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On the Diophantine Equations ax + by + cz = w2
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Abstract. Over the past decade, exponential Diophantine equations of the form ax + by = wn

have been studied as if they were a phenomenon. In particular, numerous articles have focused on
the cases where n = 2 or n = 4 and 2 ≤ a, b ≤ 200. However, these articles are primarily concerned
with determining whether the left-hand side of the equation needs to consist of more than two
exponentials. Therefore, in this article, we investigate the exponential Diophantine equation in
the form ax + by + cz = w2, using only elementary tools related to modulo concepts. We present
three theorems in which the variables a, b and c vary under certain conditions, and three additional
theorems where the variable c is fixed at 7. Furthermore, if we restrict our parameters a, b and c
to 2 ≤ a ≤ b ≤ c ≤ 20, then 1,330 equations have been considered. Our results confirm that 135
of these equations have been fully clarified.
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1. Introduction

Many mathematicians have proposed generalized forms of the Diophantine equation
in various ways. One example is the exponential Diophantine equation 3x + 4y = 5z,
which has no solutions for any natural numbers x, y, z except when x = y = z = 2. This
was proven in 1956 by W. Sierpinski, [17]. In the same year, L. Jamanowicz published
an article that seemed to follow in W. Sierpinski’s footsteps by selecting other equations
such as 5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, and 11x + 60y = 61z[see 13].
Since then, many mathematicians have explored variations by changing the base values
a, b, and c in the exponential Diophantine equation ax + by = cz. For example, in 2005,
D. Acu [1] considered three cases: Case 1 where a = b = c = p, Case 2 where a = b = p
and c = 2p, and the last case where a = p, b = q, and c = pq, with p and q being prime
numbers. Furthermore, he proposed the alternative form 2x + 5y = z2 in 2007, and noted
that Catalan’s conjecture was an important tool for finding solutions,[see 2]. It’s also
worth noting that the exponential term cz was interchanged with the polynomial term z2.
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Since 2007, hundreds of articles inspired by the equation 2x + 5y = z2 have been
published. Many were authored by B. Sroysang, as seen in references [18–20], among
others listed in [5, 9, 16, 22]. In addition, there are exponential Diophantine equations
similar to 2x + 5y = z2 but with more than three variables. Some of these are showcased
in Table 1. Ever since D. Acu introduced the equation 2x + 5y = z2 in 2007, researchers
have explored alternative forms by altering the base numbers 2 and 5. They have also
tried to generalize the equation, creating new forms and investigating their solutions.
Interestingly, there are few equations like 3x + 5y + 7z = w2 that consider three base
numbers for the exponential terms. This particular equation was established by J. B.
Bacani and J. F. T. Rabago, and serves as the inspiration for this article. Here, we focus
on the form ax + by + cz = w2 under certain conditions for a, b, c, x, y, z, and w, using
only elementary tools related to modulo concepts. Most equations in Table 1 have more
than three variables, but they still involve only two base numbers. Even the equation
px + (p+ 1)y + (p+ 2)z = M2, cited in [6], appears to have three exponential terms, but
its parameters x, y, and z are restricted to the set {1, 2, 3}.

Table 1: Example of the exponential Diophantine equations during the past ten years which were considered
more than three variables.

Ref. Author Equation

[3] J.B. Bacani and J.F.T. Rabago 3x + 5y + 7z = w2

[4] J.B. Bacani and J.F.T. Rabago px + qy = z2

[6] Nechemia Burshtein px + (p+ 1)y + (p+ 2)z = M2

[7] Nechemia Burshtein p3 + qy = z3

[10] R. Dokchan and A. Pakapongpun px + (p+ 20)y = z2

[14] K. Laipaporn, S. Wananiyakul 3x + p5y = z2

and P. Khachorncharoenkul
[21] S. Subburam lax +mby = ncz

[23] A. Suvarnamani px + (p+ 1)y = z2

2. Main Theorem

Our main results are divided into two groups. In the first group, we focus on the
equation ax+by+cz = w2 with the variable c fixed at 7, while varying (a, b) in specific cases.
These cases consider all elements in the set A, which includes (3, 4), (9, 4), (3, 16), (9, 16),
(4, 6), (16, 6), (9, 10), and (6, 10). This is discussed in Theorems 1–4 and Corollaries 1–2.
The second group consists of Theorems 5–7 and Corollary 3, where all variables a, b, and
c are allowed to vary under certain conditions. Additionally, we introduce an auxiliary
result, referred to as ’Result 1,’ which is utilized in sections 1 and 2.

