Inclusion and Neighborhood Properties of Certain Subclasses of Analytic and Multivalent Functions

M. K. Aouf ${ }^{1}$ and J. Dziok ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
${ }^{2}$ Institute of Mathematics, University of Rzeszow, ul. Rejtana 16A, PL-35-310 Rzeszow, Poland

Abstract

In the paper we introduce and investigate two new subclasses of multivalently analytic functions defined by Dziok-Srivastava operator. In this paper we obtain the coefficient estimates and the consequent inclusion relationships involving the neighborhoods of the analytic functions.

2000 Mathematics Subject Classifications: 30C45, 25A33.

Key Words and Phrases: Analytic functions, p-valent functions, the, Dziok-Srivastava operator, neighborhood.

[^0][^1]
1. Introduction

Let $A_{p}(n)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{k} z^{k} \quad(p, n \in N=\{1,2, \ldots .\}, p<n), \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. If $f(z) \in A_{p}(n)$ is given by (1) and $g(z) \in A_{p}(n)$ is given by

$$
g(z)=z^{p}+\sum_{k=n}^{\infty} b_{k} z^{k} \quad(z \in U)
$$

then the Hadamard product (or convolution) $(f * g)(z)$ of $f(z)$ and $g(z)$ is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=n}^{\infty} a_{k} b_{k} z^{k}
$$

For complex parameters $\alpha_{1} \ldots, \alpha_{r}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \in C \backslash\{0,-1,-2, \ldots\} ; j=1, \ldots, s\right)$, we define the generalized hypergeometric function ${ }_{r} F_{s}\left(\alpha_{1} \ldots, \alpha_{r} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by

$$
\begin{aligned}
{ }_{r} F_{s}\left(\alpha_{1} \ldots, \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s} ; z\right) & =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots \ldots\left(\alpha_{r}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots \ldots .\left(\beta_{s}\right)_{k}} \cdot \frac{z^{k}}{k!} \\
\left(r \leq s+1 ; r, s \in N_{0}\right. & =N \cup\{0\} ; z \in U),
\end{aligned}
$$

where $(\theta)_{k}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\theta)_{k}=\frac{\Gamma(\theta+k)}{\Gamma(\theta)}=\left\{\begin{array}{cc}
1 & (k=0) \\
\theta(\theta+1) \ldots .(\theta+k-1) & (k \in N)
\end{array}\right.
$$

Corresponding to a function $h_{p}\left(\alpha_{1}, \ldots ., \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s} ; z\right)$ defined by

$$
h_{p}\left(\alpha_{1}, \ldots, \alpha_{r} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z^{p}{ }_{r} F_{s}\left(\alpha_{1}, \ldots, \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s} ; z\right),
$$

we consider a linear operator $H_{p}\left(\alpha_{1}, \ldots ., \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s}\right): A_{p}(n) \rightarrow A_{p}(n)$, defined by the convolution

$$
H_{p}\left(\alpha_{1}, \ldots ., \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s}\right) f(z)=h_{p}\left(\alpha_{1}, \ldots ., \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s} ; z\right) * f(z) .
$$

We observe that, for a function $f(z)$ of the form (1), we have

$$
H_{p}\left(\alpha_{1}, \ldots ., \alpha_{r} ; \beta_{1}, \ldots ., \beta_{s}\right) f(z)=z^{p}+\sum_{k=n}^{\infty} \Gamma_{k} a_{k} z^{k}
$$

where

$$
\begin{equation*}
\Gamma_{k}=\frac{\left(\alpha_{1}\right)_{k-p} \ldots \ldots\left(\alpha_{r}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots \ldots .\left(\beta_{s}\right)_{k-p}(k-p)!} . \tag{2}
\end{equation*}
$$

For convenience, we write

$$
H_{r, s}^{p}=H_{p}\left(\alpha_{1}, \ldots . ., \alpha_{r} ; \beta_{1}, \ldots . . \beta_{s}\right) .
$$

The linear operator $H_{r, s}^{p}$ was introduced by Dziok and Srivastava [1].
We denote by $T_{p}(n)$ the subclass of $A_{p}(n)$ consisting of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=n}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) . \tag{3}
\end{equation*}
$$

By using the linear operator $H_{r, s}^{p}$ we introduce a new subclass $S(p, n, q, \lambda, \beta)$ of the class $T_{p}(n)$, which consists of functions $f(z) \in T_{p}(n)$ satisfying the inequality:

$$
\begin{align*}
& \left|\frac{z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+\lambda z^{2}\left(H_{r, s}^{p} f\right)^{(2+q)}(z)}{\lambda z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+(1-\lambda)\left(H_{r, s}^{p} f\right)^{(q)}(z)}-(p-q)\right|<\beta \tag{4}\\
& \left(z \in U ; p \in N ; q \in N_{0} ; q<k-1 ; k \geq n ; 0 \leq \lambda \leq 1 ; \beta>0\right) .
\end{align*}
$$

