EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 4, 2023, 2025-2034 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Approximation of BV space-defined functionals containing piecewise integrands with L^1 condition

Thomas Wunderli

¹ Department of Mathematics and Statistics, The American University of Sharjah, Sharjah, United Arab Emirates

Abstract. We prove an approximation result for a class of functionals $\mathcal{G}(u) = \int_{\Omega} \varphi(x, Du)$ defined on $BV(\Omega)$ where $\varphi(\cdot, Du) \in L^1(\Omega)$, $\Omega \subset \mathbb{R}^N$ bounded, $\varphi(x, p)$ convex, radially symmetric and of the form

$$\varphi(x,p) = \begin{cases} g(x,p) & \text{if } |p| \le \beta \\ \psi(x)|p| + k(x) & \text{if } |p| > \beta. \end{cases}$$

We show for each $u \in BV(\Omega) \cap L^p(\Omega)$, $1 \le p < \infty$, there exist $u_k \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega) \cap L^p(\Omega)$ so that $\mathcal{G}(u_k) \to \mathcal{G}(u)$. Approximation theorems in BV are used to prove existence results for the strong solution to the time flow $u_t = div(\nabla_p \varphi(x, Du))$ in $L^1((0, \infty); BV(\Omega) \cap L^p(\Omega))$, typically with additional boundary condition or penalty term in u to ensure uniqueness. The functions in this work are not covered by previous approximation theorems since for fixed p we have $\varphi(x, p) \in L^1(\Omega)$ which do not in general hold for assumptions on φ in earlier work.

2020 Mathematics Subject Classifications: 49Nxx, 35Dxx

Key Words and Phrases: Bounded variation, conjugate function, Carathéodory function, variational problems

1. Introduction

In this work, we present some approximation results for functionals

$$\mathcal{G}(u) := \int_{\Omega} \varphi(x, Du) \tag{1}$$

defined for $u \in BV(\Omega)$ with bounded, open $\Omega \subset \mathbb{R}^N$ with the following assumptions on φ :

(1) $\varphi: \Omega \times \mathbb{R}^N \to \mathbb{R}$, where $\varphi(x, p)$ is convex in p, that is

$$\varphi(x,\lambda_1 p_1 + \lambda_2 p_2) \le \lambda_1 \varphi(x,p_1) + \lambda_2 \varphi(x,p_2)$$

for each $z \in \mathbb{R}, p_1, p_2 \in \mathbb{R}^N, 0 \le \lambda_1, \lambda_2 \le 1, \lambda_1 + \lambda_2 = 1,$

DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4934

Email address: twunderli@aus.edu (T. Wunderli)

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

(2) $\varphi(x,p) = \varphi(x,|p|)$ for all p, and for $k \in L^1(\Omega)$ is of the form

$$\varphi(x,p) = \begin{cases} g(x,p) & \text{if } |p| \leq \beta \\ \psi(x)|p| + k(x) & \text{if } |p| > \beta. \end{cases}$$

(3) φ is a Carathéodory function, with $\varphi(\cdot, p) \in L^1(\Omega)$ for each p.

From (3), φ is of linear growth in the *p* variable with

$$\lim_{|p|\to\infty}\frac{\varphi(x,p)}{|p|}=\psi(x)$$

We note that $\varphi(x,p)$ is continuous in p since real valued convex functions are continuous. The main result of this paper is the extension of the approximation theorems presented in, [2], [5], and [8] to include certain cases where $\varphi(\cdot, p) \in L^1(\Omega)$ for a class of integrands φ with the above assumptions (1)-(3). We note that functionals of the form (1) defined on BV have many applications to elasticity and image processing problems (see e.g. the early works of [9], [12], [14], [19]).

We recall the classic approximation theorem in [8] where it is proved that for each $u \in BV(\Omega), \ \Omega \subset \mathbb{R}^N$ bounded, there exists a sequence $\{u_k\} \subset W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ so that $u_k \to u$ in $L^1(\Omega)$ and $\int_{\Omega} |\nabla u_k| \, dx \to \int_{\Omega} |Du|$. We recall $u \in BV(\Omega)$ if and only if $u \in L^1(\Omega)$ and

$$\int_{\Omega} |Du| := \sup_{\phi \in \left\{ C_0^{\infty}(\Omega, \mathbb{R}^N), |\phi(x)| \le 1 \text{ all } x \in \Omega \right\}} \left\{ - \int_{\Omega} u div\phi \, dx \right\} < \infty,$$