Lemma 1. For any non-negative integers w and z, the equation 5 + 7z = w2 has no
solution.
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Proof. It is clear that w has to be even. So, we have that z is odd because of

0 ≡ w2 ≡ 5 + 7z ≡ 1 + (−1)z ≡

{
0 (mod 4) if z is odd,

2 (mod 4) if z is even.

If z = 1 then w is not integer, so we can let z = 2k + 1 for some integer k ≥ 1. Then
the eqaution 5 + 7z = w2 becomes (w − 2)(w + 2) = (7 + 1)(72k − 72k−1 + · · · − 7 + 1) So
8|(w − 2)(w + 2). Since 2|(w − 2), 2|(w + 2), and w + 2 = (w − 2) + 4, we conclude that
4|(w − 2) and 4|(w + 2). This implies that 0 ≡ w2 − 4 ≡ 72k+1 + 1 ≡ 8 (mod 16), so it is
a contratiction. Hence the equation 5 + 7z = w2 has no solution.

With the previous lemma, we are ready to solve the following equation.

2.1. The exponential Diophantine equation ax + by + 7z = w2

First, we note from [3], J. B. Bacani and J. F. T. Rabago that they focused on the
equation 3x + 5y + 7z = w2. In case x = y = 0, the equation becomes to 2 + 7z = w2

that already considered that why we examined our theorems in this section over the set
U = N4

0 − {(0, 0, z, w)|z, w ∈ N0} where N0 is the set of all non-negative integers. From
now on, it causes us to investigate x and y are unequal to zero simultaneously. Then we
have the results of the exponential Diophantine equation ax + by + 7z = w2 where a and
b are positive integers and the variables (x, y, z, w) are elements in U as follows:

Theorem 1. The equation
3x + 4y + 7z = w2 (1)

has no solution for any (x, y, z, w) ∈ U .
Proof. The proof of the theorem is separated into 3 cases.

Case 1 z = 0. Then the equation (1) becomes

3x + 4y + 1 = w2. (2)

We note that

3x + 4y + 1 ≡

{
2 (mod 3) for x ≥ 1 and y ≥ 0

2 (mod 4) for x = 0 and y ≥ 1
(3)

Since w2 ≡ 0, 1 (mod 3) and w2 ≡ 0, 1 (mod 4), we conclude that 3x + 4y + 1 = w2

has no solution for all x, y, w ∈ N0.

Case 2 z = 1. For any x ≥ 1 and y ≥ 0, we see that 3x + 4y + 7 ≡ 2 (mod 3). Again,
w2 ≡ 0, 1 (mod 3) and this fact forces the equation 3x+4y+7 = w2 has no solution.
Now, we remain to consider x = 0 and y ≥ 1 and then the equation (1) is in the
form 8 = (w − 2y)(w + 2y). So, we can let w − 2y = 2u and w + 2y = 23−u where

u = 0 or u = 1. Since 2w =

{
9 if u = 0

6 if u = 1
and w has to be integer, we have w = 3

and y = 0. It contradics to y ≥ 1.
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Case 3 z ≥ 2. First, we can see that 3x + 4y + 7z ≡ 2 (mod 3) for any x ≥ 1 and y ≥ 0,
but w2 ̸≡ 2 (mod 3), so the equation (1) has no solution. Next, we consider x = 0
and y = 1. By lemma 1, we know that the equation (1) has no solution. Finally, we
assume that x = 0 and y ≥ 2. So w is even. It implies that 0 ≡ w2 ≡ 1 + 4y + 7z ≡
1+ (−1)z (mod 4) and then z has to be odd. Again w2 ≡ 1+4y +7z ≡ 1+0+7 ≡ 8
(mod 16) but we have the fact that w2 ≡ 0, 1, 4, 9 (mod 16) which is a contradiction.
Hence 3x + 4y + 7z = w2 has no solution for any (x, y, z, w) ∈ U .