Also, let $P(p, n, q, \lambda, \beta)$ denote the subclass of $T_{p}(n)$ consisting of functions $f(z)$ which satisfy the inequality:

$$
\begin{align*}
& \left|(1-\lambda) \frac{\left(H_{r, s}^{p} f\right)^{(q)}(z)}{z^{p-q}}+\lambda \frac{\left(H_{r, s}^{p} f\right)^{(1+q)}(z)}{(p-q) z^{p-q-1}}-(p-q+1)_{q}\right|<\beta \tag{5}\\
& \quad\left(z \in U ; p \in N ; q \in N_{0} ; q<k-1 ; k \geq n ; \lambda \geq 0 ; \beta>0\right) .
\end{align*}
$$

Now we define two classes related to the classes $S(p, n, q, \lambda, \beta)$ and $P(p, n, q, \lambda, \beta)$.
A function $f(z) \in T_{p}(n)$ is said to be in the class $S^{\gamma}(p, n, q, \lambda, \beta)$ if there exists a function $g(z) \in S(p, n, q, \lambda, \beta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<\gamma \quad(z \in U ; \gamma>0) \tag{6}
\end{equation*}
$$

Analogously, a function $f(z) \in T_{p}(n)$ is said to be in the class $P^{\gamma}(p, n, q, \lambda, \beta)$ if there exists a function $g(z) \in P(p, n, q, \lambda, \beta)$ such that the inequality (6) holds true.

We note that for suitable chosen parameters the classes were investigated by (among others) Srivastava et al. ([2] and [3]). Also, following the earlier investigation by Goodman [4], Ruscheweyh [5], and others we define the (n, δ) - neighborhood of a function $f(z)$ of the form (3) by

$$
\begin{equation*}
N_{n, \delta}(f)=\left\{g(z)=z^{p}-\sum_{k=n}^{\infty} b_{k} z^{k} \in T_{p}(n): \quad \sum_{k=n}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\} . \tag{7}
\end{equation*}
$$

In particular, if

$$
h(z)=z^{p}(p \in N),
$$

we immediately have

$$
\begin{equation*}
N_{n, \delta}(h)=\left\{g(z)=z^{p}-\sum_{k=n}^{\infty} b_{k} z^{k} \in T_{p}(n): \quad \sum_{k=n}^{\infty} k\left|b_{k}\right| \leq \delta\right\} . \tag{8}
\end{equation*}
$$

The neighborhoods of function was studied among others by Altintas et al. ([6], [7] and [8]), Srivastava et al. ([2], [3], [9] and [10]) and Aouf [11] (see also Prajapart and Raina [12]). In this paper we obtain the coefficient estimates and the consequent inclusion relationships involving the neighborhoods of some analytic functions.

2. Coefficient Estimates

In our investigation of the inclusion relations involving $N_{n, \delta}(h)$, we shall require Theorems 1 and 2 below.

Theorem 1. Let the function $f(z) \in T_{p}(n)$ be defined by (3). Then $f(z)$ is in the class $S(p, n, q, \lambda, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}(k+\beta-p) C_{k} a_{k} \leq \beta C_{p} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}=[1+\lambda(k-q-1)](k-q+1)_{q} \Gamma_{k} \tag{10}
\end{equation*}
$$

and Γ_{k} is given by (2).
Proof. Let a function $f(z)$ of the form (3) belong to the class $S(p, n, q, \lambda, \beta)$. Then, in view of (3) and (4), we obtain the following inequality:

$$
\operatorname{Re}\left\{\frac{z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+\lambda z^{2}\left(H_{r, s}^{p} f\right)^{(2+q)}(z)}{\lambda z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+(1-\lambda)\left(H_{r, s}^{p} f\right)^{(q)}(z)}-(p-q)\right\}>-\beta(z \in U)
$$

or, equivalently,

$$
\operatorname{Re}\left\{\frac{-\sum_{k=n}^{\infty}(k-p) C_{k} a_{k} z^{k-p}}{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k} z^{k-p}}\right\}>-\beta \quad(z \in U)
$$

Setting $z=r(0 \leq r<1)$ we obtain

$$
\frac{\sum_{k=n}^{\infty}(k-p) C_{k} a_{k} r^{k-p}}{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k} r^{k-p}}<\beta \quad(0 \leq r<1)
$$

