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On the Number of Restricted One-to-One and Onto
Functions Having Integral Coordinates

Mary Joy R. Latayada

Department of Mathematics, Caraga State University, 8600 Butuan City, Philippines

Abstract. Let Nm be the set of positive integers 1, 2, , · · · ,m and S ⊆ Nm. In 2000, J. Caumeran
and R. Corcino made a thorough investigation on counting restricted functions f|S under each of
the following conditions:

(a) f(a) ≤ a, ∀a ∈ S;

(b) f(a) ≤ g(a), ∀a ∈ S where g is any nonnegative real-valued continuous functions;

(c) g1(a) ≤ f(a) ≤ g2(a), ∀a ∈ S, where g1 and g2 are any nonnegative real-valued continuous
functions.

Several formulae and identities were also obtain by Caumeran using basic concepts in combina-
torics. In this paper we count those restricted functions under condition f(a) ≤ a, ∀a ∈ S which
is one-to-one and onto and establish some formulas and identities parallel to those obtained by J.
Caumeran and R. Corcino.
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1. Introduction

Cantor [12] is the first to consider the study of counting functions when he attempted
to give meaning to power of cardinal numbers. Cantor obtained that the number of
possible functions from an m-set to an n-set is equal to nm in which (n)m = n(n −
1)(n− 2) . . . (n−m+ 1) of these are one-to-one functions.Stirling number of the first and
second kind was first introduced by James Stirling published in 1730 in his book Methodes
Differentials. The Stirling numbers of the second kind S(n,m) count the number of ways
of partitioning a set containing n elements into m nonempty subsets. By making use of
the classical Stirling numbers of the second kind S(n, k), it is shown that the number of
onto functions is n!S(m,n) (see [3]). The Stirling numbers of the second kind satisfy the
following recurrence relations and explicit formula:
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(i) S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), n, k ≥ 1.
S(n, 0) = S(0, k) = 0 except S(0, 0) = 1.n, k ≥ 1.

(ii) S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n

=
1

k!

k∑
i=0

(−1)k−i

(
k

i

)
(i)n.

Using these identities, we can easily construct the following table of values of S(n, k):

@
@
@n

k
0 1 2 3 4 5 6

0 0
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1

Table 1: Values of S(n, k) for 0 ≤ n ≤ 6

The Stirling numbers of the second kind has been generalized by introducing two
parameters r and β. These generalized numbers are referred to as (r, β)− Stirling numbers,
denoted by Sr,β(n, k). They were introduced by R. Corcino [6] as coefficient of the explicit
formula:

Sr,β(n, k) =
1

βk!

k∑
j=0

(−1)k−j

(
k

j

)
(βj + r)n.

In [2], it was obtained that the number of restricted functions f |S : Nm −→ Nn for all
S ⊆ Nm where Nm = {1, 2, . . . ,m} is equal to (n+ 1)m.

R. Corcino et al. [7] established some formulas in counting restricted functions f |S :
Nm −→ N , S ⊆ Nm under each of the following conditions:

(i) f(a) ≤ a, ∀a ∈ S;

(ii) f(a) ≤ g(a), ∀a ∈ S where g is any nonnegative real-valued continuous functions;

(iii) g1(a) ≤ f(a) ≤ g2(a), ∀a ∈ S, where g1 and g2 are any nonnegative real-valued
continuous functions.

In this paper, we count those restricted functions considered by Caumeran [2] under
condition (i) which is one-to-one and also onto. It is known that the number of one-to-one
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functions that can be formed from A to B where |A| = n and |B| = m is equal to

m(m− 1)(m− 2) · · · (m− n+ 1).