and with $||u||_{BV(\Omega)} := ||u||_{L^1(\Omega)} + \int_{\Omega} |Du|$. In this case we have $\int_{\Omega} |Du| := \int_{\Omega} |\nabla u| \, dx + \int_{\Omega} |D^s u|$ for the measures $\nabla u \, dx \ll \mathcal{L}^N$ and $D^s u \perp \mathcal{L}^N$, and where $D^s u = 0$ if and only if $u \in W^{1,1}(\Omega)$. As $W^{1,1}(\Omega)$ is not dense in $BV(\Omega)$ we can not have $\int_{\Omega} |\nabla u_k - Du| \to 0$. See [7] for a detailed discussion.

As a model for image restoration, the authors in [5] consider

$$\Phi_h(u) := \int_{\Omega} \varphi(x, Du) + \frac{\lambda}{2} \int_{\Omega} (u - u_0)^2 dx + \int_{\partial \Omega} |u - h| d\mathcal{H}^{N-1}$$

for $\lambda > 0$ constant, $u_0 \in L^{\infty}(\Omega)$, and where

$$\varphi(x,p) = \begin{cases} \frac{1}{q(x)} |p|^{q(x)} & |p| \le \beta \\ |p| - \frac{\beta q(x) - \beta^{q(x)}}{q(x)} & |p| > \beta \end{cases}$$

for constant $\beta > 0$, $q \in L^{\infty}(\Omega)$, $1 < \alpha \leq q(x) \leq 2$. Here u and h are defined on $\partial\Omega$ in the sense of trace ([7]). The solution to

$$\min_{u \in BV(\Omega)} \Phi_h(u) \tag{2}$$

2026

is then the restored version of the corrupted image u_0 . In order to prove the existence of the weak solution of the corresponding time flow for (2), the authors show for each $u \in BV(\Omega)$ there is a sequence $u_k \in H^1(\Omega) \cap C^{\infty}(\Omega)$ where

$$u_k \rightarrow u \text{ in } L^2(\Omega) \text{ and}$$

 $\Phi_h(u_k) \rightarrow \Phi_h(u).$

Other approximation results are proved in [2] (Lemma 6.2) assuming lower semicontinuity or continuity in the x variable and in [3] for integrand g(x,p) with a continuity condition in x which in general will not be satisfied in our case for $\varphi(\cdot,p) \in L^1(\Omega)$. We also refer the reader to [15] for lower semicontinuity and approximation theorems of functionals $\int_{\Omega} f(x, Du), u \in BV(\Omega)$, using the work of Reshetnyak; and, for example, in [1] for the relaxation in $BV(\Omega)$ with respect to the L^1 norm for functionals $\int_{\Omega} f(x, u, \nabla u) dx$ defined on $W^{1,1}(\Omega; S^{d-1})$ for $\Omega \subset \mathbb{R}^N$ open and bounded and S^{d-1} the unit sphere in \mathbb{R}^d . However the integrands f(x, p) and f(x, z, p) are always assumed to be lower semicontinuous or continuous on $\Omega \times \mathbb{R}^N$ or $\Omega \times \mathbb{R} \times \mathbb{R}^N$ respectively for these cases.

Importantly, we note that the approximation Lemma 6.2 in [2] is used to prove existence results there for the solution to the time dependent problem

$$\begin{cases} \frac{\partial u}{\partial t} = div \nabla_p g(x, Du) & \text{in } (0, \infty) \times \Omega\\ u(t, x) = h(x) & \text{on } (0, \infty) \times \partial \Omega\\ u(0, x) = u_0(x) & \text{for } x \in \Omega \end{cases}$$

via the strong solution using the theory of semigroups in L^2 , which corresponds to the stationary problem

$$\min_{u \in BV(\Omega) \cap L^2(\Omega)} \Phi_{\varphi}(u),$$

with

$$\Phi_{\varphi}(u) := \int_{\Omega} g(x, Du) + \int_{\partial \Phi} |h - u| g^0(x, \nu(x)) \, d\mathcal{H}^{N-1},$$

for given boundary data h. Here g is continuous on $\overline{\Omega} \times \mathbb{R}^N$, convex and continuously differentiable in the second variable p, and

$$g^{0}(x,p) := \lim_{t \to 0^{+}} tg(x,p/t).$$

Appropriately defined solutions of the above time flow in L^1 using similar semigroup methods are also proved there.