We observe that the expression in the denominator of the left-hand side of is positive for $r=0$ and also for $0<r<1$. Thus we have

$$
\sum_{k=n}^{\infty}(k+\beta-p) C_{k} a_{k} r^{k-p} \leq \beta C_{p}
$$

and, by letting $r \rightarrow 1^{-}$through real values, we obtain the desired assertion of Theorem 1. Conversely, by applying the hypothesis (9) and letting $|z|=1$, we find from (3) that

$$
\left|\frac{z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+\lambda z^{2}\left(H_{r, s}^{p} f\right)^{(2+q)}(z)}{\lambda z\left(H_{r, s}^{p} f\right)^{(1+q)}(z)+(1-\lambda)\left(H_{r, s}^{p} f\right)^{(q)}(z)}-(p-q)\right|=\left|\frac{\sum_{k=n}^{\infty}(k-p) C_{k} a_{k} z^{k-p}}{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k} z^{k-p}}\right|
$$

$$
\leq \frac{\sum_{k=n}^{\infty}(k-p) C_{k} a_{k}}{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k}} \leq \beta \frac{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k}}{C_{p}-\sum_{k=n}^{\infty} C_{k} a_{k}}=\beta .
$$

Hence, by the maximum modulus theorem, we have $f(z) \in S(p, n, q, \lambda, \beta)$, which evidently completes the proof of Theorem 1.

Similarly, we can prove the following theorem.

Theorem 2. Let the function $f(z) \in T_{p}(n)$ be given by (3). Then $f(z) \in P(p, n, q, \lambda, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}[p-q+\lambda(k-p)](k-q+1)_{q} \Gamma_{k} a_{k} \leq \beta(p-q) . \tag{11}
\end{equation*}
$$

where Γ_{k} is given by (2).

Using Theorems 1 and 2 we obtain following two corollaries.

Corollary 1. If the function $f(z)$ given by (3) belongs to the class $P(p, n, q, \lambda, \beta)$, then

$$
a_{k} \leq \frac{\beta C_{p}}{(k+\beta-p) C_{k}}, \quad(k=n, n+1, \ldots)
$$

where C_{k} is given by (10). The result is sharp.

Corollary 2. If the function $f(z)$ given by (3) belongs to the class $S(p, n, q, \lambda, \beta)$, then

$$
a_{k} \leq \frac{\beta(p-q)}{[p-q+\lambda(k-p)](k-q+1)_{q} \Gamma_{k}}, \quad(k=n, n+1, \ldots),
$$

where Γ_{k} is given by (2). The result is sharp.

3. Neighborhoods Properties

Our first inclusion relation $N_{n, \delta}(h)$ is given in the following theorem.

Theorem 3. If

$$
\begin{equation*}
C_{n} \leq C_{k} \quad(k=n, n+1, \ldots) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
S(p, n, q, \lambda, \beta) \subset N_{n, \delta}(h), \tag{13}
\end{equation*}
$$

where C_{k} is given by (10) and

$$
\delta=\frac{n \beta C_{p}}{(n+\beta-p) C_{n}} \quad(p \geq \beta)
$$

Proof. Let $f(z) \in S(p, n, q, \lambda, \beta)$. Using Theorem 1, by (12), we have

$$
(n+\beta-p) C_{n} \sum_{k=n}^{\infty} a_{k} \leq \sum_{k=n}^{\infty}(k+\beta-p) C_{k} a_{k} \leq \beta C_{p}
$$

which readily yields

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k} \leq \frac{\beta C_{p}}{(n+\beta-p) C_{n}} \tag{14}
\end{equation*}
$$

Making use of (9) again, in conjunction with (12) and (14), we get

$$
C_{n} \sum_{k=n}^{\infty} k a_{k} \leq \beta C_{p}+(p-\beta) C_{n} \sum_{k=n}^{\infty} a_{k} \leq \beta C_{p}+\frac{(p-\beta) \beta C_{p}}{n+\beta-p}=\frac{n \beta C_{p}}{n+\beta-p}
$$

Hence

$$
\sum_{k=n}^{\infty} k a_{k} \leq \frac{n \beta C_{p}}{(n+\beta-p) C_{n}}=\delta
$$

which, by means of the definition (8), establishes the inclusion relation (13) asserted by Theorem 1 .