On the other hand, the number of onto functions f |S : Nn −→ Nm that can be formed is
m! ·S(n,m), where Nn = {1, 2, 3, · · · , n} and S(n,m), denotes the Stirling numbers of the
second kind satisfying the relation

xn =

m∑
i=0

S(n, i)(x)i,

where (x)i = x(x − 1(x − 2) · · · (x − i + 1). It is observed that the process of counting
onto functions makes use of the multiplication principle and the appropriate application
of Stirling numbers of the second kind. The process of obtaining one-to-one and onto
functions may be applicable in counting restricted one-to-one and onto functions. Recall
that, for a finite sets A and B, a function f : A −→ B is said to be onto if f(A) = B.
Hence, in order for the function f to be onto, |A| must be greater than or equal to |B|.

2. Number of Restricted One-to-One Functions

Let Si be a subset of Nm and |Si| = i. The number of restricted one-to-one functions
f |S : Nm −→ Nn for all S ⊆ Nm is

n(n− 1)(n− 2) . . . (n− (i− 1)) = (n)i.

Let Îm =
⋃m

i=0 Îi,m. Then

Îm =
⋃

Si⊆Nm

{f |Si : f is a one-to-one function}.

The number of subsets of Nm containing i elements is
(
m
i

)
and

|Îm| =
m∑
i=0

∣∣Î(n)i,m

∣∣ = m∑
i=0

∣∣∣∣ ⋃
Si⊆Nm

{f |Si : f is a one-to-one function}
∣∣∣∣

implying that

|Îm| =
m∑
i=0

(
m

i

)
(n)i.

To state this result formally, we have the following proposition.

Proposition 1. Let f |S : Nm −→ Nn such that m ≤ n. If Îm =
⋃m

i=0 Ŷi,m where

Îm = {f |Si : Si ⊆ Nm and f is a one-to-one function} , then

|Îm| =
m∑
i=0

(
m

i

)
(n)i.
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Example 1. If m = 3 and n = 4 we have N3 = 1, 2, 3 and N4 = 1, 2, 3, 4.
For i = 0, S0 = {} , f |S0 = {} is the only one-to-one function.
For i = 1, Si = {1}, {2}, {3}, the one-to-one functions are

{(1, 1)} {(1, 2)} {(1, 3)} {(1, 4)}
{(2, 1)} {(2, 2)} {(2, 3)} {(2, 4)}
{(3, 1)} {(3, 2)} {(3, 3)} {(3, 4)}

For i = 2, Si = {1, 2}, {1, 3}, {2, 3}, the one-to-one functions are

{(1, 1), (2, 2)} {(1, 2), (2, 1)} {(1, 3), (2, 1)} {(1, 4), (2, 1)}
{(1, 1), (2, 3)} {(1, 2), (2, 3)} {(1, 3), (2, 2)} {(1, 4), (2, 2)}
{(1, 1), (2, 4)} {(1, 2), (2, 4)} {(1, 3), (2, 4)} {(1, 4), (2, 3)}
{(1, 1), (3, 2)} {(1, 2), (3, 1)} {(1, 3), (3, 1)} {(1, 4), (3, 1)}
{(1, 1), (3, 3)} {(1, 2), (3, 3)} {(1, 3), (3, 2)} {(1, 4), (3, 2)}
{(1, 1), (3, 4)} {(1, 2), (3, 4)} {(1, 3), (3, 4)} {(1, 4), (3, 3)}
{(2, 1), (3, 2)} {(2, 2), (3, 1)} {(2, 3), (3, 1)} {(2, 4), (3, 1)}
{(2, 1), (3, 3)} {(2, 2), (3, 3)} {(2, 3), (3, 2)} {(2, 4), (3, 2)}
{(2, 1), (3, 4)} {(2, 2), (3, 4)} {(3, 3), (3, 4)} {(2, 4), (3, 3)}