Corollary 1. Each of the following equations:

9x + 4y + 7z = w2, (4)

3x + 16y + 7z = w2 (5)

and
9x + 16y + 7z = w2 (6)

have no solution for any (x, y, z, w) ∈ U .
Proof. Suppose that (x0, y0, z0, w0) ∈ U is a solution of the equation (4). Then w2

0 =
32x0 + 4y0 + 7z0, i.e. (2x0, y0, z0, w0) is a solution of the equation (1). It contradicts to 1.
With the same trace of the proof of equation (4), we can conclude that equation (5) and
equation (6) have no solution for any (x, y, z, w) ∈ U .

Theorem 2. The equation
4x + 6y + 7z = w2 (7)

has no solution for all (x, y, z, w) ∈ U .
Proof. The proof of 2 follows from the footprint of 1 by using modulo 3, 4 and 16 but

dividing the value z to two cases.

Case 1 z = 0. Since w2 ̸≡ 2 (mod 3) but 4x + 6y + 1 ≡ 2 (mod 3) for all x ≥ 0 and y ≥ 1,
the equation (7) has no solution. So, we remain to proof the case x ≥ 1 and y = 0,
the equation (7) becomes to 4x + 2 = w2. By the fact that x ≥ 1, we have w is even
and then w2 ≡ 0 (mod 4) that contradicts to w2 ≡ 4x + 2 ≡ 2 (mod 4).

Case 2 z ≥ 1. Again w2 ̸≡ 2 (mod 3) and 4x + 6y + 7z ≡ 2 (mod 3) for any x ≥ 0 and
y ≥ 1. So the equation (7) has no solution. Next, we have to consider only subcase
x ≥ 1 and y = 0. If x = 1 then the equation (7) has also no solution by 1. Now, we
focus on the equation 4x+1+7z = w2 for x ≥ 2. Since w2 ≡ 0, 1, 4, 9 (mod 16) and

4x + 1 + 7z ≡

{
2 (mod 16) if z is even,

8 (mod 16) if z is odd.

we have 4x + 1 + 7z ̸≡ w2 (mod 16). Thus the equation (7) has no solution.
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Corollary 2. The equation
16x + 6y + 7z = w2 (8)

has no solution for any (x, y, z, w) ∈ U .
Proof. With the same trace of 1, we can conclude that equation (8) has no solution by

using 2.

Theorem 3. The equation
9x + 10y + 7z = w2 (9)

has no solution for any (x, y, z, w) ∈ U − T , where T = {(0, 3, z, w)|z ≥ 2 and z is odd}.
Proof. For proving this theorem, we still use modulo 3 and 16 that play the main role

to verify the existence of its solution and also use modulo 5 and 10 in some subcaes of the
variable z.

Case 1 z = 0. Note that

9x + 10y + 1 ≡

{
2 (mod 3) if x ≥ 1 and y ≥ 0,

2 (mod 10) if x = 0 and y ≥ 1,

and we know that neither w2 ̸≡ 2 (mod 3) nor w2 ̸≡ 2 (mod 10). Then it is clear
that the equation (9) has no solution on U if z = 0.

Case 2 z = 1. With the same fashion in Case 1, we note that

9x + 10y + 7 ≡

{
2 (mod 3) if x ≥ 1 and y ≥ 0,

3 (mod 5) if x = 0 and y ≥ 1.

Since w2 ≡ 2 (mod 3) and w2 ̸≡ 3 (mod 5) the equation 9x + 10y + 7 = w2 has no
solution on U if z = 1.

Case 3 z ≥ 2. If x ≥ 1 and y ≥ 0 then it is easy to see that 9x + 10y + 7z = w2 has no
solution by examing with modulo 3. Now, we remain to investigate the last subcase
x = 0 and y ≥ 1. Then the equation (9) becomes

1 + 10y + 7z = w2. (10)

Note that

1 + 7z ≡

{
2 (mod 16) if z is even,

8 (mod 16) if z is odd,

and

10y ≡


10 (mod 16) if y = 1,

4 (mod 16) if y = 2,

8 (mod 16) if y = 3,

0 (mod 16) if y ≥ 4.
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So

1 + 10y + 7z ≡

{
2, 6, 10, 12 (mod 16) if z is even and y ≥ 1,

2, 8, 12 (mod 16) if z is odd, y ≥ 1 and y ̸= 3,

but w2 ≡ 0, 1, 4, 9 (mod 16), this leads us to complete the proof that the equation (9)
has no solution on U−T if z ≥ 2. From here we obtain the equation 9x+10y+7z = w2

has no solution for any (x, y, z, w) ∈ U − T .