2. Main Results

As stated in the Introduction, we prove an approximation result for a class of functionals $\int_{\Omega} \varphi(x, Du)$ by $\int_{\Omega} \varphi(x, \nabla u_k)$, $u_k \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ where $\varphi(x, p)$ satisfies (1)-(3)

and with an additional structure condition on g. Here we will use, from [6], the conjugate function g^* for given g:

$$g^*(x,q) := \sup_{p \in \mathbb{R}^N} \{q \cdot p - g(x,p)\}.$$

If g is convex in p, then it is easy to show that g^* is convex in q. Also if g is additionally continuous in p, then for a.e. x, there holds $g(x,p) = g^{**}(x,p)$ for all $p \in \mathbb{R}^N$ (see [6],[4]).

We will need the following lemma which is Proposition 1, from [17], which for the convenience of the reader we restate here.

In the sequel we define

$$\mathcal{V} := \left\{ \phi \in C_0^1(\Omega, \mathbb{R}^N) : |\phi(x)| \le \psi(x) \text{ for all } x \in \Omega \right\}.$$

Lemma 1. Assume φ satisfies the conditions (1)-(3) above:

$$\varphi(x,p) = \begin{cases} g(x,p) & \text{if } |p| \le \beta \\ \psi(x)|p| + k(x) & \text{if } |p| > \beta, \end{cases}$$

with $\psi \in C(\Omega) \cap L^{\infty}(\Omega)$, $\psi \geq 0$, $k(x, u) \in L^{1}(\Omega)$ for each $u \in L^{1}(\Omega)$. Also assume for some G

$$\varphi(x,p) = G(r_1(x),...,r_K(x),p)$$
 for all p

where

$$G(z_1, ..., z_K, p) = \begin{cases} g_1(z_1, ..., z_K, p) & \text{if } |p| \le \beta \\ z_K |p| + g_2(z_1, ..., z_K) & \text{if } |p| > \beta \end{cases}$$

and where for each $|p| \leq \beta$, g_1 is C^1 in the variable $\mathbf{z} = (z_1..., z_K) \in U \subset \mathbb{R}^K, U$ open, $r_i \in L^1(\Omega)$ each $i, (r_1(x), ..., r_K(x)) \in U$ a.e. x, and $|(\nabla_{\mathbf{z}}g_1)(\mathbf{z}, p)| \leq C$, C independent of (\mathbf{z}, p) . Note that $r_K(x) = \psi(x)$ and hence $z_k \geq 0$.

Then for all $u \in BV(\Omega)$ we have

$$\mathcal{G}(u) = \int_{\Omega} \varphi(x, \nabla u) \, dx + \int_{\Omega} \psi(x) |D^{s}u|$$

$$= \sup_{\phi \in \mathcal{V}} \left\{ -\int_{\Omega} u div\phi + \varphi^{*}(x, \phi(x)) \, dx \right\}.$$
(3)

If in addition $\partial\Omega$ is Lipschitz, $u \in BV(\Omega)$, then we have the continuous trace operator $T: BV(\Omega) \to L^1(\partial\Omega, \mathcal{H}^{N-1})$ ([7]). Thus if $h \in BV(\Omega)$,

$$\mathcal{G}_{h}(u) = \int_{\Omega} \varphi(x, \nabla u) \, dx + \int_{\Omega} \psi(x) |D^{s}u| + \int_{\partial\Omega} |u - h| \, d\mathcal{H}^{N-1}$$

$$= \sup_{\left\{\phi \in C^{1}(\overline{\Omega}, \mathbb{R}^{N}) : |\phi| \le \psi(x)\right\}} \left\{ -\int_{\Omega} u div\phi + \varphi^{*}(x, \phi(x)) \, dx + \int_{\partial\Omega} \phi \widehat{n}h \, d\mathcal{H}^{N-1} \right\}.$$

$$(4)$$

Furthermore, both \mathcal{G} and \mathcal{G}_h are lower semicontinuous in L^1 .

Before we state the proof, we note that the lower semicontinuity of \mathcal{G} and \mathcal{G}_h in L^1 is not covered the results in [10], [11], [13] since we only assume $\varphi(\cdot, p) \in L^1(\Omega)$ for each pand hence the condition that

$$\lim_{\widetilde{x}\to x,t\to\infty}t\varphi(\widetilde{x},p/t) \text{ exists}$$

as stated there may not hold if $\varphi(\cdot, p)$ is only assumed to be in $L^1(\Omega)$. Also see [18] for more general results for lower semicontinuity.