For i = 3, Si = {1, 2, 3}, {1, 3}, {2, 3}, the one-to-one functions are

{(1, 1), (2, 2), (3, 3)} {(1, 2), (2, 1), (3, 3)} {(1, 3), (2, 1), (3, 2)} {(1, 4), (2, 1), (3, 2)}
{(1, 1), (2, 2), (3, 4)} {(1, 2), (2, 1), (3, 4)} {(1, 3), (2, 1), (3, 4)} {(1, 4), (2, 1), (3, 3)}
{(1, 1), (2, 3), (3, 4)} {(1, 2), (2, 3), (3, 1)} {(1, 3), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)}
{(1, 1), (2, 3), (3, 2)} {(1, 2), (2, 3), (3, 4)} {(1, 3), (2, 2), (3, 4)} {(1, 4), (2, 2), (3, 3)}
{(1, 1), (2, 4), (3, 2)} {(1, 2), (2, 4), (3, 3)} {(1, 3), (2, 4), (3, 1)} {(1, 4), (2, 3), (3, 1)}
{(1, 1), (2, 4), (3, 3)} {(1, 2), (2, 4), (3, 4)} {(1, 3), (2, 4), (3, 2)} {(1, 4), (2, 3), (3, 2)}

Thus, the total number of restricted one-to-one function is 73. Using Proposition 1, with
m = 3 and n = 4, we have

|Î3| =
3∑

i=0

(
3

i

)
(4)i =

(
3

0

)
(4)0 +

(
3

1

)
(4)1 +

(
3

2

)
(4)2 +

(
3

3

)
(4)3

= 1 + 3(4) + 3(4)(3) + 1(4)(3)(2)

= 73.

The next proposition counts the number of restricted one-to-one functions f with the
condition that f(a) ≤ a,∀a ∈ S.

Proposition 2. Let f |S : Nm −→ Nn such that m ≤ n and f(a) ≤ a,∀a ∈ S. If
Ŷ(i,m) =

∣∣⋃{f |Si : f is one to one and |Si| = i}
∣∣,then

|Ŷ (i,m)| =
∑

1≤j1<j2<...<ji≤m

i∏
k=1

(jk − k + 1).



M. J. Latayada / Eur. J. Pure Appl. Math, 16 (4) (2023), 2751-2762 2755

Proof. Let f : Nm −→ Nn such that m ≤ n and f(a) ≤ a,∀a ∈ Nm. Consider Si ⊆ Nm,
say Si = {j1, j2, j3, · · · , ji}, such that j1 ≤ j2 ≤ j3, · · · , ji. To form a restricted one-to-one
function, f |Si , consider the following sequence of events

E1 be an event of mapping j1 to Nm such that f(j1) ≤ j1.
E2 be an event of mapping j2 to Nm such that f(j2) ≤ j2.

...
Ei be an event of mapping ji to Nm such that f(ji) ≤ ji.

As f |Si is one-to-one,∣∣E1

∣∣ = j1,
∣∣E2

∣∣ = j2 − 1,
∣∣E3

∣∣ = j3 − 2, · · · ,
∣∣Ei

∣∣ = ji − i− 1.

By Multiplication Principle(MP), the number of restricted one-to-one functions, f |Si such
that f(ji) ≤ ji is

i∏
t=1

|Ei| = j1(j2 − 1)(j3 − 2) · · · (ji − (i− 1))

=
i∏

k=1

(jk − (k − 1)).

Then

|Ŷ (i,m)| =
∣∣⋃{f |Si : f is one to one and |Si| = i}

∣∣
=

∑
1≤j1<j2<...<ji≤m

∣∣{f |Si : f is one to one}
∣∣

=
∑

1≤j1<j2<...<ji≤m

i∏
k=1

(jk − (k − 1)).

Example 2. If i = 2,m = 3, S2 = {1, 2}, {1, 3}, {2, 3}, f |S2 : S2 −→ N3 such that
f(a) ≤ a,∀a ∈ S2. The one-to-one functions are

{(1, 1), (2, 2)} {(2, 1), (3, 2)} {(2, 2), (3, 2)}
{(1, 1), (3, 2)} {(2, 1), (3, 3)} {(2, 2), (3, 3)}
{(1, 1), (3, 3)}

The number of restricted one-to-one functions from S2 to N3 is 7.