Theorem 4. The equation
6x + 10y + 7z = w2 (11)

has no solution for any (x, y, z, w) ∈ U − T where T = {(0, 3, z, w)|z ≥ 2 and z is odd}.
Proof. Note that, if x ≥ 1 and y ≥ 0 then 6x + 10y + 7z ≡ 2 (mod 3) for all z ≥ 0.

From this fact and the fact that w2 ̸≡ 2 (mod 3), we conclude that the equation (11)
has no solution for x ̸= 0. Now, it leads us to consider the equation (11) in the form
1 + 10y + 7z = w2 for any y ≥ 1, z and w are non-negative. For the case z = 0 or z = 1,
we get 1 + 10y + 7z ≡ 2 or 3 (mod 5). but w2 ̸≡ 2, 3 (mod 5). So, we remain to examine
the equation 1 + 10y + 7z = w2 in the case of y ≥ 1, z ≥ 2 and w ≥ 0.That is the same
equation (10) in 3 and we immediately conclude that the equation (11) has no solution for
all (x, y, z, w) ∈ U − T .

2.2. The exponential Diophantine equation ax + by + cz = w2

In this section, we present our results and discussion for ax + by + cz = w2, where all
bases of the exponential are in terms of variables except 7 and 3.

Theorem 5. The Diophantine equation ax + by + cz = w2 has no solution when a, b and
c satisfy one of the following conditions:

(i) a, b, c ≡ 1 (mod 4).

(ii) a, b, c ≡ 1 (mod 5).

(iii) a ≡ 0 (mod 4) and b, c ≡ 1 (mod 4).

(iv) a ≡ 0 (mod 5) and b, c ≡ 1 (mod 5).

(v) a ≡ 3 (mod 8) and b, c ≡ 1 (mod 8).

(vi) a ≡ 1 (mod 8) and b, c ≡ 3 (mod 8).

Proof.

(i) Suppose that a, b, c ≡ 1 (mod 4). For any nonnegative integers x, y, z and w, it is
obvious that ax + by + cz ≡ 3 (mod 4), but w2 ≡ 0, 1 (mod 4). This means that
ax + by + cz ̸≡ w2 (mod 4). Hence, the Diophantine equation has no solution.
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(ii) Suppose that a, b, c ≡ 1 (mod 5). Given that w2 ≡ 0, 1, 4 (mod 5) and by the same
trace of (i), we can conclude that the Diophantine equation has no solution.

(iii) Suppose that a ≡ 0 (mod 4) and b, c ≡ 1 (mod 4). For any nonnegative integers x, y
and z, we know that

ax ≡

{
1 (mod 4) if x = 0

0 (mod 4) if x ≥ 1,

and by, cz ≡ 1 (mod 4). Thus,

ax + by + cz ≡

{
3 (mod 4) if x = 0

2 (mod 4) if x ≥ 1,

for any nonnegative integers x, y and z. Since w2 ≡ 0, 1 (mod 4), the Diophantine
equation has no solution.

(iv) By the same trace of (i) and (ii), we can conclude that the Diophantine equation has
no solution.

(v) Suppose that a ≡ 3 (mod 8) and b, c ≡ 1 (mod 8). For any nonnegative integers x, y
and z, we can see that

ax ≡

{
1 (mod 8) if x is even

3 (mod 8) if x is odd,

and by, cz ≡ 1 (mod 8). Thus,

ax + by + cz ≡

{
3 (mod 8) if x is even

5 (mod 8) if x is odd,

for any nonnegative integers x, y and z. Since w2 ≡ 0, 1, 4 (mod 8), the Diophantine
equation has no solution.

(vi) Suppose that a ≡ 1 (mod 8) and b, c ≡ 3 (mod 8). First, we note that

by ≡

{
1 (mod 8) if x is even

3 (mod 8) if x is odd,

cz ≡

{
1 (mod 8) if x is even

3 (mod 8) if x is odd,

ax ≡ 1 (mod 8) and w2 ≡ 0, 1, 4 (mod 8) for any nonnegative integers w, x, y and
z.

Next, we separate the proof into four cases.
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Case 1. Here, y = 0 and z = 0. Since ax + by + cz ≡ 3 (mod 8) and w2 ̸≡ 3 (mod 8),
the Diophantine equation has no solution.

