EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2025-2034
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Approximation of BV space-defined functionals containing piecewise integrands with L^{1} condition

Thomas Wunderli
${ }^{1}$ Department of Mathematics and Statistics, The American University of Sharjah, Sharjah, United Arab Emirates

Abstract

We prove an approximation result for a class of functionals $\mathcal{G}(u)=\int_{\Omega} \varphi(x, D u)$ defined on $B V(\Omega)$ where $\varphi(\cdot, D u) \in L^{1}(\Omega), \Omega \subset \mathbb{R}^{N}$ bounded, $\varphi(x, p)$ convex, radially symmetric and of the form $$
\varphi(x, p)= \begin{cases}g(x, p) & \text { if }|p| \leq \beta \\ \psi(x)|p|+k(x) & \text { if }|p|>\beta\end{cases}
$$

We show for each $u \in B V(\Omega) \cap L^{p}(\Omega), 1 \leq p<\infty$, there exist $u_{k} \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega) \cap L^{p}(\Omega)$ so that $\mathcal{G}\left(u_{k}\right) \rightarrow \mathcal{G}(u)$. Approximation theorems in $B V$ are used to prove existence results for the strong solution to the time flow $u_{t}=\operatorname{div}\left(\nabla_{p} \varphi(x, D u)\right)$ in $L^{1}\left((0, \infty) ; B V(\Omega) \cap L^{p}(\Omega)\right)$, typically with additional boundary condition or penalty term in u to ensure uniqueness. The functions in this work are not covered by previous approximation theorems since for fixed p we have $\varphi(x, p) \in L^{1}(\Omega)$ which do not in general hold for assumptions on φ in earlier work.

2020 Mathematics Subject Classifications: 49Nxx, 35Dxx
Key Words and Phrases: Bounded variation, conjugate function, Carathéodory function, variational problems

1. Introduction

In this work, we present some approximation results for functionals

$$
\begin{equation*}
\mathcal{G}(u):=\int_{\Omega} \varphi(x, D u) \tag{1}
\end{equation*}
$$

defined for $u \in B V(\Omega)$ with bounded, open $\Omega \subset \mathbb{R}^{N}$ with the following assumptions on φ :
(1) $\varphi: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, where $\varphi(x, p)$ is convex in p, that is

$$
\varphi\left(x, \lambda_{1} p_{1}+\lambda_{2} p_{2}\right) \leq \lambda_{1} \varphi\left(x, p_{1}\right)+\lambda_{2} \varphi\left(x, p_{2}\right)
$$

for each $z \in \mathbb{R}, p_{1}, p_{2} \in \mathbb{R}^{N}, 0 \leq \lambda_{1}, \lambda_{2} \leq 1, \lambda_{1}+\lambda_{2}=1$,
DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4934
Email address: twunderli@aus.edu (T. Wunderli)
https://www.ejpam.com 2025 (C) 2023 EJPAM All rights reserved.
(2) $\varphi(x, p)=\varphi(x,|p|)$ for all p, and for $k \in L^{1}(\Omega)$ is of the form

$$
\varphi(x, p)= \begin{cases}g(x, p) & \text { if }|p| \leq \beta \\ \psi(x)|p|+k(x) & \text { if }|p|>\beta\end{cases}
$$

(3) φ is a Carathéodory function, with $\varphi(\cdot, p) \in L^{1}(\Omega)$ for each p.

From (3), φ is of linear growth in the p variable with

$$
\lim _{|p| \rightarrow \infty} \frac{\varphi(x, p)}{|p|}=\psi(x)
$$

We note that $\varphi(x, p)$ is continuous in p since real valued convex functions are continuous. The main result of this paper is the extension of the approximation theorems presented in, [2], [5], and [8] to include certain cases where $\varphi(\cdot, p) \in L^{1}(\Omega)$ for a class of integrands φ with the above assumptions (1)-(3). We note that functionals of the form (1) defined on $B V$ have many applications to elasticity and image processing problems (see e.g. the early works of [9], [12], [14], [19]).

