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Abstract. This work deals with modeling and controlling the oscillations of a horizontally-supported
car under the effect of a nonlinear spring, a damper, and a harmonic excitation external force. The
proposed controller is the integral resonant controller (IRC) which is a first order oscillator coupled
the car via a linear variable differential transformer (LVDT) and a servo-controlled linear actuator
(SCLA). The multiple scales perturbation method is used to obtain an approximate solution and
stability analyses are carried out. Based on the stability analysis, the optimum values of the con-
troller parameters are recommended in this work for a better control operation. Several response
curves are plotted for clarifying the concept of the proposed integral resonant control algorithm.
A numerical simulation of the car’s motion is achieved by numerically integrating the model equa-
tions with the 4th order Rung-Kutta algorithm. The applied controller can treat the severe jumps
in the oscillation amplitude where it is suppressed at different conditions of forward and backward
sweeping of the amplitude and frequency of the external excitation force.
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1. Introduction

Vibration control of mechanical systems has become the focus of many researchers
all over the world. Different techniques have been applied and investigated in order to
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reach a safe system operation with less defects and costs. Some of them depends on
passive control where bulky elements are used without any adaptation to the change
in the system states. The other type relies on active control where a control equation
(algorithm) is programmed into a control unit that gets the feedback signals from the
system states then acts upon their values. Among these active control techniques is
the integral resonant controller (IRC) that is a first order oscillator coupled linearly to
the controlled model equation. In addition, one of the most important models to be
controlled is the car model that suffers from unwanted oscillations. Aphale et al. [2]
proposed the IRC for controlling a smart structure implanted with distributed sensors
and actuators. They showed that applying such controller resulted in better operation and
stability. Dı́az and Reynolds [6] designed a robust proof-mass actuator in order to suppress
the induced vibrations by humans in floor structures. This actuator influenced the system
dynamics by inserting a feed-through term to the system acceleration output. Ji and Zhang
[11] explored the hysteresis and jump phenomena that could occur in the equilibrium
response of a simple mass-damper-spring absorber connected to a half-car model excited
harmonically. Febbo [7] discussed the nonlinear dynamics of an extensible oscillator that
was driven harmonically with the aid of the harmonic balance method for extracting the
frequency response equations. Pereira et al. [27] proposed an IRC technique composed
of an inner loop to control a joint-angle, and an outer loop to suppress the unwanted
vibrations of the joint. Dı́az et al. [5] introduced a simple and robust technique for
mitigating the vibrations of smart structures implanted with sensor-actuator pairs where
the closed-loop system produced high stability margins. Ji [10] controlled the primary
resonance of a nonlinear oscillator with the help of a nonlinear vibration absorber where
the natural frequencies of both the oscillator and the absorber were not in an internal
resonance condition. Al-Mamun et al. [1] applied a notch filter in cascade with a micro-
actuator (with the idea of IRC) in order to attenuate the high resonant vibrations of the
studied actuator. Febbo and Ji [8] adopted the use of Lagrange multipliers in order to find
the critical forcing amplitude where a nonlinear oscillator exhibited hysteresis and jump
phenomena in the primary resonance case. Liu et al. [16] introduced a feedback control
with time-delay for reducing the primary resonant vibrations of a carbon nanotube excited
by a Lorentz force and a longitudinal magnetic field. Omidi and Mahmoodi [24] have
combined the algorithms of positive position feedback (PPF) controller and IRC in order
to overcome some issues that were raised in the PPF controller. They adopted the method
of multiple scales for extracting the modulation equations of the amplitude and phase of
the studied system’s oscillations. Xu and Sun [31] studied the effect of the multi directional
quasi-zero-stiffness isolator that was coupled to a time delayed linear active controller. Liu
et al. [17] developed an optimal time delayed feedback controller for reducing the primary
