Similarly, if (ii) holds, then D is a J-dominating set in $G+H$. Now, assume that ($i i i$) holds. Since D_{G} and D_{H} are both non-empty, it follows that D is a dominating set in $G+H$. It remains to show that D is a J-set in $G+H$. Let $a, b \in D$. If $a, b \in D_{G} \subseteq D$, then $N_{G}[a] \backslash N_{G}[b] \neq \varnothing$ and $N_{G}[b] \backslash N_{G}[a] \neq \varnothing$ by assumption. This implies that $N_{G+H}[a] \backslash N_{G+H}[b] \neq \varnothing$ and $N_{G+H}[b] \backslash N_{G+H}[a] \neq \varnothing$, and we are done. Similarly, if $a, b \in D_{H} \subseteq D$, then D is a J-set in $G+H$. Now, assume that $a \in D_{G}$ and $b \in D_{H}$. If a is a dominating vertex of G, then $D_{H}=\varnothing$, a contradiction. Thus, a is not a dominating vertex of G. Similarly, b is not a dominating vertex of H. Let $x \in V(G)$ and $y \in V(H)$, where $x \notin N_{G}[a]$ and $y \notin N_{H}[b]$. Then $y \in N_{G+H}[a] \backslash N_{G+H}[b] \neq \varnothing$ and $x \in N_{G+H}[b] \backslash N_{G+H}[a]$. Thus, D is a J-set in $G+H$. Consequently, D is a J-dominating set in $G+H$.

Corollary 2. Let G and H be two non-complete graphs. Then

$$
\gamma_{J}(G+H)=\gamma_{J}(G)+\gamma_{J}(H)
$$

In particular, each of the following holds:
(i) $\gamma_{J}\left(K_{m, n}\right)=\gamma_{J}\left(\bar{K}_{m}\right)+\gamma_{J}\left(\bar{K}_{n}\right)=m+n$ for all $m, n \geq 2$.
(ii) $\gamma_{J}\left(P_{n}+P_{m}\right)=\left\{\begin{array}{l}4 \text { if } n=3, m=3 \\ m \text { if } n=3, m \geq 4 \\ n \text { if } n \geq 4 \geq m=3 \\ n+m-4 \text { if } n \geq 4, m \geq 4 .\end{array}\right.$
(iii) $\gamma_{J}\left(P_{n}+C_{m}\right)=\left\{\begin{array}{l}m+2 \text { if } n=3 \geq m \geq 4 \\ n+m-2 \text { if } n \geq 4, m \geq 4 .\end{array}\right.$
(iv) $\gamma_{J}\left(C_{n}+C_{m}\right)=n+m$ for all $n, m \geq 4$.

Proof. Let $D=D_{G} \cup D_{H}$ be a γ_{J}-set of $G+H$. Then by Theorem $9, D_{G}$ and D_{H} are J-sets in G and H, respectively. It follows that

$$
\gamma_{J}(G+H)=|D|=\left|D_{G}\right|+\left|D_{H}\right| \leq \gamma_{J}\left(D_{G}\right)+\gamma_{J}\left(D_{H}\right) \text { by Corollary } 1
$$

On the other hand, suppose that $D=D_{G} \cup D_{H}$, where D_{G} and D_{H} are maximum J-sets in G and H, respectively. Then by Theorem $9, D$ is a J-dominating set in $G+H$. Thus, $\gamma_{J}(G)+\gamma_{J}(H)=\left|D_{G}\right|+\left|D_{H}\right|=|D| \leq \gamma_{J}(G+H)$ by Proposition 1. Consequently, $\gamma_{J}(G+H)=\gamma_{J}(G)+\gamma_{J}(H)$. Moreover, particular cases follow from Theorem 6 and Proposition 2.

Theorem 10. Let G and H be any complete and any non-complete graphs, respectively. A subset $D=D_{G} \cup D_{H}$ of distinct vertices of $G+H$ is a J-dominating set in $G+H$ if and only if one of the following conditions holds:
(i) $D_{H}=\varnothing$ and D_{G} is a J-dominating set of G.
(ii) $D_{G}=\varnothing$ and D_{H} is a J-dominating set of H.

Proof. Suppose that D is J-dominating set in $G+H$. Since G is complete, both $D_{G} \neq \varnothing$ and $D_{H} \neq \varnothing$ are impossible. It follows that either $D_{G} \neq \varnothing$ and $D_{H}=\varnothing$ or $D_{H} \neq \varnothing$ and $D_{G}=\varnothing$. If $D_{H}=\varnothing$, then $D=D_{G}$ is a J-dominating set in G, and so (i) holds. If $D_{G}=\varnothing$, then $D=D_{H}$ is a J-dominating set in H, and so (ii) holds.

Conversely, suppose that $D_{H}=\varnothing$ and D_{G} is a J-dominating set of G. Then $D=D_{G}$ is a J-set in $G+H$. Since D_{G} is dominating set in $G, N_{G+H}[D]=V(G+H)$. Thus, D is a dominating set in $G+H$, showing that D is a J-dominating set in $G+H$. Similarly, if (ii) holds, then D is a J-dominating set in $G+H$.

Corollary 3. Let G and H be complete and non-complete graphs, respectively. Then

$$
\gamma_{J}(G+H)=\gamma_{J}(H)
$$

In particular, each of the following holds:
(i) $\gamma_{J}\left(K_{1, n}\right)=n$ for all $n \geq 1$.
(ii) $\gamma_{J}\left(W_{n}\right)=\gamma_{J}\left(K_{1}+C_{n}\right)=n$ for all $n \geq 4$.
(iii) $\gamma_{J}\left(F_{n}\right)=\gamma_{J}\left(K_{1}+P_{n}\right)=n-2$ for all $n \geq 3$.