For an example of an integrand φ satisfying the conditions of Lemma 1, consider the following \mathcal{G} with $\alpha \in L^1(\Omega)$, $\delta > 0$:

$$\mathcal{G}(u) := \int_{\Omega} \varphi(x, Du)$$

with

$$\varphi(x,p) = \begin{cases} \psi(x)\sqrt{\alpha^2(x) + \delta + |p|^2} & \text{if } |p| \le \beta \\ \psi(x)|p| + \psi(x)\frac{\alpha(x) + \delta}{\sqrt{\alpha^2(x) + \delta + \beta^2} + \beta} & \text{if } |p| > \beta. \end{cases}$$

We now state the approximation theorem.

Theorem 1. Let \mathcal{G} and \mathcal{G}_h be as defined in Lemma 1 with φ satisfying the same conditions. Then for each $u \in BV(\Omega) \cap L^r(\Omega)$, $1 \leq r < \infty$ there exist a sequence $u_k \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega) \cap L^r(\Omega)$ with

$$\begin{aligned} \mathcal{G}(u_k) &\to \mathcal{G}(u) \text{ and} \\ u_k &\to u \text{ in } L^r(\Omega) \end{aligned}$$

In addition, if $\partial\Omega$ is Lipschitz and $h \in L^1(\partial\Omega)$ we have for each $u \in BV(\Omega)$ a sequence $u_k \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega) \cap L^r(\Omega)$ with

$$\begin{aligned} \mathcal{G}_h(u_k) &\to \mathcal{G}_h(u), \\ u_k &\to u \text{ in } L^r(\Omega), \text{ and} \\ Tu_k &= Tu \end{aligned}$$

where Tw is the trace operator for $w \in BV(\Omega)$.

Proof. We follow [8] taking into account the extra φ^* term.

Fix $\varepsilon > 0$ and construct an open covering $\{A_i\}$ of Ω where $A_i = \Omega_{i+1} - \overline{\Omega}_{i-1}, A_1 = \Omega_2$ where

$$\Omega_k = \left\{ x \in \Omega : dist(x, \partial \Omega) > 1/(m+k) \right\}, \ k = 0, 1, 2, \dots$$

and with m so large that

$$\int_{\Omega - \Omega_0} \psi(x) |Du| < \varepsilon \text{ and}$$
(5)

$$|\Omega - \Omega_1| \leq \varepsilon \tag{6}$$

Now construct a sequence $\{u_{\varepsilon}\}$ so that

$$u_{\varepsilon} = \sum_{i=1}^{\infty} \eta_{\varepsilon_i} * (u\phi_i)$$

where η is the usual mollifier on \mathbb{R}^N , $\{\phi_i\}$ is a partition of unity subordinate to $\{A_i\}$, and the ε_i are chosen to that the four conditions all hold:

- 1. each $\varepsilon_i < \varepsilon, i \ge 1$

- 2. $\int_{\Omega} |\eta_{\varepsilon_i} * (u\phi_i) u\phi_i|^r \, dx \le \varepsilon 2^{-i}$ 3. $\int_{\Omega} |\eta_{\varepsilon_i} * (u\nabla\phi_i) u\nabla\phi_i| \, dx \le \varepsilon 2^{-i}$ 4. support $\eta_{\varepsilon_i} * (u\phi_i) \subset \Omega_{i+2} \overline{\Omega}_{i-2}.$

Summing over all i gives

$$\int_{\Omega} |u_{\varepsilon} - u| \, dx \le \sum_{i=1}^{\infty} \int_{\Omega} |\eta_{\varepsilon_i} * (u\phi_i) - u\phi_i| \, dx \le \varepsilon$$

giving $u_{\varepsilon} \to u$ in $L^1(\Omega)$. Hence by L^1 lower semicontinuity in Lemma 1

$$\int_{\Omega} \varphi(x, Du) \le \liminf_{\varepsilon \to 0} \int_{\Omega} \varphi(x, Du_{\varepsilon}).$$
(7)