Remark 1. Putting $\lambda=0, \beta=|b|, b \in C \backslash\{0\}$, replacing n by $n+p(p, n \in N)$ and taking $r=2 ; s=1 ; \alpha_{1}=\mu+p(\mu>-p ; p \in N) ; \alpha_{2}=\beta_{1}=1$ in Theorem 3, we obtain the result obtained by Raina and Srivastava [9].

In a similar manner, by applying the assertion (11) of Theorem 2 instead of the assertion (9) of Theorem 1 to functions in the class $P(p, n, q, \lambda, \beta)$ we can prove the following inclusion relationship.

Theorem 4. If

$$
\begin{equation*}
(n-q+1)_{q} \Gamma_{n} \leq(k-q+1)_{q} \Gamma_{k} \quad(k=n, n+1, \ldots), \tag{15}
\end{equation*}
$$

then

$$
P(p, n, q, \lambda, \beta) \subset N_{n, \delta}(h)
$$

where

$$
\delta=\frac{n \beta(p-q)}{\left.[p-q+\lambda(n-p)](n-q+1)_{q} \Gamma_{n}\right)} \quad(q+\lambda p \geq p)
$$

Theorem 5. Let $g(z) \in S(p, n, q, \lambda, \beta)$. If C_{k} given by (10) satisfies (12) and

$$
\begin{equation*}
\gamma>\frac{\delta}{n} \frac{(n+\beta-p) C_{n}}{(n+\beta-p) C_{n}-\beta C_{p}} \quad(\delta>0) \tag{16}
\end{equation*}
$$

then

$$
N_{n, \delta}(g) \subset S^{\gamma}(p, n, q, \lambda, \beta)
$$

Proof. Suppose that $f(z) \in N_{n, \delta}(k)$. We find from (8) that

$$
\sum_{k=n}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta
$$

which readily implies that

$$
\sum_{k=n}^{\infty}\left|a_{k}-b_{k}\right| \leq \frac{\delta}{n}
$$

Next, since $g(z) \in S(p, n, q, \lambda, \beta)$, we have [c.f. equation (14)] that

$$
\sum_{k=n}^{\infty} b_{k} \leq \frac{\beta C_{p}}{(n+\beta-p) C_{n}}
$$

so that

$$
\left|\frac{f(z)}{g(z)}-1\right| \leq \frac{\sum_{k=n}^{\infty}\left|a_{k}-b_{k}\right|}{1-\sum_{k=n}^{\infty} b_{k}} \leq \frac{\delta}{n} \frac{(n+\beta-p) C_{n}}{(n+\beta-p) C_{n}-\beta C_{p}}
$$

Thus, by (16) we have. $f(z) \in S^{\gamma}(p, n, q, \lambda, \beta)$. This evidently proves Theorem 5.
The proof of Theorem 6 below is similar to that of Theorem 5 above therefore, we omit the details involved

Theorem 6. Let $g(z) \in P(p, n, q, \lambda, \beta)$. If the condition (15) holds true and

$$
\gamma>\frac{\delta}{n} \frac{[p-q+\lambda(n-p)](n-q+1)_{q} \Gamma_{k}}{[p-q+\lambda(n-p)](n-q+1)_{q} \Gamma_{n}-\beta(p-q)} \quad(\delta>0)
$$

then

$$
N_{n, \delta}(g) \subset P^{\gamma}(p, n, q, \lambda, \beta) .
$$

References

[1] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103(1999), 1-13.
[2] G. Murugusundaramoorthy, H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2)(2004), Article 24, 1-8 (electronic).
[3] J. K. Prajapat, R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties for certain classes of multivalently analytic functions associated with the convolution structure, J. Inequal. Pure Appl. Math. 8(1)(2007), Article 7, 1-8 (electronic).
[4] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8(1957), 598-601.
[5] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 8(1981), 521-527.
[6] O. Altintas, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19(1996), 797-800.
[7] O. Altintas, O. Ozkan, H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Letters 13(2000), no.3, 63-67.
[8] O. Altintas, O. Ozkan, H. M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47(2004), 1667-1672.
[9] R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7(1) (2006), Article 5, 1-6 (electronic).
[10] H. M. Srivastava, S. Owa (Eds.), Current Topics in Analyic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[11] M. K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 2006, Article ID 38258,1-6.
[12] J. K. Prajapat, R. K. Raina, Some new inclusion and neighborhood properties for certain multivalent function class associated with the convolution structure, Internat. J. Math. Math. Sci. Vol. 2008, Art. ID 318582, 1-9.

[^0]: *Corresponding author.

 Email addresses: mkaouf127@yahoo.com (M. Aouf), jdziok@univ.rzeszow.pl (J. Dziok)

[^1]: (c) 2009 EJPAM All rights reserved.

