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Abstract. Groundwater plays an important role in feeding many families and societies whose
access to water is a huge problem for several reasons, then the mathematical model is an essential
part of a hydrologist’s daily life to understand the physical phenomena. In this paper, we used
Dupuit’s assumption to reduce the groundwater flow equation and integrated vertically it to obtain
the diffusivity equation in terms of the hydraulic head, further, the introduction of fundamental
ideas in groundwater research, including vocabulary and mathematics will give readers the basis
knowledge. Numerous numerical techniques can be recognized, the unstructured finite volume
method was used to solve a transient diffusivity equation through a coastal confined aquifer. The
constructed finite volume schemes are used to study the distribution of hydraulic heads in the
model domain, to determine water table fluctuations, and to predict the drawdown phenomena.
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1. Introduction

Groundwater is all water found below the ground surface, in the saturation zone, and
in direct contact with the ground or subsoil, and is used in many coastal regions to meet
domestic, commercial, and agricultural daily needs [3] . The pore space is referred to as
unsaturated when it is close to the soil surface and typically contains a mixture of air and
water. The pores are constantly saturated with water as you go further into the ground.
The definition of the term water table is the level in the ground above which the pore
space is unsaturated and below which it is saturated, and where water that infiltrates
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can accumulate and form an aquifer[11]. An aquifer is a geological formation which (i)
contains water and (ii) permits significant amounts of water to move through it under
ordinary field conditions [2]. There are two types of aquifers:

(i) Confined aquifer: is an aquifer that is bounded above and below by impermeable
geologic formations. Confined aquifers generally occur at significant depth below the
ground surface.

(ii) Unconfined aquifer: also called a water-table aquifer or phreatic aquifer , is an aquifer
which has the water table as its upper boundary. Unconfined aquifers occur near
the ground surface and it is directly recharged from the ground surface above it,
except where impervious layers, sometimes of limited areal extent, exist between the
phreatic surface (water table) and the ground surface.

In addition to these, groundwater has numerous other advantages, including greater
geothermal energy generation, higher water security through improved storage, and re-
silience to the effects of climate change [4]. Groundwater pollution due to overexploitation
for irrigation leads to a deterioration of groundwater quality. Groundwater levels are low-
ered as a result of drilling operations to produce water close to or in coastal areas, which
leads to saltwater intrusion [7]. [15] developed a deep learning technique for Groundwater
flow equations using wells and GW-PINN without labeled data. To test the GW-PINN’s
training performance under several sampling procedures and two limitations, five scenarios
were created. The projected outcomes of GW-PINN were contrasted with MODFLOW
and the analytical solution. The findings show that GW-PINN has a significant capacity
for capturing the hydraulic head change for both confined and unconfined aquifers. [10]
proposed a mathematical model to represent the transition of groundwater flow from con-
fined to unconfined aquifers, specifically the classical differential operator that is based on
the rate of change is replaced by a non-conventional one including the differential operator
that can represent processes following the power law to capture the memory effect, after
which the numerical analysis was carried out using the Caputo fractional operator, and
numerical solutions were obtained. [13] presented a model of groundwater dynamics under
stationary flow and solved the developed mathematical model using the Finite Difference
Method, and an application on the specific study area of the Ayamonte-Huelva aquifer
in Spain was performed. [5] developed a novel numerical model in order to calculate the
behavior of unsteady, one-dimensional groundwater flow using the finite volume method.
Various scenarios for drainage and recession from an unconfined aquifer, as well as water
table fluctuations above an inclined leaky layer due to ditch recharge with a constant and
variable upper boundary condition, were performed. The computed results of the explicit
and implicit procedures were in good agreement with the findings of analytical approaches
and laboratory tests. [14] also created a thorough analytical approach to figuring out how
different rainfall recharge rates might affect groundwater flow in an unconfined sloping
aquifer. The beginning water level was parallel to the impervious bottom of a gentle
slope, and the unconfined aquifer’s domain was considered to be semi-infinite with an
impervious bottom base. The results of the given analytical solution were compared to
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those from earlier studies, and the analytical solution’s applicability was confirmed using
data from a groundwater station in the Dali District of Taichung City, Taiwan, collected
in 2012 and 2013. The aforementioned study models groundwater utilizing the steady
conditions in some specific study regions, while the other study used unsteady groundwa-
ter in one dimension. In this paper, the hydraulic behavior in a heterogeneous isotropic
confined aquifer was described by a vertically integrated equation, and the analytical so-
lution was carried out using the two-dimensional unstructured finite volume approach, the
developed mathematical equation will be used to describe the flow of groundwater and
the significance of the results of some physical phenomena considered in this study are the
drawdown and water table phenomena. Steps to building a groundwater model include:

• Define the domain of study;

• construct a conceptual model of the groundwater (the input field data);

• method of solutions;

• calibration;

• use the calibrated model to make predictions;

• visualize and interpret the model results.

2. Dupuit’s assumption for confined aquifer flow in isotropic porous
medium

In order to obtain the saturated flow equation for a confined aquifer in two-dimensional
space, we introduce Dupuit’s assumption. The assumption is that the flow is essentially
considered to be on a horizontal plane, say the (x, y)-plane, thus:

∂

∂z

(
Kzz

∂h

∂z

)
= 0, (1)

to proceed we need an expression for the vector of discharge per unit width, through
the entire thickness of the aquifer, Q

′
(x, y). Here, width is a line segment in the plane,

and the discharge is normal to that line. Moreover, to obtain the saturated flow equation
we use the following assumptions:

(A-1) the aquifer is a horizontal, inhomogeneous isotropic confined aquifer;

(A-2) fluid is slightly compressible and the porous medium is isotropic;

(A-3) the bottom plan of the aquifer is essentially horizontal;

(A-4) the confined aquifer has elastic deformation resulting from changes in hydraulic head
in the vertical direction z only;
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(A-5) the hydraulic conductivity and the horizontal components of flow are uniform along
the entire saturated thickness of the aquifer ;

(A-6) Darcy’s law is for isotropic porous medium;

(A-7) the slope of the water table is small;

(A-8) sinks and sources are present.

3. Mathematical description of groundwater flow

3.1. Hydraulic head

The water in groundwater systems is always in motion, namely water flows from high
elevation to low elevation, which is one of the primary topics that we are interested in in
this study. In order to understand flow we need to understand how to express the energy in
water, the hydraulic head is a crucial term to understand in groundwater. Hydraulic head
is a measurement of water pressure or energy of a body of water above a given datum, or
in other words, the potential energy held inside a body of water (potential energy derived
from the gravitational field’s elevation of water and pressure head derived from the fluid
pressure distribution) to move (see Figure 1). It’s measured in length units.
The hydraulic head h is defined as follows:

h =
p

ρ0g
+ z (2)

where z is the elevation of the point at which the piezometric head is being considered,
above some datum level (m), p and ρ are the fluid’s pressure at measurement point (Pa,
force (weight) per unit area) and mass density (kg/m3), respectively, and g is the gravity
acceleration (m/s2).

3.2. Darcy’s law

The flux density or specific discharge q is a fictitious macroscopic rate of a flux of
water passing through a unit area.

Discovered experimentally for a homogeneous isotropic porous medium by Darcy in
1856, Darcy’s law is an equation that describes the flow of a fluid through a porous
medium. It is used to define the relation between specific flow q and hydraulic head h and
describes the flow of a fluid through a porous medium. However, it has been generalized
to saturated and unsaturated flows in heterogeneous and anisotropic media.

q = −K∇h (3)

where q denotes specific discharge (volume of fluid per unit cross-sectional area of porous
medium per unit time, m/s) and is also called Darcy velocity.

K is hydraulic conductivity (m/s), and considered as isotropic, i.e. constant in all
directions x, y, z.
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Figure 1: Components of hydraulic head in a portion of a groundwater water system.

∇h is the hydraulic gradient, which is the driving force of groundwater flow per unit
weight of groundwater (dimensionless).