First we note that $|(\phi_1\eta_{\varepsilon_1}*\phi)(x)| \leq \psi(x) + \omega(\varepsilon_1)$ where the modulus of continuity ω of ψ satisfies $\omega(\varepsilon_1) \to 0$ as $\varepsilon_1 \to 0$, and that for $\varphi_c(x,p) := \varphi(x,p) + c|p|$, for each c > 0, satisfies the same assumptions on φ . Hence for each $u \in BV(\Omega)$

$$\sup_{\substack{|\phi(x)| \le \psi(x) + c}} \left\{ -\int_{\Omega} u div\phi + \varphi_c^*(x, \phi(x)) \, dx \right\}$$

$$= \int_{\Omega} \varphi(x, \nabla u) + c |\nabla u| \, dx + \int_{\Omega} (\psi(x) + c) d |D^s u|.$$
(8)

Now let $\phi \in C_0^1(\Omega; \mathbb{R}^N)$ with $|\phi(x)| \leq \psi(x)$ each x, then

$$-\int_{\Omega} u_{\varepsilon} div\phi + \varphi^*_{\omega(\varepsilon_1)}(x,\phi(x)) \, dx = \left(\sum_{i=1}^{\infty} -\int_{\Omega} (\eta_{\varepsilon_i} * (u\phi_i)) div\phi \, dx\right) \tag{9}$$

$$-\int_{\Omega}\varphi^*_{\omega(\varepsilon_1)}(x,\phi(x))\,dx\tag{10}$$

$$= -\int_{\Omega} u div(\phi_{1}\eta_{\varepsilon_{1}} * \phi) dx - \int_{\Omega} \varphi_{\omega(\varepsilon_{1})}^{*}(x,\phi(x)) dx - \sum_{i=2}^{\infty} \int_{\Omega} u div(\phi_{i}\eta_{\varepsilon_{i}} * \phi) dx + \sum_{i=1}^{\infty} \int_{\Omega} \phi(\eta_{\varepsilon_{i}} * (u\nabla\phi_{i}) - u\nabla\phi_{i}) dx = -\int_{\Omega} u div(\phi_{1}\eta_{\varepsilon_{1}} * \phi) + \varphi_{\omega(\varepsilon_{1})}^{*}(x,\eta_{\varepsilon_{1}} * \phi) dx - \sum_{i=2}^{\infty} \int_{\Omega} u div(\phi_{i}\eta_{\varepsilon_{i}} * \phi) dx$$

2030

$$+\sum_{i=1}^{\infty} \int_{\Omega} \phi(\eta_{\varepsilon_{i}} * (u\nabla\phi_{i}) - u\nabla\phi_{i}) \, dx$$
$$+ \int_{\Omega} \varphi^{*}_{\omega(\varepsilon_{1})}(x, \eta_{\varepsilon_{1}} * \phi) - \varphi^{*}_{\omega(\varepsilon_{1})}(x, \phi(x)) \, dx := I + II + III + IV.$$

By Lemma 3 in [16] we have from the Lipschitz property of $\varphi^*_{\omega(\varepsilon_1)}$

$$IV \leq \int_{\Omega} |\varphi_{\omega(\varepsilon_{1})}^{*}(x,\eta_{\varepsilon_{1}}*\phi) - \varphi_{\omega(\varepsilon_{1})}^{*}(x,\phi(x))| dx$$

$$\leq \beta \int_{\Omega} |\eta_{\varepsilon_{1}}*\phi - \phi| dx.$$

We now in addition to 1-4 choose ε_1 so that $\int_{\Omega_1} |\eta_{\varepsilon_1} * \phi - \phi| dx \leq \varepsilon$. The since $|\eta_{\varepsilon_1} * \phi| \leq ||\psi||_{\infty}$ we then have

$$IV \leq \beta \int_{\Omega} |\eta_{\varepsilon_{1}} * \phi - \phi| dx$$

= $\beta \int_{\Omega_{1}} |\eta_{\varepsilon_{1}} * \phi - \phi| dx + \beta \int_{\Omega - \Omega_{1}} |\eta_{\varepsilon_{1}} * \phi - \phi| dx$
 $\leq \beta \varepsilon + 2\beta ||\psi|| \varepsilon \to 0 \text{ as } \varepsilon \to 0.$