We recall the classic approximation theorem in [8] where it is proved that for each $u \in B V(\Omega), \Omega \subset \mathbb{R}^{N}$ bounded, there exists a sequence $\left\{u_{k}\right\} \subset W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ so that $u_{k} \rightarrow u$ in $L^{1}(\Omega)$ and $\int_{\Omega}\left|\nabla u_{k}\right| d x \rightarrow \int_{\Omega}|D u|$. We recall $u \in B V(\Omega)$ if and only if $u \in L^{1}(\Omega)$ and

$$
\int_{\Omega}|D u|:=\sup _{\phi \in\left\{C_{0}^{\infty}\left(\Omega, \mathbb{R}^{N}\right),|\phi(x)| \leq 1 \text { all } x \in \Omega\right\}}\left\{-\int_{\Omega} u \operatorname{div} \phi d x\right\}<\infty
$$

and with $\|u\|_{B V(\Omega)}:=\|u\|_{L^{1}(\Omega)}+\int_{\Omega}|D u|$. In this case we have $\int_{\Omega}|D u|:=\int_{\Omega}|\nabla u| d x+$ $\int_{\Omega}\left|D^{s} u\right|$ for the measures $\nabla u d x \ll \mathcal{L}^{N}$ and $D^{s} u \perp \mathcal{L}^{N}$, and where $D^{s} u=0$ if and only if $u \in W^{1,1}(\Omega)$. As $W^{1,1}(\Omega)$ is not dense in $B V(\Omega)$ we can not have $\int_{\Omega}\left|\nabla u_{k}-D u\right| \rightarrow 0$. See [7] for a detailed discussion.

As a model for image restoration, the authors in [5] consider

$$
\begin{aligned}
\Phi_{h}(u): & =\int_{\Omega} \varphi(x, D u)+\frac{\lambda}{2} \int_{\Omega}\left(u-u_{0}\right)^{2} d x+ \\
& \int_{\partial \Omega}|u-h| d \mathcal{H}^{N-1}
\end{aligned}
$$

for $\lambda>0$ constant, $u_{0} \in L^{\infty}(\Omega)$, and where

$$
\varphi(x, p)=\left\{\begin{array}{l}
\frac{1}{q(x)}|p|^{q(x)}|p| \leq \beta \\
|p|-\frac{\beta q(x)-\beta^{q(x)}}{q(x)}|p|>\beta
\end{array}\right.
$$

for constant $\beta>0, q \in L^{\infty}(\Omega), 1<\alpha \leq q(x) \leq 2$. Here u and h are defined on $\partial \Omega$ in the sense of trace ([7]). The solution to

$$
\begin{equation*}
\min _{u \in B V(\Omega)} \Phi_{h}(u) \tag{2}
\end{equation*}
$$

is then the restored version of the corrupted image u_{0}. In order to prove the existence of the weak solution of the corresponding time flow for (2), the authors show for each $u \in B V(\Omega)$ there is a sequence $u_{k} \in H^{1}(\Omega) \cap C^{\infty}(\Omega)$ where

$$
\begin{aligned}
u_{k} & \rightarrow u \text { in } L^{2}(\Omega) \text { and } \\
\Phi_{h}\left(u_{k}\right) & \rightarrow \Phi_{h}(u)
\end{aligned}
$$

Other approximation results are proved in [2] (Lemma 6.2) assuming lower semicontinuity or continuity in the x variable and in [3] for integrand $g(x, p)$ with a continuity condition in x which in general will not be satisfied in our case for $\varphi(\cdot, p) \in L^{1}(\Omega)$. We also refer the reader to [15] for lower semicontinuity and approximation theorems of functionals $\int_{\Omega} f(x, D u), u \in B V(\Omega)$, using the work of Reshetnyak; and, for example, in [1] for the relaxation in $B V(\Omega)$ with respect to the L^{1} norm for functionals $\int_{\Omega} f(x, u, \nabla u) d x$ defined on $W^{1,1}\left(\Omega ; S^{d-1}\right)$ for $\Omega \subset \mathbb{R}^{N}$ open and bounded and S^{d-1} the unit sphere in \mathbb{R}^{d}. However the integrands $f(x, p)$ and $f(x, z, p)$ are always assumed to be lower semicontinuous or continuous on $\Omega \times \mathbb{R}^{N}$ or $\Omega \times \mathbb{R} \times \mathbb{R}^{N}$ respectively for these cases.