and secondary (super harmonic) resonances of a simply supported beam implanted with
piezoelectric actuator and sensor where the stability regions were plotted depending on
the eigenvalue equation. Omidi and Mahmoodi [25] introduced a nonlinear form of the
IRC in order to suppress the vibratory behavior of some smart structures where an extra
damping was added to the closed-loop system. Ozer et al. [26] suggested a novel fuzzy-
logic controller for suppressing the buildings vibrations that consisted of steel plates and
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columns with an optimal mass dynamic absorber. Liu et al. [21] investigated the effect of
a dynamic vibration absorber on reducing the oscillations of a prism where linear damping
and stiffness and elastic foundation were considered. Bronkhorst et al. [4] identified an
SDOF (single degree-of-freedom) cubic-nonlinearity model whose vibrations were reduced
via a viscoelastic dynamic absorber. Liu et al. [18, 19] proposed different kinds of time-
delayed proportional-derivative active controllers in order to mitigate the oscillations in a
cantilever beam once with a lumped mass and another with an axial load. Kandil et al.
[14] proposed the control of a mass-damper-spring model with the aid of servo-controlled
linear actuator and linear variable differential transformer as a sensor where the control
signal was proportional to the mass position. Zhou et al. [34] studied the effect of moving
the base of a magnetically coupled oscillator on the dynamical behavior of the saturated
equilibrium response. Bauomy and Taha [3] coupled a primary system (cantilever beam) to
a secondary system (nonlinear vibration absorber) under the effect of a harmonic excitation
force in order to reduce the beam’s vibrations. Xu et al. [32] evaluated the designs
of H2 and H∞ techniques with tuned inerter damper (TID) on the damped structures
in order to obtain the frequency response function of the equipped system with TIDs.
Wang et al. [30] proposed a meta-structure of low-frequency multi-layers for reducing
the broadband vibrations where the time delay effect was studied as well. Kandil et
al. [12, 13, 15] suggested different techniques for controlling the vibrations of a half-
car model in case of primary, super-harmonic, and sub-harmonic resonance cases. They
applied the well-known nonlinear saturation controller and a new cubic-position-negative-
velocity feedback controller for the mentioned resonance cases. Liu et al. [20] combined a
graphene sheet of a single layer resting on a visco-Pasternak foundation excited by a dual-
frequency force where a time-delayed proportional-derivative controller was applied for the
first time. Saeed et al. [28] utilized the IRC technique for reducing the lateral (horizontal
and vertical) oscillations of the rotor active magnetic bearings system for the first time.
Geng et al. [9] limited the high oscillations of a nonlinear energy sink by improving
its reliability with a contactless magnetic force where the dynamical characteristics were
analyzed via analytical and numerical approaches. Mohanty and Dwivedy [22] proposed
a non-traditional nonlinear absorber in order to suppress the oscillations of a base-excited
nonlinear mass-spring model excited by hard external and parametric forces. Zhang et
al. [33] mixed a nonlinear energy sink with an internal oscillator to control the vibrations
of laminated composite plates where the efficiency of that mix is better in frequency
responses and energy dissipation. This work introduces the modeling of a horizontally-
supported car’s motion under the effect of a nonlinear spring, a damper, and a harmonic
excitation external force. The car’s oscillations can be controlled via an integral resonant
controller whose operation is fulfilled via a linear variable differential transformer and a
servo-controlled linear actuator. The multiple scales perturbation technique is adopted to
seek an approximate solution of the proposed nonlinear system of equations. In addition,
a stability analysis is achieved in order to determine whether the extracted approximate
solution is stable or not. Several response curves are plotted for clarifying the concept of
the proposed control algorithm. We discuss this problem from a mathematical background
with stating all the assumptions clearly in the paper. We know that it may be far from
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the actual automobile system. But we want to say that the IR controller may have a
vibration suppression effect on the model’s oscillations based on mathematical proof. In
the future, we are going to enroll automobile real-life simulations from licensed software
to simulate such automobile motions under the proposed control.