Case 2. Here, y = 0 and z > 0. Since

ax + 1 + cz ≡

{
3 (mod 8) if x is even

5 (mod 8) if x is odd,

and w2 ̸≡ 3, 5 (mod 8), the Diophantine equation has no solution.

Case 3. Here, y > 0 and z = 0. The proof of this case is the same as in Case 2.

Case 4. Here, y > 0 and z > 0. Then,

by + cz ≡


6 (mod 8) if y and z are odd,

2 (mod 8) if y and z are even,

4 (mod 8) if otherwise.

However, w2 ≡ 0, 1, 4 (mod 8), so, the Diophantine equation has no solution.

Theorem 6. If a + 2 is a perfect square number such that a ≡ 2 (mod 36) and b, c ≡ 9
(mod 36), then the solutions of Diophantine equation ax + by + cz = w2 are (x, y, z, w) =
(1, 0, 0,

√
a+ 2).

Proof. Note that a ≡ 2 (mod 4), b, c ≡ 1 (mod 4), a ≡ 2 (mod 9) and b, c ≡ 0
(mod 9). Since 1+by+cz ≡ 3 (mod 4) and w2 ≡ 0, 1 (mod 4), equation ax+by+cz = w2

has no solution for the case x = 0. If x ≥ 2, then ax + by + cz ≡ 2 (mod 4), which
contradicts w2 ≡ 0, 1 (mod 4). Thus, in this case, x ≥ 2, and there is no solution. We
now consider that for x = 1, y and z are nonzero at the same time. Because

a+ by + cz ≡

{
2 (mod 9) if y, z ≥ 1,

3 (mod 9) if either y or z is zero,

and w2 ≡ 0, 1, 4, 7 (mod 9), a solution still does not exist. For the last case, that is,
x = 1, y = z = 0, we see that ax + by + cz = a+ 2 is a perfect square number. Hence, the
solution of equation ax + by + cz = w2 is (1, 0, 0,

√
a+ 2).

Theorem 7. If b, c ≡ 5 (mod 20), then the solution of the Diophantine equation 2x+by+
cz = w2 is (x, y, z, w) = (1, 0, 0, 2).

Proof. First, we note that b, c ≡ 1 (mod 4) and b, c ≡ 0 (mod 5) since b, c ≡ 5
(mod 20). If x = 0, then we odd value, which leads to w2 ≡ 1 (mod 4). However,
1 + by + cz ≡ 3 (mod 4), contradicts the equation 2x + by + cz = w2, which has a solution
in this case. Moreover, for the case x ≥ 2, there is no solution for nonnegative integer
(x, y, z, w) because of 2x + by + cz ≡ 2 (mod 4) and w2 ≡ 0, 1 (mod 4). Now, it remains
to consider only the case x = 1. The result of

2 + by + cz ≡

{
3 (mod 5) if y or z are zero,

2 (mod 5) if y or z are positive,
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and w2 ≡ 0, 1, 4 (mod 5), we conclude that 2+by+cz = w2 has no solution for y, z, w ∈ N0,
and y and z are not all zero simultaneously. Hence, 2x+by+cz = w2 has only one solution
(x, y, z, w) = (1, 0, 0, 2).

Corollary 3. For any nonnegative integers a, b, c, x, y, z and w, if a + 2 is a perfect
square number, such that a ≡ 2 (mod 20) and b, c ≡ 5 (mod 20), then the solutions of the
Diophantine equation ax + by + cz = w2 are (x, y, z, w) = (1, 0, 0,

√
a+ 2).

Proof. The proof of corollary 3 follows from the same manner as 7.

Code Listing 1: Python source code.

import math

import collections

def is_perfact_square(n):

i = 1

while i<=math.floor(n** 0.5):

if i*i==n: return True

i = i+1

return False

def check_theorem(a,b,c):

theorem_dict = {

(3,4,7):"Theoremm 1",

(9,4,7):"Corollary 1",

(3,16 ,7):"Corollary 1",

(9,16 ,7):"Corollary 1",

(4,6,7):"Theoremm 2",

(16 ,6,7):"Corollary 2",

(9,10 ,7):"Theoremm 3",

(6,10 ,7):"Theoremm 4"