Importantly, we note that the approximation Lemma 6.2 in [2] is used to prove existence results there for the solution to the time dependent problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\operatorname{div} \nabla_{p} g(x, D u) & \text { in }(0, \infty) \times \Omega \\ u(t, x)=h(x) & \text { on }(0, \infty) \times \partial \Omega \\ u(0, x)=u_{0}(x) & \text { for } x \in \Omega\end{cases}
$$

via the strong solution using the theory of semigroups in L^{2}, which corresponds to the stationary problem

$$
\min _{u \in B V(\Omega) \cap L^{2}(\Omega)} \Phi_{\varphi}(u),
$$

with

$$
\Phi_{\varphi}(u):=\int_{\Omega} g(x, D u)+\int_{\partial \Phi}|h-u| g^{0}(x, \nu(x)) d \mathcal{H}^{N-1}
$$

for given boundary data h. Here g is continuous on $\bar{\Omega} \times \mathbb{R}^{N}$, convex and continuously differentiable in the second variable p, and

$$
g^{0}(x, p):=\lim _{t \rightarrow 0^{+}} t g(x, p / t)
$$

Appropriately defined solutions of the above time flow in L^{1} using similar semigroup methods are also proved there.

2. Main Results

As stated in the Introduction, we prove an approximation result for a class of functionals $\int_{\Omega} \varphi(x, D u)$ by $\int_{\Omega} \varphi\left(x, \nabla u_{k}\right), u_{k} \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ where $\varphi(x, p)$ satisfies (1)-(3)
and with an additional structure condition on g. Here we will use, from [6], the conjugate function g^{*} for given g :

$$
g^{*}(x, q):=\sup _{p \in \mathbb{R}^{N}}\{q \cdot p-g(x, p)\} .
$$

If g is convex in p, then it is easy to show that g^{*} is convex in q. Also if g is additionally continuous in p, then for a.e. x, there holds $g(x, p)=g^{* *}(x, p)$ for all $p \in \mathbb{R}^{N}$ (see [6],[4]).

We will need the following lemma which is Proposition 1, from [17], which for the convenience of the reader we restate here.

In the sequel we define

$$
\mathcal{V}:=\left\{\phi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{N}\right):|\phi(x)| \leq \psi(x) \text { for all } x \in \Omega\right\} .
$$

Lemma 1. Assume φ satisfies the conditions (1)-(3) above:

$$
\varphi(x, p)= \begin{cases}g(x, p) & \text { if }|p| \leq \beta \\ \psi(x)|p|+k(x) & \text { if }|p|>\beta\end{cases}
$$

with $\psi \in C(\Omega) \cap L^{\infty}(\Omega), \psi \geq 0, k(x, u) \in L^{1}(\Omega)$ for each $u \in L^{1}(\Omega)$. Also assume for some G

$$
\varphi(x, p)=G\left(r_{1}(x), \ldots, r_{K}(x), p\right) \text { for all } p
$$

where

$$
G\left(z_{1}, \ldots, z_{K}, p\right)=\left\{\begin{array}{c}
g_{1}\left(z_{1}, \ldots, z_{K}, p\right) \text { if }|p| \leq \beta \\
z_{K}|p|+g_{2}\left(z_{1}, \ldots, z_{K}\right) \text { if }|p|>\beta
\end{array}\right.
$$

and where for each $|p| \leq \beta, g_{1}$ is C^{1} in the variable $\mathbf{z}=\left(z_{1} \ldots, z_{K}\right) \in U \subset \mathbb{R}^{K}, U$ open, $r_{i} \in L^{1}(\Omega)$ each $i,\left(r_{1}(x), \ldots, r_{K}(x)\right) \in U$ a.e. x, and $\left|\left(\nabla_{\mathbf{z}} g_{1}\right)(\mathbf{z}, p)\right| \leq C, C$ independent of (\mathbf{z}, p). Note that $r_{K}(x)=\psi(x)$ and hence $z_{k} \geq 0$.