Also, we have as in [8]

$$III, II \to 0 \text{ as } \varepsilon \to 0.$$

Now

$$I = -\int_{\Omega} u div(\phi_{1}\eta_{\varepsilon_{1}} * \phi) + \varphi^{*}_{\omega(\varepsilon_{1})}(x, \eta_{\varepsilon_{1}} * \phi) dx$$

$$= -\int_{\Omega} u div(\phi_{1}\eta_{\varepsilon_{1}} * \phi) + \varphi^{*}_{\omega(\varepsilon_{1})}(x, \phi_{1}\eta_{\varepsilon_{1}} * \phi) dx$$

$$+ \int_{\Omega} \varphi^{*}_{\omega(\varepsilon_{1})}(x, \phi_{1}\eta_{\varepsilon_{1}} * \phi) - \varphi^{*}_{\omega(\varepsilon_{1})}(x, \eta_{\varepsilon_{1}} * \phi) dx.$$

Again from Lemma 3 in [16] we have for the last line

$$\begin{aligned} |\eta| &:= \left| \int_{\Omega} \varphi_{\omega(\varepsilon_{1})}^{*}(x, \phi_{1}\eta_{\varepsilon_{1}} * \phi) - \varphi_{\omega(\varepsilon_{1})}^{*}(x, \eta_{\varepsilon_{1}} * \phi) \, dx \right| \\ &\leq \beta \int_{\Omega} |\phi_{1}\eta_{\varepsilon_{1}} * \phi - \eta_{\varepsilon_{1}} * \phi| \, dx \\ &= \beta \int_{\Omega-\Omega_{1}} |\phi_{1} - 1| |\eta_{\varepsilon_{1}} * \phi| \, dx \\ &\leq 2\beta \int_{\Omega-\Omega_{1}} |\eta_{\varepsilon_{1}} * \phi| \, dx \\ &\leq 2\beta \|\psi\|_{\infty} \varepsilon \end{aligned}$$

2031

since $\phi_1 \equiv 1$ on Ω_1 .

Therefore $\eta \to 0$ as $\varepsilon \to 0$. Thus from (8)

$$I = -\int_{\Omega} u div(\phi_1 \eta_{\varepsilon_1} * \phi) + \varphi^*_{\omega(\varepsilon_1)}(x, \phi_1 \eta_{\varepsilon_1} * \phi) dx + \eta$$

$$\leq \int_{\Omega} \varphi(x, \nabla u) + \omega(\varepsilon_1) |\nabla u| dx + \int_{\Omega} (\psi(x) + \omega(\varepsilon_1)) d|D^s u| + \eta$$

$$= \int_{\Omega} \varphi(x, Du) + \int_{\Omega} \omega(\varepsilon_1) |\nabla u| dx + \omega(\varepsilon_1) \int_{\Omega} d|D^s u| + \eta,$$

keeping in mind that the last three terms approach 0 as $\varepsilon \to 0$. Thus we have from (9) and for each ϕ with $|\phi(x)| \leq \psi(x)$,

$$\begin{split} &-\int_{\Omega} u_{\varepsilon} div\phi + \varphi^*(x,\phi(x)) \, dx \\ &\leq I + II + III + IV + \int_{\Omega} |\varphi^*(x,\phi(x)) \, dx - \varphi^*_{\omega(\varepsilon_1)}(x,\phi(x))| \, dx \\ &= I + II + III + IV + \int_{\Omega} |\varphi^*(x,\phi(x)) - (\varphi(x,\phi(x)) + \omega(\varepsilon_1)|\phi(x)|)^* dx \\ &\leq I + II + III + IV + \omega(\varepsilon_1)|\psi|_{\infty} |\Omega| \\ &\leq \int_{\Omega} \varphi(x,Du) + \int_{\Omega} \omega(\varepsilon_1)|\nabla u| \, dx + \omega(\varepsilon_1) \int_{\Omega} d|D^s u| + \eta \\ &+ II + III + IV + \omega(\varepsilon_1)|\psi|_{\infty} |\Omega| \, . \end{split}$$

The second inequality follows from the note before (8), the assumption $|\phi(x)| \leq \psi(x)$, and Lemma 2 in [16]. Thus we have

$$-\int_{\Omega} u_{\varepsilon} div\phi + \varphi^{*}(x,\phi(x)) \, dx \leq \int_{\Omega} \varphi(x,Du) + \int_{\Omega} \omega(\varepsilon_{1}) |\nabla u| \, dx + \omega(\varepsilon_{1}) \int_{\Omega} d|D^{s}u| + \eta + II + III + IV + \omega(\varepsilon_{1}) |\psi|_{\infty} |\Omega| \,.$$
(11)

Taking the supremum over all such ϕ with $|\phi(x)| \leq \psi(x)$ in (11), and then letting $\varepsilon \to 0$ we have

$$\limsup_{\varepsilon \to 0} - \int_{\Omega} \varphi(x, Du_{\varepsilon}) dx \le \int_{\Omega} \varphi(x, Du).$$

Combining with (7) gives the result. The second part of the theorem is proved as in the first case and as in [5] for the boundary term.