}

list_of_thm = []

if (a,b,c) in theorem_dict.keys(): list_of_thm.append(theorem_dict[(a,b,c

)])

if b%4==1 and c%4==1:

if a%4==1: list_of_thm.append("Theoremm 5(i)")

elif a%4==0: list_of_thm.append("Theoremm 5(iii)")

if b%5==1 and c%5==1:

if a%5==1: list_of_thm.append("Theoremm 5(ii)")

elif a%5==0: list_of_thm.append("Theoremm 5(iv)")

if a%8==3 and b%8==1 and c%8==1: list_of_thm.append("Theoremm 5(v)")

if a%8==1 and b%8==3 and c%8==3: list_of_thm.append("Theoremm 5(vi)")

if a==2 and b%20==5 and c%20==5: list_of_thm.append("Theoremm 7")

if is_perfact_square(a+2):

if a%36==2 and b%36==9 and c%36==9: list_of_thm.append("TTheoremm 6")

if a%20==2 and b%20==5 and c%20==5: list_of_thm.append("Corollary 3")

return list_of_thm

if __name__ == "__main__":

my_dict = dict()

base_min , base_max = 2, 20
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for a in range(base_min , base_max + 1):

for b in range(base_min , base_max + 1):

for c in range(base_min , base_max + 1):

if len(check_theorem(a,b,c))>0:

L = [a,b,c]

L.sort()

my_dict[tuple(L)] = check_theorem(a,b,c)

ordered_my_dict = collections.OrderedDict(sorted(my_dict.items()))

print(f"No.\ tCase\tReference of Theorem")

k = 1

for abc in ordered_my_dict:

print(f"{k}\t{abc}\t {’,’.join(ordered_my_dict[abc])}")

k=k+1

2.3. Conclusion

In summary, this article began by extending the number of exponential bases in
Diophantine equations from two—represented as ax + by = z2—to three, represented
as ax + by + cz = w2. Most of our results focus on situations where the equation
ax + by + cz = w2 has no solution. Some of these cases relate to conditions where (a, b) is
in the set containing pairs like (3, 4), (9, 4), (3, 16), (9, 16), (4, 6), (16, 6), (9, 10), and (6, 10),
along with c being equal to 7. Other results are categorized as follows:

(i) a, b, c ≡ 1 (mod 4).

(ii) a, b, c ≡ 1 (mod 5).

(iii) a ≡ 0 (mod 4) and b, c ≡ 1 (mod 4).

(iv) a ≡ 0 (mod 5) and b, c ≡ 1 (mod 5).

(v) a ≡ 3 (mod 8) and b, c ≡ 1 (mod 8).

(vi) a ≡ 1 (mod 8) and b, c ≡ 3 (mod 8).

Some equations of the form ax + by + cz = w2 do have solutions, as discussed in Theorem
6, 7, and Corollary 3. Our research yielded 135 equations that have been clarified from a
total of 1,330 equations, assuming we limit all variables a, b, and c to range from 2 to 20.
We used Python code, as shown in Code Listing 1, to count the number of equations that
satisfy our theorems and corollaries. Specifically, we offer code that counts all equations of
the form ax + by + cz = w2 that are related to our results in the theorems and corollaries.
The accompanying table lists the exponential Diophantine equations with variables a, b,
and c limited to the range from 2 to 20. For future work, we aim to combine this research
with a new form of Diophantine equation, as seen in reference [8], or we will expand
our research using other techniques, such as transforming the equation into an elliptic
curve[12], extending into the quadratic field [see details 11], or using Legendre symbols
with related theorems,[see also 15, 24].
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Table 2: The list of the equations ax + by + cz = w2 where 2 ≤ a ≤ b ≤ c ≤ 20 and all variables a, b and c are
satisfied our results.