3.2.1. Isotropic porous medium

Darcy’s law for single phase fluid flow in homogeneous isotropic porous media, saturated
in terms of total pressure

P = p+ ρ0gz (4)

with the vertical z axis pointing upward, is written :

q = ϕu = −k

µ
∇P

= −k

µ
∇(p+ ρ0gz)

= −ρ0gk

µ
∇
(

p

ρ0g
+ z

)
(5)

Where k is the permeabilities (m2), or the intrinsic permeability, a property of the porous
medium; ϕ is the porosity of the porous medium (dimensionless), u is the interstitial
velocity (m/s), µ is dynamic viscosity (kg/m/s) of the groundwater; p is fluid pressure
(Pa), ρ0 is fluid density (kg/m3) and g is the gravitational acceleration (m/s2).

Substituting equation (2) into equation (5), we therefore obtain the Darcy’s law in
term of hydraulic head h

q = KJ = −K∇h (6)

where K =
ρ0gk

µ
is hydraulic conductivity of the fluid in a porous medium. Then K is a

scalar, and the specific flux vector q with the components qx, qy, qz in the direction of the
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Cartesian x, y, z direction and J = −∇h is hydraulic gradient with components

Jx = −∂h

∂x
, (7)

Jy = −∂h

∂y
, (8)

Jz = −∂h

∂z
. (9)

Homogeneous isotropic porous medium, K is a constant, so

qx = KJx = −K
∂h

∂x
, (10)

qy = KJy = −K
∂h

∂y
, (11)

qz = KJz = −K
∂h

∂z
. (12)

For three dimension flow through inhomogeneous isotropic media we haveK = K(x, y, z).
Thus, Darcy’s law in a inhomogeneous domain is:

q = −K(x, y, z)∇h (13)

In isotropic porous media the off-diagonal elements in the permeability tensor are zero,
Kij = 0 for i ̸= j and the diagonal elements are identical, Kii ̸= 0, where subscripts i and
j stand for xi, xj , respectively, with x1 ≡ x, x2 ≡ y, and x3 ≡ z. In three dimension space

K =

Kxx 0 0
0 Kyy 0
0 0 Kzz

 (14)

In two dimension space

K =

[
Kxx 0
0 Kyy

]
(15)

3.2.2. Anisotropic porous medium

In a compressible fluid under isothermal conditions, where, ρ = ρ(p), the pressure head is
expressed by ∫ pf

p0

dp

gρ(p)
(16)

where p0 is some reference pressure, indicating that the pressure energy stored in the fluid
per unit weight of the latter is obtained from the work done in compressing fluid. For such
a fluid, it is common to define a piezometric head, h∗, often called Hubbert’s potential.

h∗ = h∗(x, t) = z +

∫ pf

p0

dp

gρ(p)
(17)
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where z represents the elevation head, that is, potential energy per unit weight of water.
The sum of the pressure head and the elevation head is the piezometric head h. Note the
use of x in equation (17), representing the coordinates x, y, z to denote a point in a 3D
space. Thus, Darcy’s equation is given by the relation

q = −k

µ
[∇p+ ρg∇z] (18)

In case of anisotropic porous medium, Darcy’s law is given by

q = −K · ∇h (19)

where K is tensor of hydraulic conductivity of anisotropic medium.

3.2.3. Principal Directions

(i) Although the hydraulic conductivity tensor, K, at a point within an anisotropic
porous medium is independent of the coordinate system used, the magnitude of
each Kij-component does depend on the chosen coordinate system. Texts on tensor
analysis give the rules for transforming these components from one coordinate system
to another.

(ii) These texts also prove that it is always possible to find three mutually orthogonal
directions in space such that when these directions are chosen as the coordinate
system for expressing the components, we find that

Kij = 0 for i ̸= j (20)

Kij ̸= 0 for i = j (21)

These directions in space are called principal directions of the hydraulic conductivity
tensor (of the anisotropic porous medium). In a heterogeneous porous medium domain,
the principal directions may vary from point to point.