2. Car’s Motion Dynamical Equation and Its Approximate Solution

Figure 1a shows a car (of mass m) which is horizontally-supported with a nonlinear
spring of stiffness C1 and C2 and a damper of viscosity factor C. The car is also excited
by an unwanted harmonic force f cos (Ωt) that causes the car exhibit undesired horizontal
oscillations x(t). These oscillations are to be controlled via the control unit that is detailed
in Fig. 1b.

Figure 1: (left) Horizontally-supported car connected to a control unit, (right) detailed control unit

Herein, the external forces are the harmonic force f cos (Ωt) and the control unit force
Fc(t), while the only dissipative force is the damper’s force which opposes the motion
direction, i.e. −Cv or −Cẋ. Using all of these quantities leads to the following equation
of motion

mẍ+ Cẋ+ C1x+ C2x
3 = f cos(Ωt) + Fc(t) (1)

In this work, we are controlling the car’s oscillations with an integral resonant controller
(IRC) that has the form [24, 25, 28]

ẏ + ωcy = kcx (2)

where ωc is the decay rate of natural response of y(t) and kc is the feedback gain. This
type of first order oscillator can be implemented as shown in Fig. 1b. Its input feedback
signal x(t) is acquired from a linear variable differential transformer (LVDT), while its
output control signal is applied to a servo-controlled linear actuator (SCLA). The LVDT
and SCLA devices are connected directly to the car for sensing and actuating purposes,
respectively. For the oscillator’s equation shown in Eq. (2), it should be coupled linearly
with Eq. (1). Hence, the control force should be in the form Fc = ky where k is the
control gain. Using this data with simplifying Eq. (1), we have a system of differential
equations as follows

ẍ+ µẋ+ ω2x+ αx3 = f̂ cos(Ωt) + k̂y (3)
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ẏ + ωcy = kcx (4)

where µ = C/m, ω2 = C1/m, α = C2/m, f̂ = f/m, k̂ = k/m. For brevity, we will remove
the hats in the next analysis. A suitable scaling is done for some parameters such that
µ = ϵµ̃, α = ϵα̃, f = ϵf̃ , and kc = ϵk̃c in order to show the perturbed problem rather than
the linear un-damped free problem [23]. The tildes are used to show that the parameters
are scaled, while ϵ is a small perturbation parameter. Equations (3) and (4) become

ẍ+ ϵµ̃ẋ+ ω2x+ ϵα̃x3 = ϵf̃ cos(Ωt) + ky (5)

ẏ + ωcy = ϵk̃cx (6)

The approximate solution of the system above is sought with asymptotic series [23] as
follows

x(t) =
∞∑
n=0

ϵnxn ≈ x0 + ϵx1 (7)

y(t) =

∞∑
n=0

ϵn+1yn ≈ ϵy0 + ϵ2y1 (8)

where xn and yn are the component functions comprising the main solutions. The time-
derivatives can also be approximated by new partials derivatives in terms of new time
scales T0 = t and T1 = ϵt as follows:

d

dt
=

∞∑
n=0

ϵn
∂

∂Tn
≈ ∂

∂T0
+ ϵ

∂

∂T1
(9)

Substituting Eqs. (7) to (9) into Eqs. (5) and (6) and extracting the terms of equal powers
of ϵ (up to ϵ1) on both sides lead us to the following:

∂2x0
∂T 2

0

+ ω2x0 = 0 (10)

∂y0
∂T0

+ ωcy0 = k̃cx0 (11)

∂2x1
∂T 2

0

+ ω2x1 = −2
∂2x0
∂T0∂T1

− µ̃
∂x0
∂T0

− α̃x30 +
f̃

2
(eiΩT0 + e−iΩT0) + ky0 (12)

Equation (10) has the basic solution of a simple harmonic motion problem such that

x0 = AeiωT0 + Āe−iωT0 (13)

where A and its conjugate Ā are unknown quantities in terms of T1. Substituting x0 from
Eq. (13) into Eq. (11), then solving the resulting first order differential equation lead us
to

y0 = Be−ωcT0 + Γ̃AeiωT0 + ¯̃ΓĀeiωT0 (14)
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where B is another unknown quantity in terms of T1 and Γ̃ = k̃c(ωc − iω)(ω2
c + ω2)−1.