Then for all $u \in B V(\Omega)$ we have

$$
\begin{align*}
\mathcal{G}(u) & =\int_{\Omega} \varphi(x, \nabla u) d x+\int_{\Omega} \psi(x)\left|D^{s} u\right| \tag{3}\\
& =\sup _{\phi \in \mathcal{V}}\left\{-\int_{\Omega} u d i v \phi+\varphi^{*}(x, \phi(x)) d x\right\} .
\end{align*}
$$

If in addition $\partial \Omega$ is Lipschitz, $u \in B V(\Omega)$, then we have the continuous trace operator $T: B V(\Omega) \rightarrow L^{1}\left(\partial \Omega, \mathcal{H}^{N-1}\right)([\gamma])$. Thus if $h \in B V(\Omega)$,

$$
\begin{align*}
& \mathcal{G}_{h}(u)=\int_{\Omega} \varphi(x, \nabla u) d x+\int_{\Omega} \psi(x)\left|D^{s} u\right|+\int_{\partial \Omega}|u-h| d \mathcal{H}^{N-1} \tag{4}\\
= & \sup _{\left\{\phi \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{N}\right):|\phi| \leq \psi(x)\right\}}\left\{-\int_{\Omega} u d i v \phi+\varphi^{*}(x, \phi(x)) d x+\int_{\partial \Omega} \phi \widehat{n} h d \mathcal{H}^{N-1}\right\} .
\end{align*}
$$

Furthermore, both \mathcal{G} and \mathcal{G}_{h} are lower semicontinuous in L^{1}.

Before we state the proof, we note that the lower semicontinuity of \mathcal{G} and \mathcal{G}_{h} in L^{1} is not covered the results in [10], [11], [13] since we only assume $\varphi(\cdot, p) \in L^{1}(\Omega)$ for each p and hence the condition that

$$
\lim _{\widetilde{x} \rightarrow x, t \rightarrow \infty} t \varphi(\widetilde{x}, p / t) \text { exists }
$$

as stated there may not hold if $\varphi(\cdot, p)$ is only assumed to be in $L^{1}(\Omega)$. Also see [18] for more general results for lower semicontinuity.

For an example of an integrand φ satisfying the conditions of Lemma 1 , consider the following \mathcal{G} with $\alpha \in L^{1}(\Omega), \delta>0$:

$$
\mathcal{G}(u):=\int_{\Omega} \varphi(x, D u)
$$

with

$$
\varphi(x, p)= \begin{cases}\psi(x) \sqrt{\alpha^{2}(x)+\delta+|p|^{2}} & \text { if }|p| \leq \beta \\ \psi(x)|p|+\psi(x) \frac{\alpha(x)+\delta}{\sqrt{\alpha^{2}(x)+\delta+\beta^{2}}+\beta} & \text { if }|p|>\beta\end{cases}
$$

We now state the approximation theorem.
Theorem 1. Let \mathcal{G} and \mathcal{G}_{h} be as defined in Lemma 1 with φ satisfying the same conditions. Then for each $u \in B V(\Omega) \cap L^{r}(\Omega), 1 \leq r<\infty$ there exist a sequence $u_{k} \in W^{1,1}(\Omega) \cap$ $C^{\infty}(\Omega) \cap L^{r}(\Omega)$ with

$$
\begin{aligned}
\mathcal{G}\left(u_{k}\right) & \rightarrow \mathcal{G}(u) \text { and } \\
u_{k} & \rightarrow u \text { in } L^{r}(\Omega) .
\end{aligned}
$$