When the principal directions are aligned with the selected coordinate system, then
we have, in three-dimensional space

K =

Kxx 0 0
0 Kyy 0
0 0 Kzz

 (22)

and in two dimension space

K =

[
Kxx 0
0 Kyy

]
(23)

Thus, in the case of an anisotropic porous medium, if the coordinate axes are oriented
along the main axes of anisotropy, the specific discharges along the 3 axes are:
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qx = KxxJx = −Kxx
∂h

∂x
, (24)

qy = KyyJy = −Kyy
∂h

∂y
, (25)

qz = KzzJz = −Kzz
∂h

∂z
. (26)

Because the hydraulic conductivity is related to the permeability by the scalar factor

K =
ρgk

µ
, the permeability of an anisotropic porous medium is also a second rank

tensor. In fact, it is the tensorial nature of the permeability that determines the tensorial
nature of the hydraulic conductivity.

Sometimes the orientation of the anisotropy directions varies along the hydrogeological
structure and thus it is not possible to properly choose the axes of the coordinate systems
to satisfy the above-mentioned requirements. The components of the tensor K in a three-
dimensional space, can be written in the matrix form

K =


Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 (27)

and in a two-dimensional space, as

K =

[
Kxx Kxy

Kyx Kyy

]
(28)

The hydraulic conductivity tensor is symmetric, that is

Kxy = Kyx, (29)

Kxz = Kzx, (30)

Kyz = Kzy. (31)

This means that actually only six distinct components are needed to fully define the
hydraulic conductivity in a three-dimensional domain (and only three in a two-dimensional
one). Furthermore, the coefficients are non-negative.

The specific discharge given by the relation (18) has the following components:

qx = −kxx
µ

∂p

∂x
− kxy

µ

∂p

∂x
− kxz

µ

(
ρg +

∂p

∂z

)
qy = −kyx

µ

∂p

∂x
− kyy

µ

∂p

∂x
− kyz

µ

(
ρg +

∂p

∂z

)
qz = −kzx

µ

∂p

∂x
− kzy

µ

∂p

∂x
− kzz

µ

(
ρg +

∂p

∂z

) (32)
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Finally, when the axes of coordinates are oriented along the main axes of anisotropy, the
relations (32) become: 

qx = −kxx
µ

∂p

∂x

qy = −kyy
µ

∂p

∂y

qz = −kzz
µ

(
ρg +

∂p

∂z

) (33)

3.3. Validity of Darcy’s law

Darcy’s law is only applicable when groundwater flow is laminar [8].
The Reynolds number can be used to determine if the flow is laminar or turbulent.

RN =
ρvd

µ
(34)

where,

RN is the Reynolds number, unitless

ρ is the fluid density, kg/m3

v is the velocity of fluid, m/s

d is the diameter through which moves, m

µ is the dynamic viscosity, Pa s.

When 1 < RN < 10 flow is considered to be laminar.

3.4. The basic continuity equation

In order to derive the continuity equation, which represents the flow of a single phase
fluid (water) at constant density in a continuous porous medium under Darcy’s law, [1]
used Euler’s approach and assumed that close to the coast, the aquifer is divided into
two sub-aquifers, unconfined and confined aquifers; flow always takes place in a three-
dimensional in a small control volume that they consider in Cartesian coordinates x, y, z,
(see Figure 2).

Based on mass conservation law and Darcy’s equation (6), [2, 3] and [1] developed the
mathematical equation describing the unsteady state groundwater flow in heterogeneous
and anisotropic confined aquifer used in MODFLOW:

S0
∂h

∂t
= ∇ · (K∇h) +G, (35)

where S0 is the specific storage (m−1), h is the hydraulic head (m), K is the hydraulic
conductivity tensor (m/s) and G is the sink/source term (m−1) of water, where negative
values are extractions, and positive values are injections and t is time (s) .
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Figure 2: Representative elementary volume in a confined aquifer

4. Vertically integrated equations of confined aquifer in two-dimension

4.1. Deriving 2-D Diffusivity Equations by Integration

We use the above assumptions to reduce the equation (35) to

S0
∂h

∂t
=

∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+G (36)

Now, consider a confined aquifer of variable variable thickness, B (see Figure 3), such
that

B(x, y) = B2(x, y)−B1(x, y) (37)

where B1(x, y) and B2(x, y) are the elevations of its fixed bottom and ceiling, since the
aquifer is horizontal and compressible. The Figure 3 shows this aquifer.
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Figure 3: Flow through a confined aquifer