Substituting Eqs. (13) and (14) into Eq. (12) yields

∂2x1
∂T 2

0

+ ω2x1 = (−2iω
∂A

∂T1
− iµ̃ωA− 3α̃A2Ā+ Γ̃A)eiωT0 +

f̃

2
eiΩT0 +NST + c.c. (15)

whereNST stands for the non-secular terms that have no small divisors, and c.c. stands for
the complex conjugate of the whole preceding terms. We consider the primary resonance
case at which Ω−ω = σ where σ is the deviation between the excitation frequency Ω and
the car’s motion natural frequency ω. Assuming this deviation into Eq. (15) in order to
get the overall solvability condition

−2iω
∂A

∂T1
− iµ̃ωA− 3α̃A2Ā+ Γ̃A+

f̃

2
eiσT0 = 0 (16)

Based on Eq. (9) and the fact that A is a function of T1 only, we have

Ȧ =
dA

dt
= ϵ

∂A

∂T1
(17)

Using Eq. (17) and the assumption that µ = ϵµ̃, α = ϵα̃, f = ϵf̃ , and kc = ϵk̃c, one can
convert Eq. (16) to be in terms of t only as follows

−2iωȦ− iµωA− 3αA2Ā+ ΓA+
f

2
eiσt = 0 (18)

The quantities A, Ā, and Ȧ can be expressed in polar form in order to get the amplitude
and phase of the car’s motion as follows

A =
1

2
aeiδ (19)

Ā =
1

2
ae−iδ (20)

Ȧ =
1

2
(ȧeiδ + iaδ̇eiδ) (21)

where a(t) and δ(t) are the temporal amplitude and phase of the car’s motion, respectively.
Substituting Eqs. (19) to (21) into Eqs. (18) with separating the real and imaginary parts
lead to

ȧ = −1

2

(
µ+

kkc
ω2
c + ω2

)
a+

f

2ω
sin(σt− δ) (22)

aδ̇ = − kkcωc

2ω(ω2
c + ω2)

a+
3α

8ω
a3 − f

2ω
cos(σt− δ) (23)

To convert the non-autonomous system in Eqs. (22) and (23) to an autonomous one, we
should propose a new variable ψ satisfying ψ = σt − δ. This can give us the following
autonomous system

ȧ = −1

2

(
µ+

kkc
ω2
c + ω2

)
a+

f

2ω
sinψ (24)
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aψ̇ =

(
σ +

kkcωc

2ω(ω2
c + ω2)

)
a− 3α

8ω
a3 +

f

2ω
cosψ (25)

We can see that the original damping parameter µ is enhanced by a new quantity µc =
kkc/(ω

2
c + ω2), while the original detuning parameter σ is enhanced by a new quantity

σc = kkcωc/2ω(ω
2
c + ω2). Considering the steady-state relations such that ȧ = ψ̇ = 0

directs us to

(µ+ µc)ass =
f

ω
sinψss (26)

−2(σ + σc)ass +
3α

4ω
a3ss =

f

ω
cosψss (27)

where ass and ψss represent the steady-state amplitude and phase of the car’s motion.
Eliminating ψss from Eqs. (26) and (27) yields(

(µ+ µc)
2 +

(
2(σ + σc)−

3α

4ω
a2ss

)2
)
a2ss −

f2

ω2
= 0 (28)