Using Proposition 2, with i = 2,m = 3,

Ŷ (i,m) =
∑

1≤j1≤j2≤3

j1(j2 − 1))

= 1(2− 1) + 1(3− 1) + 2(3− 1) = 7.
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2.1. A Recurrence Relation of the Number Ŷ (i,m)

For quick computation of the first values of Ŷ (i,m) , the following recurrence relation
will be useful

Proposition 3. The following recurrence relation holds:

Ŷ (i,m+ 1) = Ŷ (i,m) + (m+ 2− i)Ŷ (i− 1,m)

with initial conditions Ŷ (0, 0) = 1, Ŷ (i,m) = 0 with i > m and Ŷ (i,m) = 0 when i > 0.

Proof. We know that Ŷ (i,m+1) counts the number of restricted one-to-one functions
f |Si overall Si ⊆ Nm+1. Forming such restricted one-to-one functions can also be done by
considering the following disjoint cases:
Case 1. Forming those functions f |Si overall Si ⊆ Nm+1 such that m+ 1 /∈ Si. Then the
number of such restricted one-to-one functions is equal to the number of restricted one-
to-one functions f |Si overall Si ⊆ Nm+1. By definition, there are Ŷ (i,m) such functions.
Case 2. Forming those functions f |Si overall Si ⊆ Nm+1 such that m + 1 /∈ Si. This
event can be decomposed into the following sequence of events:

E1 : Event of forming those restricted one-to-one functions f |Si−1 overall Si−1 ⊆ Nm.
E2 : Event of inserting m+ 1 to Si−1 so that every Si = Si−1 ∪ {m+ 1} contains m+ 1

and then mapping m+ 1 to Nm+1 so that one-to-oneness of f will be preserved.

Note that |E1| = Ŷ (i− 1,m) and |E2| = m+ 1− (i− 1). By Multiplication Principle, the
number of such restricted one-to-one functions f |Si = f |Si−1∪{m+1} overall Si ⊆ Nm+1 is
equal to

|E1||E2| = Ŷ (i− 1,m)(m+ 2− i).

Since any of these cases gives the desired restricted one-to-one functions, by Addition
Principle,

Ŷ (i,m+ 1) = Ŷ (i,m) + (m+ 2− i)Ŷ (i− 1,m).

Example 3. From Example 2, Ŷ (2, 3) = 7 and using Proposition 3,

Ŷ (1, 3) =

3∑
ji=1

ji = 1 + 2 + 3 = 6.

Then, by applying Proposition 3, with i = 2,m = 3, we have

Ŷ (2, 4) = Ŷ (2, 3) + (3 + 2− 2)Ŷ (1, 3).

= 7 + 3(6) = 25.

Using Proposition 2, we have

Ŷ (2, 4) =
∑

1≤j1≤j2≤3

j1(j2 − 1))

= 1(2− 1) + 1(3− 1) + 1(4− 1) + 2(3− 1) + 2(4− 1) + 3(4− 1)

= 25.
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Note that
Ŷ (0, 1) = Ŷ (0, 1) + (0 + 2− 0)Ŷ (−1, 0) = 1

Ŷ (1, 1) = Ŷ (1, 0) + (0 + 2− 1)Ŷ (0, 0) = 1

Ŷ (1, 2) = Ŷ (0, 1) + (1 + 2− 0)Ŷ (−1, 1) = 1

Ŷ (1, 2) = Ŷ (0, 1) + (1 + 2− 0)Ŷ (−1, 1) = 1.

The following table of values for Ŷ (i,m) can be constructed using Proposition 3.