The vertical integration of the equation (36) along the vertical involving Dupuit’s
approximation in (x, y)− plane gives∫ B2(x,y)

B1(x,y)
S0

∂h

∂t
dz =

∫ B2(x,y)

B1(x,y)

∂

∂x

(
Kxx

∂h

∂x

)
dz+

∫ B2(x,y)

B1(x,y)

∂

∂y

(
Kyy

∂h

∂y

)
dz+

∫ B2(x,y)

B1(x,y)
Gdz

(38)
Now, if the integral is defined as follows∫ b(x)

a(x)
f(x, t)dt,−∞ < a(x), b(x) < ∞ (39)

The derivative of this integral is derived using Leibniz’s integral rule as follows:

∂

∂x

(∫ b(x)

a(x)
f(x, t) dt

)
=

∫ b(x)

a(x)

∂

∂x
f(x, t) dt+ f(x, b(x)) · ∂

∂x
b(x)− f(x, a(x)) · ∂

∂x
a(x) (40)

Applying this rule on equations (38), we get∫ B2(x,y)

B1(x,y)
S0

∂h

∂t
dz =

∂

∂t
S0Bh̃, (41)

where

h̃(x, y) =
1

B

∫ B2(x,y)

B1(x,y)
h(x, y, z) dz (42)

is the average piezometric head along a vertical line at point (x, y).∫ B2(x,y)

B1(x,y)

∂

∂x

(
Kxx

∂h

∂x

)
dz =

∂

∂x

(
B

˜
Kxx

∂h

∂x

)
−Kxx

∂h

∂x

∣∣∣∣
B2

· ∂B2

∂x
+Kxx

∂h

∂x

∣∣∣∣
B1

· ∂B1

∂x
,

(43)
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and∫ B2(x,y)

B1(x,y)

∂

∂y

(
Kxx

∂h

∂y

)
dz =

∂

∂y

(
B

˜
Kyy

∂h

∂y

)
− Kyy

∂h

∂y

∣∣∣∣
B2

· ∂B2

∂y
+ Kyy

∂h

∂y

∣∣∣∣
B1

· ∂B1

∂y

(44)
where

˜
Kxx

∂h

∂x
(x, y) =

1

B

∫ B2(x,y)

B1(x,y)
Kxx

∂h

∂x
dz (45)

and

˜
Kyy

∂h

∂y
(x, y) =

1

B

∫ B2(x,y)

B1(x,y)
Kyy

∂h

∂x
dz (46)

Thus, the equation (38) gives

S0B
∂

∂t
h̃ =

∂

∂x

(
B

˜
Kxx

∂h

∂x

)
− Kxx

∂h

∂x

∣∣∣∣
B2

· ∂B2

∂x
+ Kxx

∂h

∂x

∣∣∣∣
B1

· ∂B1

∂x

+
∂

∂y

(
B

˜
Kyy

∂h

∂y

)
− Kyy

∂h

∂y

∣∣∣∣
B2

· ∂B2

∂y
+ Kyy

∂h

∂y

∣∣∣∣
B1

· ∂B1

∂y
+BG̃ (47)

According to Dupuit assumption, the hydraulic head is constant along the vertical, then
the flow is essentially horizontal , that is, h = h(x, y) and , h (x, y,B1) ≃ h (x, y,B2) ≃
h̃(x, y) leads to ∇h̃ = ∇h, in other word, the gradient of the average head is equal to the
average of the head gradient.

Therefore, the equation (47) becomes

S0B
∂h

∂t
=

∂

∂x

[
Txx

∂h

∂x

]
+

∂

∂y

[
Tyy

∂h

∂y

]
+BG̃ (48)

where

Txx = K̃xxB and Tyy = K̃yyB (49)

are transmissivity components along the x and y directions.
Hence, the storage coefficient is S = S0B, the sink/source terme is N = G̃B and we

obtain the diffusivity equation in two-dimension for an inhomogeneous isotropic confined
aquifer:

S
∂h(x, y, t)

∂t
= ∇ · [T (x, y)∇h(x, y, t)] +N(x, y, t), (x, y) ∈ Ω ⊂ R2, t > 0. (50)

where T (x, y) =

(
Txx 0

0 Tyy

)
is the aquifer transmissivity (m2/s); h(x, y, t) is the

hydraulic head (m), of confined aquifer; S = S(x, y) is the storage coefficient of the
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confined aquifer (m−1) and N = N(x, y, t) is the vertical integration of sink/source term,
(m/s).