The equation above is of sixth-degree and can represent several responses such as the
frequency-response (a versus σ), the force-response (a versus f), the nonlinearity-response
(a versus α), the damping-response (A versus µ), or the control-gain-response (a versus
k). These response curves should be tested for stability because they might have stable
or unstable branches all over the domain of the variating parameter. Hence, we can make
a linearization for the system in Eqs. (24) and (25) to get a linearized system involving
the Jacobian matrix of partial derivatives [23, 29] as follows[

ȧsd
ψ̇sd

]
=

[
−1

2(µ+ µc)
f
2ω cosψss

−3α
4ωass −

f
2ωa2ss

cosψss − f
2ωass

sinψss

] [
asd
ψsd

]
(29)

where asd and ψsd represent the small-deviations around the steady-state amplitude and
phase of the car’s motion such that a = ass + asd and ψ = ψss + ψsd. The nature
of the eigenvalues of the Jacobian matrix above can determine the stability of ass and
ψss. In other words, all the eigenvalues with negative real parts refer to asymptotically
stable amplitude and phase. Otherwise, they are unstable. This criterion is taken into
account during plotting the curves on the computer software that is programmed with
such criterion.

3. Car’s Motion Different Responses

Upon reaching Eq. (28) in the previous section, different response curves of the car’s
motion amplitude to the frequency detuning σ, the force amplitude f , and the time t.
These response curves tells the reader how the IRC can affect the behavior of the car’s
motion. According to this discussion, the model constants adopted in its operation are
as follows: µ = 0.02, ω = 3.1623, α = 0.8. Any other parameters will be mentioned
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consequently due to the studied response. Based on the nature of the eigenvalues of the
Jacobian matrix in Eq. (29), the upcoming-plotted branches are either solid referring to
stable response path, or dashed referring to unstable response path. Figure 2 clarifies
the response of the car’s motion amplitude a to both the frequency detuning σ and the
force amplitude f in case that the controller IRC is OFF (k = 0). Around the region
whose center is σ = 0, the amplitude begins to rise as we approach the center point
at f = 0.02 where the curve is of linear form or single stable solid branch form. As f
increases to 0.04 for example, unstable dashed branch appears as shown indicating the
existence of multiple branches within the hardening region. As f increases more and
more, the hardening region expands accompanied by higher amplitudes. This nonlinear
phenomenon shows the dependence of the curve’s hardening rate (due to hard spring) on
the external force amplitude that enhances the domination of the cubic nonlinearity upon
the system operation. Figure 3 pictures the response of the car’s motion amplitude a
to both the frequency detuning σ and the damping factor µ while the controller IRC is
deactivated (k = 0). Here, the damping factor can be an obstacle in the way of nonlinearity
domination over the system. If µ increases, it can make the hardening region more wrinkled
leading to decreasing the possibility of the multiple branches existence. Continuing the
discussion in Fig. 4, it shows the response of the car’s motion amplitude a to both the
frequency detuning σ and the nonlinearity factor α with the controller IRC being disabled
(k = 0). It is clear at α = 0 that the car’s motion amplitude responds linearly with only
a single branch of solutions. In addition, as α increases positively or negatively, the car’s
motion amplitude curve bends proportionally to the right (hardening effect) or to the left
(softening effect), respectively. This can clarify the nonlinearity domination over the car’s
motion response. Figure 5 indicates the response of the car’s motion amplitude a to the
force amplitude f and the frequency detuning σ in case that IRC is OFF (k = 0). As σ
increases from −0.1 to 0.0, the amplitude responds in a linear manner where there are no
jumps in the curve as can be seen. After that at σ = 0.05 and more, the jump phenomena
start to appear where the car faces sudden jumps at every Saddle-Node bifurcation point
as shown in the figure. Moreover in Fig. 6, the car’s motion amplitude a is affected by
to the force amplitude f along with the damping factor µ before control. The clear thing
is that the interval of the unstable branch becomes narrower if the damping factor µ is
increased which gives us a hint about improving the damping performance of this system
to get a better car’s operation. Figures 7 and 8 assure the discussion done in Fig. 4 where
the positive (negative) values of α makes the car’s amplitude curve bend to the right (left)
only with positive (negative) values of σ.
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Figure 2: Response of the car’s motion amplitude a to the frequency detuning σ and the force amplitude f in
case that IRC is OFF (k = 0): (left) a versus σ at different f , (right) a versus σ and f