No. ax + by + cz = w2 Result Ref. of Theorem

1 2x + 5y + 5z = w2 (1, 0, 0, 2) 7, Corollary 3
2 2x + 9y + 9z = w2 (1, 0, 0, 2) 6
3 3x + 3y + 9z = w2 No solution 5(vi)
4 3x + 3y + 17z = w2 No solution 5(vi)
5 3x + 4y + 7z = w2 No solution 1
6 3x + 7y + 16z = w2 No solution Corollary 1
7 3x + 9y + 9z = w2 No solution 5(v)
8 3x + 9y + 11z = w2 No solution 5(vi)
9 3x + 9y + 17z = w2 No solution 5(v)
10 3x + 9y + 19z = w2 No solution 5(vi)
11 3x + 11y + 17z = w2 No solution 5(vi)
12 3x + 17y + 17z = w2 No solution 5(v)
13 3x + 17y + 19z = w2 No solution 5(vi)
14 4x + 5y + 5z = w2 No solution 5(iii)
15 4x + 5y + 9z = w2 No solution 5(iii)
16 4x + 5y + 13z = w2 No solution 5(iii)
17 4x + 5y + 17z = w2 No solution 5(iii)
18 4x + 6y + 7z = w2 No solution 2
19 4x + 7y + 9z = w2 No solution Corollary 1
20 4x + 9y + 9z = w2 No solution 5(iii)
21 4x + 9y + 13z = w2 No solution 5(iii)
22 4x + 9y + 17z = w2 No solution 5(iii)
23 4x + 13y + 13z = w2 No solution 5(iii)
24 4x + 13y + 17z = w2 No solution 5(iii)
25 4x + 17y + 17z = w2 No solution 5(iii)
26 5x + 5y + 5z = w2 No solution 5(i)
27 5x + 5y + 8z = w2 No solution 5(iii)
28 5x + 5y + 9z = w2 No solution 5(i)
29 5x + 5y + 12z = w2 No solution 5(iii)
30 5x + 5y + 13z = w2 No solution 5(i)
31 5x + 5y + 16z = w2 No solution 5(iii)
32 5x + 5y + 17z = w2 No solution 5(i)
33 5x + 5y + 20z = w2 No solution 5(iii)
34 5x + 6y + 6z = w2 No solution 5(iv)
35 5x + 6y + 11z = w2 No solution 5(iv)
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Table 3: The list of the equations ax + by + cz = w2 where 2 ≤ a ≤ b ≤ c ≤ 20 and all variables a, b and c are
satisfied our results.

No. ax + by + cz = w2 Result Ref. of Theorem

36 5x + 6y + 16z = w2 No solution 5(iv)
37 5x + 8y + 9z = w2 No solution 5(iii)
38 5x + 8y + 13z = w2 No solution 5(iii)
39 5x + 8y + 17z = w2 No solution 5(iii)
40 5x + 9y + 9z = w2 No solution 5(i)
41 5x + 9y + 12z = w2 No solution 5(iii)
42 5x + 9y + 13z = w2 No solution 5(i)
43 5x + 9y + 16z = w2 No solution 5(iii)
44 5x + 9y + 17z = w2 No solution 5(i)
45 5x + 9y + 20z = w2 No solution 5(iii)
46 5x + 11y + 11z = w2 No solution 5(iv)
47 5x + 11y + 16z = w2 No solution 5(iv)
48 5x + 12y + 13z = w2 No solution 5(iii)
49 5x + 12y + 17z = w2 No solution 5(iii)
50 5x + 13y + 13z = w2 No solution 5(i)
51 5x + 13y + 16z = w2 No solution 5(iii)
52 5x + 13y + 17z = w2 No solution 5(i)
53 5x + 13y + 20z = w2 No solution 5(iii)
54 5x + 16y + 16z = w2 No solution 5(iv)
55 5x + 16y + 17z = w2 No solution 5(iii)
56 5x + 17y + 17z = w2 No solution 5(i)
57 5x + 17y + 20z = w2 No solution 5(iii)
58 6x + 6y + 6z = w2 No solution 5(ii)
59 6x + 6y + 10z = w2 No solution 5(iv)
60 6x + 6y + 11z = w2 No solution 5(ii)
61 6x + 6y + 15z = w2 No solution 5(iv)
62 6x + 6y + 16z = w2 No solution 5(ii)
63 6x + 6y + 20z = w2 No solution 5(iv)
64 6x + 7y + 10z = w2 No solution 4
65 6x + 7y + 16z = w2 No solution Corollary 2
66 6x + 10y + 11z = w2 No solution 5(iv)
67 6x + 10y + 16z = w2 No solution 5(iv)
68 6x + 11y + 11z = w2 No solution 5(ii)
69 6x + 11y + 15z = w2 No solution 5(iv)
70 6x + 11y + 16z = w2 No solution 5(ii)
71 6x + 11y + 20z = w2 No solution 5(iv)
72 6x + 15y + 16z = w2 No solution 5(iv)
73 6x + 16y + 16z = w2 No solution 5(ii)
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Table 4: The list of the equations ax + by + cz = w2 where 2 ≤ a ≤ b ≤ c ≤ 20 and all variables a, b and c are
satisfied our results.