Combining Lemma 1 and Theorem 1 we have the following extension of Theorem 6.4 in [2].

Theorem 2. Let φ satisfy the conditions of Lemma 1 and Theorem 1, then

$$\inf_{u \in BV(\Omega)} \mathcal{G}(u) = \inf \left\{ \int_{\Omega} \varphi(x, \nabla u) \, dx : u \in W^{1,1}(\Omega) \right\}, \text{ and}$$
$$\inf_{u \in BV(\Omega), \ u=h \ on \ \partial\Omega} \mathcal{G}_h(u) = \inf \left\{ \int_{\Omega} \varphi(x, \nabla u) \, dx : u \in W^{1,1}(\Omega) \text{ and } u = h \ on \ \partial\Omega \right\}.$$

In addition, \mathcal{G} , \mathcal{G}_h is the greatest $L^1(\Omega)$ -lower semicontinuous functional on $BV(\Omega)$ satisfying $\mathcal{G}(u) \leq \int_{\Omega} \varphi(x, \nabla u) \, dx$, and $\mathcal{G}_h(u) \leq \int_{\Omega} \varphi(x, \nabla u) \, dx$ for all $u \in W^{1,1}(\Omega)$ and $u \in W^{1,1}(\Omega)$ with u = h on $\partial\Omega$ respectively.

References

- R. Alicandro, A. Esposito, and C. Leone. Relaxation in by of integral functionals defined on sobolev functions with values in the unit sphere. *Journal of Convex Analysis*, 14(1):69–98, 2007.
- [2] F. Andreu-Vaillo, V. Caselles, and J. M. Mazón. Parabolic quasilinear equations minimizing linear growth functionals. Birkhuser, Basel, 2004.
- [3] L. Beck and T. Schmidt. Convex duality and uniqueness for by minimizers. J. Funct. Anal., 268:3061–3107, 2015.
- [4] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer, 2006.
- [5] Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math, 66(4):1383–1406, 2006.
- [6] I. Ekeland and R. Temam. Convex analysis and variational problems. SIAM, Philadelphia, 1999.
- [7] L. Evans and R. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, 1992.
- [8] E. Giusti. Minimal surfaces and functions of bounded variation. Birkhauser, Basel-Boston-Stuttgart, 1984.
- [9] R. Hardt and D. Kinderlehrer. Elastic plastic deformation. Appl. Math. Optim., 10:203-246, 1983.
- gener-[10] J. Kristensen and F. Rindler. Characterization of alised gradient young measures generated by sequences in $\label{eq:W11} W^{1,1} and \ BV. Archive for Rational Mechanics and Analysis, 197:539-598, 2010.$
- [11] J. Kristensen and F. Rindler. Relaxation of signed integral functionals in bv. Calc. Var., 37:92, 2010.

- [12] R.Hardt and X. Zhou. An evolution problem for linear growth functionals. Commun. Partial Differential Equations., 19:1879–1907, 1994.
- [13] F. Rindler and G. Shaw. Liftings, young measures, and lower semicontinuity. Arch. Rational Mech. Anal., 232:1227–1328, 2019.
- [14] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. *Phys. D*, 60:259–268, 1992.
- [15] D. Spector. Simple proofs of some results of reshetnyak. In Proceedings of the American Mathematical Society., volume 139, pages 1681–1690. American Mathematical Society, 2011.
- [16] T. Wunderli. On functionals with convex carathéodory integrands with a linear growth condition. Journal of Mathematical Analysis and Applications, 463:611–622, 2018.
- [17] T. Wunderli. Lower semicontinuity and -convergence of a class of linear growth functionals. *Nonlinear Analysis*, 188:80–90, 2019.
- [18] T. Wunderli. Lower semicontinuity in l1 of a class of functionals defined on by with carathéodory integrands. *Abstract and Applied Analysis*, 2021.
- [19] X. Zhou. An evolution problem for plastic antiplanar shear. Appl. Math. Optim., 25:263–285, 1992.