In addition, if $\partial \Omega$ is Lipschitz and $h \in L^{1}(\partial \Omega)$ we have for each $u \in B V(\Omega)$ a sequence $u_{k} \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega) \cap L^{r}(\Omega)$ with

$$
\begin{aligned}
\mathcal{G}_{h}\left(u_{k}\right) & \rightarrow \mathcal{G}_{h}(u), \\
u_{k} & \rightarrow u \text { in } L^{r}(\Omega), \text { and } \\
T u_{k} & =T u
\end{aligned}
$$

where $T w$ is the trace operator for $w \in B V(\Omega)$.
Proof. We follow [8] taking into account the extra φ^{*} term.
Fix $\varepsilon>0$ and construct an open covering $\left\{A_{i}\right\}$ of Ω where $A_{i}=\Omega_{i+1}-\bar{\Omega}_{i-1}, A_{1}=\Omega_{2}$ where

$$
\Omega_{k}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>1 /(m+k)\}, k=0,1,2, \ldots
$$

and with m so large that

$$
\begin{align*}
\int_{\Omega-\Omega_{0}} \psi(x)|D u| & <\varepsilon \text { and } \tag{5}\\
\left|\Omega-\Omega_{1}\right| & \leq \varepsilon \tag{6}
\end{align*}
$$

Now construct a sequence $\left\{u_{\varepsilon}\right\}$ so that

$$
u_{\varepsilon}=\sum_{i=1}^{\infty} \eta_{\varepsilon_{i}} *\left(u \phi_{i}\right)
$$

where η is the usual mollifier on $\mathbb{R}^{N},\left\{\phi_{i}\right\}$ is a partition of unity subordinate to $\left\{A_{i}\right\}$, and the ε_{i} are chosen to that the four conditions all hold:

1. each $\varepsilon_{i}<\varepsilon, i \geq 1$
2. $\int_{\Omega}\left|\eta_{\varepsilon_{i}} *\left(u \phi_{i}\right)-u \phi_{i}\right|^{r} d x \leq \varepsilon 2^{-i}$
3. $\int_{\Omega}\left|\eta_{\varepsilon_{i}} *\left(u \nabla \phi_{i}\right)-u \nabla \phi_{i}\right| d x \leq \varepsilon 2^{-i}$
4. support $\eta_{\varepsilon_{i}} *\left(u \phi_{i}\right) \subset \Omega_{i+2}-\bar{\Omega}_{i-2}$.

Summing over all i gives

$$
\int_{\Omega}\left|u_{\varepsilon}-u\right| d x \leq \sum_{i=1}^{\infty} \int_{\Omega}\left|\eta_{\varepsilon_{i}} *\left(u \phi_{i}\right)-u \phi_{i}\right| d x \leq \varepsilon
$$

giving $u_{\varepsilon} \rightarrow u$ in $L^{1}(\Omega)$. Hence by L^{1} lower semicontinuity in Lemma 1

$$
\begin{equation*}
\int_{\Omega} \varphi(x, D u) \leq \lim \inf _{\varepsilon \rightarrow 0} \int_{\Omega} \varphi\left(x, D u_{\varepsilon}\right) . \tag{7}
\end{equation*}
$$

First we note that $\left|\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right)(x)\right| \leq \psi(x)+\omega\left(\varepsilon_{1}\right)$ where the modulus of continuity ω of ψ satisfies $\omega\left(\varepsilon_{1}\right) \rightarrow 0$ as $\varepsilon_{1} \rightarrow 0$, and that for $\varphi_{c}(x, p):=\varphi(x, p)+c|p|$, for each $c>0$, satisfies the same assumptions on φ. Hence for each $u \in B V(\Omega)$

$$
\begin{align*}
& \sup _{|\phi(x)| \leq \psi(x)+c}\left\{-\int_{\Omega} u \operatorname{div} \phi+\varphi_{c}^{*}(x, \phi(x)) d x\right\} \tag{8}\\
= & \int_{\Omega} \varphi(x, \nabla u)+c|\nabla u| d x+\int_{\Omega}(\psi(x)+c) d\left|D^{s} u\right| .
\end{align*}
$$