Figure 3: Response of the car’s motion amplitude a to the frequency detuning σ and the damping factor µ in
case that IRC is OFF (k = 0): (left) a versus σ at different µ, (right) a versus σ and µ
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Figure 4: Response of the car’s motion amplitude a to the frequency detuning σ and the nonlinearity factor α
in case that IRC is OFF (k = 0): (left) a versus σ at different α, (right) a versus σ and α

Figure 5: Response of the car’s motion amplitude a to the force amplitude f and the frequency detuning σ in
case that IRC is OFF (k = 0): (left) a versus f at different σ, (right) a versus f and σ
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Figure 6: Response of the car’s motion amplitude a to the force amplitude f and the damping factor µ in case
that IRC is OFF (k = 0): (left) a versus f at different µ, (right) a versus f and µ

Figure 7: Response of the car’s motion amplitude a to the force amplitude f and the nonlinearity factor α in
case that IRC is OFF (k = 0 and σ = 0.05): (left) a versus f at different α, (right) a versus f and α
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Figure 8: Response of the car’s motion amplitude a to the force amplitude f and the nonlinearity factor α in
case that IRC is OFF (k = 0 and σ = −0.05): (left) a versus f at different α, (right) a versus f and α

After the application of the IRC, the car’s amplitude responses will be tracked in terms
of the effect of the controller’s parameters. We have known that the control damping factor
is µc = kkc/(ω

2
c + ω2) where it can be maximized either by increasing the gain product

kkc to infinity which is practically impossible, or by adjusting the control rate ωc to be
zero. The last conclusion was based upon applying the second partial derivative test on
the quantity µc. Accordingly, Fig. 9 shows the relation of the control damping factor µc
versus the gain product kkc and the control rate ωc. It is clear in Fig. 9a that the damping
rate is at its maximum level only when ωc = 0 as proved by the second partial derivative
test. Moreover, the damping rate decreases by increasing ωc positively or negatively as
shown. Figure 9b assures that the maximum damping rate occurs when ωc = 0 besides
raising the product kkc to 1.0 is an acceptable value for guaranteeing a better damping
performance. Figure 9c combines the relation of µc, ωc, and kkc into a 3D surface as shown
in order to clarify the visualization between the three parameters. On the other hand,
we have that the control detuning factor is σc = kkcωc/2ω(ω

2
c + ω2). The second partial

derivative test can be applied again to conclude that the factor σc can be maximum at
ωc = ±ω or it can be minimum at ωc = 0. Hence, the two quantities µc and σc can have
their extreme values (maximum and minimum, respectively) by adopting the case ωc = 0
where the damping performance is at its optimum level. Accordingly, Fig. 10 indicates
the relation of the control detuning factor σc versus the gain product kkc and the control
rate ωc. It can be noticed that σc is at its lowest state and the damping rate is at its
maximum level only when ωc = 0 as proved by the second partial derivative test. This is
an assurance for the agreement between maximum µc and minimum σc only when ωc = 0
theoretically.
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Figure 9: Relation of the control damping factor µc versus the gain product kkc and the control rate ωc: (left)
µc versus kkc at different ωc, (middle) µc versus ωc at different kkc, (right) µc versus ωc and kkc

Figure 10: Relation of the control detuning factor σc versus the gain product kkc and the control rate ωc: (left)
σc versus kkc at different ωc, (middle) σc versus ωc at different kkc, (right) σc versus ωc and kkc