The boundary and initial conditions are:
Boundary of prescribed head :

h(x, y, t) = f1(x, y, t) on Ω (51)

Boundary of prescribed flux along such boundary:

∇h(x, y, t) · n(x, y) = f2(x, y, t) (52)

where n(x, y) is the outward unit vector normal to the boundary ∂Ω.
Initial condition:

h(x, y, 0) = f0(x, y) (53)

where f0, f1 and f2 are known functions.

5. The Finite Volume Method

Now, we will describe the fundamental steps in the derivation of the finite volume
method for an unstructured mesh. The principle of finite volume method discretizes the
governing equations the computational domain Ω is first split or discretized into ncells
smaller control volumes Vi such that the collection of all those subdomains forms a partition
of Ω, that is:

(i) each Vi is an open, simply connected, these cells may be of arbitrary shape and size,
although, traditionally, the cells are convex polygons (in 2D) or polyhedrons (in 3D),
i.e., they are bounded by straight edges (in 2D) or planar surfaces (in 3D).

(ii) Vi ∩ Vj = ∅ (i ̸= j),

(iii)
ncells⋃
i=1

Vi = Ω

cells are names given to these control volumes, faces are the surfaces that enclose the
cells and the vertices of the cells are referred to as nodes, which are linked points within
the computational domain. As a result, the governing equations are integrated over each
control volume Vi, and the resultant integrals are approximated with the mid-point rule
or Gaussian quadrature rule [6, 12]. The volume-averaged value is defined as

hO =
1

VO

∫
V0

h dV (54)

Theorem 1 (Gauss’s divergence theorem). Let us consider a closed bounded region in
space of volume VO bounded by a surface of area S, as shown schematically in Figure 4.
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Let J be a vector field that is continuous and has continuous first partial derivatives in
this region. Gauss’ divergence theorem asserts that∫

VO

∇ · J dV =

∫
S
J · n̂ dA (55)

where n̂ is the outward-pointing unit surface normal to the differential area dA.

Figure 4: Control Volume [12]

In general, finite volume approaches may be identified by the following criteria [9]:

(i) the geometric shape of the control volumes Vi,

(ii) the position of the unknowns (“problem variables”) with respect to the control vol-
umes,

(iii) the approximation of the boundary (line (d = 2) or surface (d = 3)) integrals.

The second criterion, in particular, splits the finite volume method into two broad cate-
gories: the cell-centered and the cell-vertex finite volume methods. In the cell-centered
methods, the unknowns are associated with the control volumes (for example, any control
volume corresponds to a function value at some interior point (e.g., at the barycentre)). In
the cell-vertex methods, the unknowns are located at the vertices of the control volumes.

6. Discretization of the diffusivity equation

To discretize equation (50), we integrate it into each cell VO, and for each time interval
[t, t+∆t], yiels:∫ t+∆t

t

∫
VO

S
∂h

∂t
dV dt =

∫ t+∆t

t

∫
VO

∇ · (T · ∇h) dV dt+

∫ t+∆t

t

∫
VO

N dV dt (56)
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6.1. Discretization of Transient term

For the transient term, we integrate with respect to t and apply the average definition,
then this gives: ∫ t+∆t

t

∫
VO

S
∂h

∂t
dV dt =

∫
VO

S(hn+1 − hn) dV

= SOVO(hO − holdO ) (57)

6.2. Discretization of Diffusion term ∇ · (T · ∇h)

The discretization for the diffusion term is given by∫ t+∆t

t

∫
VO

∇ · (T∇h) dV dt =

∫ t+∆t

t

∫
S
T (∇h · n̂) dAdt

=

∫ t+∆t

t

Nf,O∑
f=1

∫
Sf

T (∇h · n̂) dA

 dt

=

∫ t+∆t

t

Nf,O∑
f=1

Tf (∇h · n̂)fAf

 dt

=

Nf,O∑
f=1

Tf (∇h · n̂)fAf∆t (58)