Now let $\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ with $|\phi(x)| \leq \psi(x)$ each x, then

$$
\begin{gather*}
-\int_{\Omega} u_{\varepsilon} \operatorname{div} \phi+\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x)) d x=\left(\sum_{i=1}^{\infty}-\int_{\Omega}\left(\eta_{\varepsilon_{i}} *\left(u \phi_{i}\right)\right) d i v \phi d x\right) \tag{9}\\
-\int_{\Omega} \varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x)) d x \tag{10}\\
=-\int_{\Omega} u \operatorname{div}\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right) d x-\int_{\Omega} \varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x)) d x-\sum_{i=2}^{\infty} \int_{\Omega} u d i v\left(\phi_{i} \eta_{\varepsilon_{i}} * \phi\right) d x \\
+\sum_{i=1}^{\infty} \int_{\Omega} \phi\left(\eta_{\varepsilon_{i}} *\left(u \nabla \phi_{i}\right)-u \nabla \phi_{i}\right) d x \\
=-\int_{\Omega} u d i v\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right)+\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right) d x-\sum_{i=2}^{\infty} \int_{\Omega} u \operatorname{div}\left(\phi_{i} \eta_{\varepsilon_{i}} * \phi\right) d x
\end{gather*}
$$

$$
\begin{gathered}
+\sum_{i=1}^{\infty} \int_{\Omega} \phi\left(\eta_{\varepsilon_{i}} *\left(u \nabla \phi_{i}\right)-u \nabla \phi_{i}\right) d x \\
+\int_{\Omega} \varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right)-\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x)) d x:=I+I I+I I I+I V
\end{gathered}
$$

By Lemma 3 in [16] we have from the Lipschitz property of $\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}$

$$
\begin{aligned}
I V & \leq \int_{\Omega}\left|\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right)-\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x))\right| d x \\
& \leq \beta \int_{\Omega}\left|\eta_{\varepsilon_{1}} * \phi-\phi\right| d x
\end{aligned}
$$

We now in addition to $1-4$ choose ε_{1} so that $\int_{\Omega_{1}}\left|\eta_{\varepsilon_{1}} * \phi-\phi\right| d x \leq \varepsilon$. The since $\left|\eta_{\varepsilon_{1}} * \phi\right| \leq$ $\|\psi\|_{\infty}$ we then have

$$
\begin{aligned}
I V & \leq \beta \int_{\Omega}\left|\eta_{\varepsilon_{1}} * \phi-\phi\right| d x \\
& =\beta \int_{\Omega_{1}}\left|\eta_{\varepsilon_{1}} * \phi-\phi\right| d x+\beta \int_{\Omega-\Omega_{1}}\left|\eta_{\varepsilon_{1}} * \phi-\phi\right| d x \\
& \leq \beta \varepsilon+2 \beta\|\psi\| \varepsilon \rightarrow 0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Also, we have as in [8]

$$
I I I, I I \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

Now

$$
\begin{aligned}
I= & -\int_{\Omega} u \operatorname{div}\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right)+\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right) d x \\
= & -\int_{\Omega} u \operatorname{div}\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right)+\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \phi_{1} \eta_{\varepsilon_{1}} * \phi\right) d x \\
& +\int_{\Omega} \varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \phi_{1} \eta_{\varepsilon_{1}} * \phi\right)-\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right) d x
\end{aligned}
$$