Depending on the theoretical optimum value of ωc, Fig. 11 is plotted to show the
response of the car’s motion amplitude a to the frequency detuning σ and the gain product
kkc with different values of ωc. At ωc = ω in Figs. 11a and b, the amplitude is suppressed
with increasing the gain product kkc in addition to eliminating the jump phenomena that
were present for lower values of kkc. As ωc decreases in Figs. 11c-f, the amplitude gets to
better reduction ratios at kkc = 1.0 ensuring that the theoretical optimum values of kkc
and ωc are 1.0 and 0, respectively, where the oscillation amplitude has been suppressed
by about 68% of its uncontrolled state at σ = 0. Figure 12 portrays the response of the
car’s motion amplitude a to the force amplitude f and the gain product kkc at σ = 0 and
different values ofωc. As can be seen, the best state of the curve (lower amplitudes with
respect to changing f values) is the one at kkc = 1.0 and ωc = 0 in order to have better
reduction ratios where the oscillation amplitude has been suppressed by about 51% of its
uncontrolled state at f = 0.1. In addition, Fig. 13 portrays the same response as per Fig.
12 but at σ = 0.1. It is assured that the optimum curve can be reached at kkc = 1.0 and
ωc = 0 in order to have better reduction ratios where the oscillation amplitude has been
suppressed by about 87% of its uncontrolled state at f = 0.1. Another aspect appears in
the figure that is the elimination of the jump phenomena and the unstable region at the
mentioned optimum values of kkc and ωc.
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Figure 11: Response of the car’s motion amplitude a to the frequency detuning σ and the gain product kkc:
(a, b) ωc = ω, (c, d) ωc = 1, (e, f) ωc = 0
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Figure 12: Response of the car’s motion amplitude a to the force amplitude f and the gain product kkc at
σ = 0: (a, b) ωc = 0, (c, d) ωc = 1, (e, f) ωc = ω
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Figure 13: Response of the car’s motion amplitude a to the force amplitude f and the gain product kkc at
σ = 0.1: (a, b) ωc = ω, (c, d) ωc = 1, (e, f) ωc = 0

4. Numerical Simulation of The Car’s Motion

Regarding the numerical simulation of the car’s motion, the fourth-order Runge-Kutta
technique has been adopted in order to integrate Eqs. (3) and (4) numerically. The
resulting time responses are plotted to verify the analytical approximate responses that
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were discussed earlier in Figs. 2 to 13. Figures 14 and 15 describe the time response
evolution of the car’s amplitude through transient and steady-state cases as shown. We
have adopted the same parameters values discussed previously except for the value of ωc

which had a zero value (theoretically) but has the value 0.1 for stable practical operation
as will be shown. Equations (3) and (4) can be reformulated in the sense of autonomous
system by assuming the new variables u = cos(Ωt) and v = sin(Ωt) as follows:

ẍ+ µẋ+ ω2x+ αx3 = fu+ ky (30)

ẏ + ωcy = kcx (31)

u̇ = −Ωv (32)

v̇ = Ωu (33)

Linearizing the system of equations above along with assuming that x = x1 and ẋ = x2,
then rewriting the system in the state-space matrix form as follows:

ẋ1
ẋ2
ẏ
u̇
v̇

 =


0 1 0 0 0

−ω2 −µ k f 0
kc 0 −ωc 0 0
0 0 0 0 −Ω
0 0 0 Ω 0



x1
x2
y
u
v

 (34)

Applying the Routh-Hurwitz technique on the square matrix above gives us some con-
ditions for the system to be stable. These conditions give us that ωc should obey the
inequality (ωcω