@
@
@m

i
0 1 2 3 4 5 6

0 1
1 1 1
2 1 3 1
3 1 6 7 1
4 1 10 25 15 1
5 1 15 65 90 31 1
6 1 21 140 350 301 63 1

Table 2: Values of Ŷ (i,m) for 0 ≤ i ≤ 6, 0 ≤ m ≤ 6

Remark 1. We know from Proposition 1, that the total number of restricted one-to-one
functions f |Si : Nm −→ Nn, ∀S ⊆ Nm is

|Îm| =
m∑
i=0

(
m

i

)
(n)i (1)

and, from Proposition 2, the number of restricted one-to-one functions f |Si : Nm −→
Nn, ∀Si ⊆ Nm, |Si| = i such that f(a) ≤ a,∀a ∈ Nm is

Ŷ (i,m) =
∑

1≤j1<j2<...<ji≤m

i∏
k=1

(jk − k + 1) (2)

Hence, the number of restricted one-to-one functions f |S , ∀S ⊆ Nm such that f(a) ≤
a,∀a ∈ Nm is

Ỹm =
m∑
i=0

Ŷ (i,m). (3)

The number of restricted one-to-one functions f |S ,∀S ⊆ Nm such that f(a) ≤ a,∀a ∈ Nm

is

Ỹm = |Îm| − Ỹm
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=

m∑
i=0

(
m

i

)
(n)i −

m∑
i=0

Ŷ (i,m)

=

m∑
i=0

{(
m

i

)
(n)i − Ŷ (i,m)

}
. (4)

Geometrically, the integral points involved in the counting of one-to-one functions in
(1) are those points bounded by 1 ≤ x ≤ m and 1 ≤ y ≤ n as shown in the Figure 1.
The integral points involved in (2) and (3) are those points inside the region bounded by
1 ≤ y ≤ x and 1 ≤ x ≤ m and the integral points involved in (4) are those points bounded
by 1 ≤ x ≤ m and x+ 1 ≤ y ≤ n .

Figure 1: Graphs of y = n, y = m, y = x, y = x+ 1

3. Number of Restricted Onto Functions

Consider a set Si ⊆ Nm, |Si| = i, i ≤ n. To count the number of restricted onto
functions f |Si , let us consider the following sequence of events:

E1 : event of choosing a subset S1 of Nm such that |Si| = i.
E2 : event of forming a restricted onto function f |Si : Nm −→ Nn.

Since E1 =
(
m
i

)
and E2 = n!S(i, n), by multiplication principle the number of restricted

onto functions f |Si over all Si ⊆ Nm with |Si| = i is

E1 · E2 =

(
m

i

)
· n! · S(i, n).

This result will be stated formally in the following Proposition.
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Proposition 4. Let f |Si : Nm −→ Nn such that m ≤ n, i ≤ n. If
.
Ii,m(n) =

⋃
Si⊆Nm

{f |Si :
|Si| = i andf is onto}, then

∣∣.Ii,m(n)
∣∣ = (

m

i

)
n!S(i, n).

Example 4. If i = 3,m = 4, and n = 2, N4 = {1, 2, 3, 4} and N2 = {1, 2}. S3 =
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. The possible onto functions

{(1, 1), (2, 1), (3, 2)} {(1, 1), (3, 2), (4, 1)} {(1, 2), (2, 2), (3, 1)} {(2, 1), (3, 1), (4, 1)}
{(1, 1), (2, 1), (4, 2)} {(1, 1), (3, 2), (4, 2)} {(1, 2), (2, 2), (4, 1)} {(2, 1), (3, 1), (4, 2)}
{(1, 1), (2, 2), (3, 1)} {(1, 2), (2, 1), (3, 1)} {(1, 2), (2, 2), (4, 2)} {(2, 1), (3, 2), (4, 2)}
{(1, 1), (2, 2), (3, 2)} {(1, 2), (2, 1), (3, 2)} {(1, 2), (3, 1), (4, 1)} {(2, 2), (3, 1), (4, 1)}
{(1, 1), (2, 2), (4, 1)} {(1, 2), (2, 1), (4, 1)} {(1, 2), (3, 1), (4, 2)} {(2, 2), (3, 2), (4, 2)}
{(1, 1), (2, 2), (4, 2)} {(1, 2), (2, 1), (4, 2)} {(1, 2), (3, 2), (4, 1)} {(2, 2), (3, 2), (4, 1)}

Then there are 24 such restricted onto functions. It can easily be verified using Proposition
6, with i = 3,m = 4, n = 2,

∣∣ .I3,4(2)∣∣ =

(
4

i

)
2!S(3, 2)

= 4(2)(3) = 24,

where the value of S(3, 2) is taken from Table 1.