The estimation for the flux, (∇h · n̂)f , is given as:

(∇h)f · n̂f =
hN − hO

δf
−
[
ha(f) − hb(f)

δfAf

]
(xa − xb)(xN − xO) + (ya − yb)(yN − yO)

Af
. (59)

where ha(f) and hb(f) are the value of h at the vertices a and b, respectively. To compute
ha(f) and hb(f), we make use of the interpolation function facteur, if a vertex (or node) is
influenced by Nc cells , then

wv,i =
1/di

Nc∑
i=1

1/di

, (60)

where the interpolation function facteur wv,i, represents the contribution of the ith sur-
rounding cell to the vertex, v and di is the distance between the vertex v and the cell
center i of cell i. Once the interpolation function has been computed and stored, the
vertex (or nodal) value of h can be computed using

hv =

Nc∑
i=1

wv,ihi (61)
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We chose the inverse weighted function because the cell effect will decrease as the distance
increases.

6.3. Discretization of Source Term

In this study, we consider that the sources take the form of point sources and sinks
N i(x, t) which is located at points xi and at time t, we express the source term in the
form [3]:

N =
Ns∑
i=1

N i (xi, t) δ (x− xi) . (62)

where Ns is the number of sources and sinks and δ(x−xi) denotes the Dirac delta-function
for two dimensions, defined formally by

δ (x− xi) = lim
a→0

{
1/a2 |x− xi| < a
0 elsewhere

(63)

Actually, N i can represent both pumping wells and recharging (with N i < 0 and N i > 0
respectively). The discretization for the source term is given by,∫ t+∆t

t

∫
VO

N dV dt =

∫ t+∆t

t

∫
VO

Ns∑
i=1

N i (xi, t) δ (x− xi) dV dt

=
Ns∑
i=1

N i (xi, t)O δ (xO − xi)VO∆t (64)

where the subscript O indicates the cell center of the control volume O.

6.4. Numerical Schemes

In this study, for stability reasons, we use the implicit approach. Combining Equations
(57), (58) and (64), the complete discretization for equation (50) can now be written for
each VO as

SOVO(hO − holdO ) =

Nf,O∑
f=1

Tf

(
hN − hO

δf
−
[
(∇h)f · t̂f

]
δf

t̂f · 1f

)
Af∆t

+
Ns∑
i=1

N i (xi, t)O δ (xO − xi)VO∆t (65)

Finally, equation (65) is assembled in matrix form in order to obtain the discrete equations
between each control volume VO value and its neighboring values as follows:

aOhO =

Nf,N∑
f=1

af,Nhf(N) + bN (66)
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where the coefficients are given by

aO = SOVO +

Nf,O∑
f=1

Tf
hO
δf

Af∆t, (67)

af,N =
Tf

δf
Af∆t, (68)

bN =
Ns∑
i=1

N i (xi, t)O δ (xO − xi)VO∆t−
Nf,O∑
f=1

Tf

[
(∇h)f · t̂f

]
δf

t̂f ·1fAf∆t+SOVOh
old
O . (69)

7. Conclusion

The main objective of this study was to develop the vertically integrated groundwater
flow equation, under Dupuit’s assumption, the diffusivity equation was then derived, the
study area is often complex, and it required the relevant numerical method, finite volume
method has the advantage of working on complex geometric and it is also stable, the
implicit FVM schemes were developed for 2D. The obtained numerical scheme will be used
to evaluate the distribution of the hydraulic head in the study area and investigate the
fluctuation of groundwater level, from which the drawdown phenomenon can be observed.

8. Recommendations for further research

Based on the findings of this study, the researcher found that there are still some areas
of mutual interest. The researcher now suggests the following recommendations for future
studies as a result of this work.

• Unsteady state solution of the confined anisotropic and heterogeneous aquifers to
two-dimensional flow

• Validate the developed models by comparing them with other methods
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