2 − kkc) ≥ 0. Based on the last criterion, ωc can have the minimum value
0.1 if the product kkc = 1.0 and ω2 = 10. This optimum value of ωc is proved for the
practical operation of the car not to make any confusion with the theoretical approach we
have discussed before. Figure 14 shows the time response of the car’s maximum displace-
ment in case that f = 0.06 and IRC is OFF (k = 0) then ON (kkc = 1 and ωc = 0.1) at
different values of σ. It can be seen that the car’s peak displacement xp is about 0.44 at
σ = 0 (Fig. 14a) during forward sweeping until σ reaches 0.065 where xp is about 0.85
then suddenly xp jumps down to about 0.15 at σ = 0.070 (Fig. 14b). In the backward
sweeping process, the car’s peak displacement xp is about 0.2 at σ = 0.050 (Fig. 14c)
until σ reaches 0.045 where xp jumps up suddenly to about 0.75 (Fig. 14c). The proposed
control algorithm will treat such severe jumps. In Fig. 14a where σ = 0, the controlled
car’s peak displacement has been suppressed by about 64% of its uncontrolled value. In
Figs. 14b and 14c, the jump phenomena have been eliminated as shown and the controlled
car’s peak displacement has become lower than the lower amplitude before control. More-
over, Fig. 15 indicates the time history of the car’s maximum displacement in case that
σ = 0.1 and IRC is OFF (k = 0) then ON (kkc = 1 and ωc = 0.1) for different values of
f . One can see that the car’s peak displacement xp is about 0.095 at f = 0.06 (Fig. 15a).
During forward sweeping in Fig. 15b, the force f reaches 0.15 where xp is about 0.34 then
a sudden jump-up happens in xp to about 1.15 at f = 0.16. During backward sweeping
in Fig. 15c, the car’s peak displacement xp is about 1.1 at f = 0.10 until f reaches 0.09
where xp jumps down suddenly to about 0.15. Again, the proposed control algorithm has
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treated the issue of the jump phenomena as shown in Fig. 15 where xp is reduced by
about 16% of its uncontrolled state. Figures 15b and c show the elimination of the jump
phenomena in addition that xp went lower than the uncontrolled lower amplitude.

Figure 14: Response of the car’s maximum displacement to the time t in case that f = 0.06 and IRC is OFF
(k = 0) then ON (kkc = 1 and ωc = 0.1): (left) σ = 0, (middle) forward sweeping of σ = 0.065, 0.070, (right)
backward sweeping of σ = 0.050, 0.045

Figure 15: Response of the car’s maximum displacement to the time t in case that σ = 0.1 and IRC is OFF
(k = 0) then ON (kkc = 1 and ωc = 0.1): (left) f = 0.06, (middle) forward sweeping of f = 0.15, 0.16, (right)
backward sweeping of f = 0.10, 0.09

5. Concluding Remarks

In this paper, a horizontally-supported car’s motion has been modeled under the ef-
fect of a nonlinear spring, a damper, and a harmonic excitation external force. The car’s
oscillations were controlled via an integral resonant controller whose operation was built
on a linear variable differential transformer and a servo-controlled linear actuator. The
multiple scales perturbation technique was adopted to seek an approximate solution of
the proposed nonlinear system of equations. In addition, a stability analysis was achieved
in order to determine whether the extracted approximate solution was stable or unstable.
Several response curves were plotted for clarifying the concept of the proposed control
algorithm. Regarding the numerical simulation of the car’s motion, the Runge-Kutta
technique was used in order to integrate the model equations numerically. Based upon
the gained results of this work, we have concluded some summarized remarks. The car’s
damping behavior could be enhanced by adjusting the control rate ωc to be zero (theo-
retically). In addition, this performance could be also enhanced by raising the product
kkc to 1.0 which was an acceptable value for guaranteeing a better damping performance.
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Another advantage appeared at the optimum values of kkc and ωc which was the elimina-
tion of the jump phenomena and the unstable regions of the response curves (frequency or
force response curves). Based on a stability analysis of the original model equations, the
control rate ωc should have the minimum value 0.1 (practically) if the product kkc = 1.0
and ω2 = 10. The proposed control algorithm treated the car’s amplitude severe jumps
where it was being suppressed at different conditions of forward and backward sweeping
of the parameters σ and f .
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