No. ax + by + cz = w2 Result Ref. of Theorem

74 6x + 16y + 20z = w2 No solution 5(iv)
75 7x + 9y + 10z = w2 No solution 3
76 7x + 9y + 16z = w2 No solution Corollary 1
77 8x + 9y + 9z = w2 No solution 5(iii)
78 8x + 9y + 13z = w2 No solution 5(iii)
79 8x + 9y + 17z = w2 No solution 5(iii)
80 8x + 13y + 13z = w2 No solution 5(iii)
81 8x + 13y + 17z = w2 No solution 5(iii)
82 8x + 17y + 17z = w2 No solution 5(iii)
83 9x + 9y + 9z = w2 No solution 5(i)
84 9x + 9y + 11z = w2 No solution 5(v)
85 9x + 9y + 12z = w2 No solution 5(iii)
86 9x + 9y + 13z = w2 No solution 5(i)
87 9x + 9y + 16z = w2 No solution 5(iii)
88 9x + 9y + 17z = w2 No solution 5(i)
89 9x + 9y + 19z = w2 No solution 5(v)
90 9x + 9y + 20z = w2 No solution 5(iii)
91 9x + 11y + 11z = w2 No solution 5(vi)
92 9x + 11y + 17z = w2 No solution 5(v)
93 9x + 11y + 19z = w2 No solution 5(vi)
94 9x + 12y + 13z = w2 No solution 5(iii)
95 9x + 12y + 17z = w2 No solution 5(iii)
96 9x + 13y + 13z = w2 No solution 5(i)
97 9x + 13y + 16z = w2 No solution 5(iii)
98 9x + 13y + 17z = w2 No solution 5(i)
99 9x + 13y + 20z = w2 No solution 5(iii)
100 9x + 16y + 17z = w2 No solution 5(iii)
101 9x + 17y + 17z = w2 No solution 5(i)
102 9x + 17y + 19z = w2 No solution 5(v)
103 9x + 17y + 20z = w2 No solution 5(iii)
104 9x + 19y + 19z = w2 No solution 5(vi)
105 10x + 11y + 11z = w2 No solution 5(iv)
106 10x + 11y + 16z = w2 No solution 5(iv)
107 10x + 16y + 16z = w2 No solution 5(iv)
108 11x + 11y + 11z = w2 No solution 5(ii)
109 11x + 11y + 15z = w2 No solution 5(iv)
110 11x + 11y + 16z = w2 No solution 5(ii)
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Table 5: The list of the equations ax + by + cz = w2 where 2 ≤ a ≤ b ≤ c ≤ 20 and all variables a, b and c are
satisfied our results.

No. ax + by + cz = w2 Result Ref. of Theorem

111 11x + 11y + 17z = w2 No solution 5(vi)
112 11x + 11y + 20z = w2 No solution 5(iv)
113 11x + 15y + 16z = w2 No solution 5(iv)
114 11x + 16y + 16z = w2 No solution 5(ii)
115 11x + 16y + 20z = w2 No solution 5(iv)
116 11x + 17y + 17z = w2 No solution 5(v)
117 11x + 17y + 19z = w2 No solution 5(vi)
118 12x + 13y + 13z = w2 No solution 5(iii)
119 12x + 13y + 17z = w2 No solution 5(iii)
120 12x + 17y + 17z = w2 No solution 5(iii)
121 13x + 13y + 13z = w2 No solution 5(i)
122 13x + 13y + 16z = w2 No solution 5(iii)
123 13x + 13y + 17z = w2 No solution 5(i)
124 13x + 13y + 20z = w2 No solution 5(iii)
125 13x + 16y + 17z = w2 No solution 5(iii)
126 13x + 17y + 17z = w2 No solution 5(i)
127 13x + 17y + 20z = w2 No solution 5(iii)
128 15x + 16y + 16z = w2 No solution 5(iv)
129 16x + 16y + 16z = w2 No solution 5(ii)
130 16x + 16y + 20z = w2 No solution 5(iv)
131 16x + 17y + 17z = w2 No solution 5(iii)
132 17x + 17y + 17z = w2 No solution 5(i)
133 17x + 17y + 19z = w2 No solution 5(v)
134 17x + 17y + 20z = w2 No solution 5(iii)
135 17x + 19y + 19z = w2 No solution 5(vi)
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