Again from Lemma 3 in [16] we have for the last line

$$
\begin{aligned}
|\eta| & :=\left|\int_{\Omega} \varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \phi_{1} \eta_{\varepsilon_{1}} * \phi\right)-\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \eta_{\varepsilon_{1}} * \phi\right) d x\right| \\
& \leq \beta \int_{\Omega}\left|\phi_{1} \eta_{\varepsilon_{1}} * \phi-\eta_{\varepsilon_{1}} * \phi\right| d x \\
& =\beta \int_{\Omega-\Omega_{1}}\left|\phi_{1}-1\right|\left|\eta_{\varepsilon_{1}} * \phi\right| d x \\
& \leq 2 \beta \int_{\Omega-\Omega_{1}}\left|\eta_{\varepsilon_{1}} * \phi\right| d x \\
& \leq 2 \beta\|\psi\|_{\infty} \varepsilon
\end{aligned}
$$

since $\phi_{1} \equiv 1$ on Ω_{1}.
Therefore $\eta \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Thus from (8)

$$
\begin{aligned}
I & =-\int_{\Omega} u d i v\left(\phi_{1} \eta_{\varepsilon_{1}} * \phi\right)+\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}\left(x, \phi_{1} \eta_{\varepsilon_{1}} * \phi\right) d x+\eta \\
& \leq \int_{\Omega} \varphi(x, \nabla u)+\omega\left(\varepsilon_{1}\right)|\nabla u| d x+\int_{\Omega}\left(\psi(x)+\omega\left(\varepsilon_{1}\right)\right) d\left|D^{s} u\right|+\eta \\
& =\int_{\Omega} \varphi(x, D u)+\int_{\Omega} \omega\left(\varepsilon_{1}\right)|\nabla u| d x+\omega\left(\varepsilon_{1}\right) \int_{\Omega} d\left|D^{s} u\right|+\eta,
\end{aligned}
$$

keeping in mind that the last three terms approach 0 as $\varepsilon \rightarrow 0$. Thus we have from (9) and for each ϕ with $|\phi(x)| \leq \psi(x)$,

$$
\begin{gathered}
-\int_{\Omega} u_{\varepsilon} d i v \phi+\varphi^{*}(x, \phi(x)) d x \\
\leq I+I I+I I I+I V+\int_{\Omega}\left|\varphi^{*}(x, \phi(x)) d x-\varphi_{\omega\left(\varepsilon_{1}\right)}^{*}(x, \phi(x))\right| d x \\
=I+I I+I I I+I V+\int_{\Omega} \mid \varphi^{*}(x, \phi(x))-\left(\varphi(x, \phi(x))+\omega\left(\varepsilon_{1}\right)|\phi(x)|\right)^{*} d x \\
\leq I+I I+I I I+I V+\omega\left(\varepsilon_{1}\right)|\psi|_{\infty}|\Omega| \\
\leq \int_{\Omega} \varphi(x, D u)+\int_{\Omega} \omega\left(\varepsilon_{1}\right)|\nabla u| d x+\omega\left(\varepsilon_{1}\right) \int_{\Omega} d\left|D^{s} u\right|+\eta \\
+I I+I I I+I V+\omega\left(\varepsilon_{1}\right)|\psi|_{\infty}|\Omega| .
\end{gathered}
$$

The second inequality follows from the note before (8), the assumption $|\phi(x)| \leq \psi(x)$, and Lemma 2 in [16]. Thus we have

$$
\begin{align*}
-\int_{\Omega} u_{\varepsilon} \operatorname{div} \phi+\varphi^{*}(x, \phi(x)) d x \leq & \int_{\Omega} \varphi(x, D u)+\int_{\Omega} \omega\left(\varepsilon_{1}\right)|\nabla u| d x \\
& +\omega\left(\varepsilon_{1}\right) \int_{\Omega} d\left|D^{s} u\right|+\eta \tag{11}\\
& +I I+I I I+I V+\omega\left(\varepsilon_{1}\right)|\psi|_{\infty}|\Omega| .
\end{align*}
$$

Taking the supremum over all such ϕ with $|\phi(x)| \leq \psi(x)$ in (11), and then letting $\varepsilon \rightarrow 0$ we have

$$
\lim \sup _{\varepsilon \rightarrow 0}-\int_{\Omega} \varphi\left(x, D u_{\varepsilon}\right) d x \leq \int_{\Omega} \varphi(x, D u) .
$$

Combining with (7) gives the result. The second part of the theorem is proved as in the first case and as in [5] for the boundary term.