The total number of restricted onto functions f |S over all S ⊆ Nm is given in the
following Proposition.

Proposition 5. If
.
Im(n) =

⋃m
i=1

.
Ii,m(n) where

.
Ii,m(n) = {f |Si : |Si| = i andf is onto},

then ∣∣.Im(n)
∣∣ = m∑

i=0

(
m

i

)
n!S(i, n).

Proof. Let
∣∣ .Im(n)

∣∣ = ⋃m
i=1

.
Ii,m(n) =

∑m
i=0

∣∣ .Ii,m(n)
∣∣. From Proposition 4, we have

∣∣ .Im(n)
∣∣ = m∑

i=n

(
m

i

)
n!S(i, n).

Since S(i, n) = 0 when i = 0, 1, 2, · · · , n− 1,

∣∣ .Im(n)
∣∣ = m∑

i=0

(
m

i

)
n!S(i, n).
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Example 5. The total number of restricted onto functions f |S : N4 −→ N2 is given by

∣∣ .I4(2)∣∣ =

4∑
i=0

(
4

i

)
2!S(i, 2)

=

(
4

0

)
2!S(0, 2) +

(
4

1

)
2!S(1, 2) +

(
4

2

)
2!S(2, 2) +

(
4

3

)
2!S(3, 2) +

(
4

4

)
2!S(4, 2)

= 6(2)(1) + 4(2)(3) + 1(2)(7) = 50.

3.1. Some Corollaries

Using the explicit formula of S(i, n), we can rewrite the formula in Proposition 4, as
follows:

Corollary 1.
∣∣.Ii,m(n)

∣∣ = ∑n
j=0(−1)n−j

(
m
i

)(
n
j

)
ji..

Proof. From Proposition 4,∣∣ .Ii,m(n)
∣∣ =

(
m

i

)
n!S(i, n)

=

(
m

i

)
n!

{
1

n!

n∑
j=0

(−1)n−j

(
n

j

)
ji
}

=

n∑
j=0

(−1)n−j

(
m

i

)(
n

j

)
ji. □

Consequently, using Corollary 1, the formula in Proposition 5 can also be written as
follows:

Corollary 2.
∣∣.Im(n)

∣∣ = ∑n
j=0(−1)n−j

(
n
j

)
(j + 1)m = S1,1(m,n).

Proof. From Proposition 5,∣∣ .Im(n)
∣∣ =

m∑
i=0

(
m

i

)
n!S(i, n)

=
m∑
i=0

n∑
j=0

(
m

i

)
(−1)n−j

(
m

i

)(
n

j

)
ji

=
n∑

j=0

(−1)n−j

(
m

i

){ m∑
i=0

(
m

i

)
ji
}

=

n∑
j=0

(−1)n−j

(
n

j

)
(j + 1)m

= S1,1(m,n) □

S1,1(m,n) is the (r, β)− Stirling numbers with r = 1 and β = 1.
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Remark 2. The formulas in Corollary 1 and 2 compute the values of
∣∣ .Ii,m(n)

∣∣ and ∣∣ .Im(n)
∣∣,

respectively, without using the values of the Stirling numbers of the second kind. In
Example 4,

∣∣ .I3,4(2)∣∣ = 24. Using Corollary 1, we have.

∣∣ .Ii,m(n)
∣∣ =

2∑
j=0

(−1)2−j

(
4

3

)(
2

j

)
j3
}

= 4(1)(0)− (4)(2)(1) + 4(1)(23)

= 0− 8 + 32 = 24.

Also, in Example 5,

∣∣ .I4(2)∣∣ =
2∑

j=0

(−1)2−j

(
2

j

)
(j + 1)4

=

(
2

0

)
14 −

(
2

1

)
24 +

(
2

2

)
34

= 1− 32 + 81 = 50 = S1,1(4, 2).
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