Proof. Let $D=D_{G} \cup D_{H}$ be a γ_{J}-set of $G+H$. Then by Theorem 10, either $D_{H}=\varnothing$ and D_{G} is J-dominating set in G or $D_{G}=\varnothing$ and D_{H} is J-dominating set in H. It follows that

$$
\gamma_{J}(G+H)=|D|=\left|D_{G}\right|+\left|D_{H}\right|=\left|D_{G}\right| \leq \gamma_{J}(G)
$$

or

$$
\gamma_{J}(G+H)=|D|=\left|D_{G}\right|+\left|D_{H}\right|=\left|D_{H}\right| \leq \gamma_{J}\left(D_{H}\right) \text { by Proposition } 1 .
$$

Thus,

$$
\gamma_{J}(G+H) \leq \max \left\{\gamma_{J}(G), \gamma_{J}\left(D_{H}\right)\right\} .
$$

Since G is complete, it follows that $\left.\gamma_{J}(G+H) \leq \gamma_{J}\left(D_{H}\right)\right\}$.
On the other hand, suppose that $D=D_{G} \cup D_{H}$, where either $D_{H}=\varnothing$ and $D_{G}=D$ is $\gamma_{J^{-}}$set in G or $D_{G}=\varnothing$ and $D_{H}=D$ is γ_{J}-set in H. Then by Theorem $10, D$ is a J-dominating set in $G+H$. It follows that $\gamma_{J}(G)=\left|D_{G}\right| \leq \gamma_{J}(G+H)$ or $\gamma_{J}(H)=\left|D_{H}\right| \leq \gamma_{J}(G+H)$ by Proposition 1. Thus, $\max \left\{\gamma_{J}(G), \gamma_{J}(H)\right\} \leq \gamma_{J}(G+H)$. Since G is complete, we have $\gamma_{J}(H) \leq \gamma_{J}(G+H)$. Consequently, $\gamma_{J}(G+H)=\gamma_{J}(H)$. Moreover, particular cases follow from Theorem 6 and Proposition 2.

4. Conclusion

The concept of J-domination has been introduced and investigated in this study. Its bounds with respect to the order of a graph and other parameters have been determined. It was shown that any graph G admits a J-domination and was found out that a graph G satisfying $\gamma_{J}(G)=|V(G)|$ is not unique. Moreover, characterizations of J-dominating sets in some graphs have been used to determine exact values of parameter of some graphs. Some graphs that were not considered in this study could be an interesting to investigate further for the concept. In addition, researchers may consider the complexity and algorithm, and real life application of the concept.

Acknowledgements

The authors would like to thank Mindanao State University - Tawi-Tawi College of Technology and Oceanography for funding this research.

References

[1] C.E. Adame and C.L. Garita. Total domination on some graph operators. Mathematics, 9:1-9, 2021.
[2] R.C. Brigham, G. Chartrand, R.D. Dutton, and P. Chang. Resolving domination in graphs. Mathematica Bohemica., 25(1):25-36, 2003.
[3] E.J. Cockayne and S.T. Hedetniemi. Towards a theory of domination in graphs. Networks, 7(3):247-261, 1977.
[4] B. Gayathri and S. Kaspar. Connected co-independent domination of a graph. Int. J. Contemp. Math. Sciences,, 9(6):423-429, 2011.
[5] J. Hassan and S. Canoy Jr. Grundy hop domination in graphs. Eur. J. Pure Appl. Math., 15(4):1623-1636, 2022.
[6] J. Hassan and S. Canoy Jr. Connected grundy hop dominating sequences in graphs. Eur. J. Pure Appl. Math., 16(2):1212-1227, 2023.
[7] J. Hassan, S. Canoy Jr., and Chrisley Jade Saromines. Convex hop domination in graphs. Eur. J. Pure Appl. Math., 16(1):319-335, 2023.
[8] S. Canoy Jr and J. Hassan. Weakly convex hop dominating sets in graphs. Eur. J. Pure Appl. Math., 16(2):1196-1211, 2023.
[9] M. Livingston and Q.F. Stout. Perfect dominating sets.. In Congressus Numerantum., 79:187-203, 1990.
[10] J. Manditong, J. Hassan, L. Laja, A. Laja, N.H. Mohammad, and S. Kamdon. Connected outer-hop independent dominating sets in graphs under some binary operations. Eur. J. Pure Appl. Math., 16(3):1817-1829, 2023.
[11] C. Natarajan and S. Ayyaswamy. Hop domination in graphs ii. Versita,, 23(2):187199, 2015.
[12] Ore O. Theory of graphs,. Amer Math. Soc. Colloq. Publ.,, 38(6), 1962.
[13] E. Sampathkumar and H.B. Walikar. The connected domination number of a graph. Jour. Math. Phy. Sci., 13(6), 1979.
[14] A. Sugumaran and E. Jayachandran. Domination number of some graphs. Int'l. Jour. Scientific. Dev't and Research., 11(3):386-391, 2018.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4883
 Email addresses: javierhassan@msutawi-tawi.edu.ph (J. A. Hassan)
 jeffreyimersalim@msutawi-tawi.edu.ph (J. I. Salim)