Combining Lemma 1 and Theorem 1 we have the following extension of Theorem 6.4 in [2].

Theorem 2. Let φ satisfy the conditions of Lemma 1 and Theorem 1, then

$$
\begin{aligned}
\inf _{u \in B V(\Omega)} \mathcal{G}(u) & =\inf \left\{\int_{\Omega} \varphi(x, \nabla u) d x: u \in W^{1,1}(\Omega)\right\}, \text { and } \\
\inf _{u \in B V(\Omega), u=h \text { on } \partial \Omega} \mathcal{G}_{h}(u) & =\inf \left\{\int_{\Omega} \varphi(x, \nabla u) d x: u \in W^{1,1}(\Omega) \text { and } u=h \text { on } \partial \Omega\right\} .
\end{aligned}
$$

In addition, $\mathcal{G}, \mathcal{G}_{h}$ is the greatest $L^{1}(\Omega)$-lower semicontinuous functional on $B V(\Omega)$ satisfying $\mathcal{G}(u) \leq \int_{\Omega} \varphi(x, \nabla u) d x$, and $\mathcal{G}_{h}(u) \leq \int_{\Omega} \varphi(x, \nabla u) d x$ for all $u \in W^{1,1}(\Omega)$ and $u \in W^{1,1}(\Omega)$ with $u=h$ on $\partial \Omega$ respectively.

References

[1] R. Alicandro, A. Esposito, and C. Leone. Relaxation in bv of integral functionals defined on sobolev functions with values in the unit sphere. Journal of Convex Analysis, 14(1):69-98, 2007.
[2] F. Andreu-Vaillo, V. Caselles, and J. M. Mazón. Parabolic quasilinear equations minimizing linear growth functionals. Birkhuser, Basel, 2004.
[3] L. Beck and T. Schmidt. Convex duality and uniqueness for bv minimizers. J. Funct. Anal., 268:3061-3107, 2015.
[4] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer, 2006.
[5] Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math, 66(4):1383-1406, 2006.
[6] I. Ekeland and R. Temam. Convex analysis and variational problems. SIAM, Philadelphia, 1999.
[7] L. Evans and R. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, 1992.
[8] E. Giusti. Minimal surfaces and functions of bounded variation. Birkhauser, Basel-Boston-Stuttgart, 1984.
[9] R. Hardt and D. Kinderlehrer. Elastic plastic deformation. Appl. Math. Optim., 10:203-246, 1983.
[10] J. Kristensen and F. Rindler. Characterization of generalised gradient young measures generated by sequences in $\mathrm{W}^{1,1}$ and BV.Archivefor RationalMechanicsandAnalysis, 197:539--598, 2010.
[11] J. Kristensen and F. Rindler. Relaxation of signed integral functionals in bv. Calc. Var., 37:92, 2010.
[12] R.Hardt and X. Zhou. An evolution problem for linear growth functionals. Commun. Partial Differential Equations., 19:1879-1907, 1994.
[13] F. Rindler and G. Shaw. Liftings, young measures, and lower semicontinuity. Arch. Rational Mech. Anal., 232:1227-1328, 2019.
[14] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D, 60:259-268, 1992.
[15] D. Spector. Simple proofs of some results of reshetnyak. In Proceedings of the American Mathematical Society., volume 139, pages 1681-1690. American Mathematical Society, 2011.
[16] T. Wunderli. On functionals with convex carathéodory integrands with a linear growth condition. Journal of Mathematical Analysis and Applications, 463:611-622, 2018.
[17] T. Wunderli. Lower semicontinuity and -convergence of a class of linear growth functionals. Nonlinear Analysis, 188:80-90, 2019.
[18] T. Wunderli. Lower semicontinuity in 11 of a class of functionals defined on bv with carathéodory integrands. Abstract and Applied Analysis, 2021.
[19] X. Zhou. An evolution problem for plastic antiplanar shear. Appl. Math. Optim., 25:263-285, 1992.

